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Objective: This study aimed to develop a radiomics model to predict early recurrence (<1
year) in grade II glioma after the first resection.

Methods: The pathological, clinical, and magnetic resonance imaging (MRI) data of
patients diagnosed with grade II glioma who underwent surgery and had a recurrence
between 2017 and 2020 in our hospital were retrospectively analyzed. After a rigorous
selection, 64 patients were eligible and enrolled in the study. Twenty-two cases had a
pathologically confirmed recurrent glioma. The cases were randomly assigned using a
ratio of 7:3 to either the training set or validation set. T1-weighted image (T1WI), T2-
weighted image (T2WI), and contrast-enhanced T1-weighted image (T1CE) were
acquired. The minimum-redundancy-maximum-relevancy (mRMR) method alone or in
combination with univariate logistic analysis were used to identify the most optimal
predictive feature from the three image sequences. Multivariate logistic regression
analysis was then used to develop a predictive model using the screened features. The
performance of each model in both training and validation datasets was assessed using a
receiver operating characteristic (ROC) curve, calibration curve, and decision curve
analysis (DCA).

Results: A total of 396 radiomics features were initially extracted from each image
sequence. After running the mRMR and univariate logistic analysis, nine predictive
features were identified and used to build the multiparametric radiomics model. The
model had a higher AUC when compared with the univariate models in both training and
validation data sets with an AUC of 0.966 (95% confidence interval: 0.949–0.99) and
0.930 (95% confidence interval: 0.905–0.973), respectively. The calibration curves
indicated a good agreement between the predictable and the actual probability of
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developing recurrence. The DCA demonstrated that the predictive value of the model
improved when combining the three MRI sequences.

Conclusion: Our multiparametric radiomics model could be used as an efficient and
accurate tool for predicting the recurrence of grade II glioma.
Keywords: radiomics, grade II gliomas, MRI, multiparametric, recurrence
INTRODUCTION

Glioma is a brain tumor originating from central glial cells with a
high mortality rate (1–3). According to the World Health
Organization (WHO), grade I and grade II tumors are
classified as low-grade gliomas (LGG). LGGs are generally
benign, with a recurrence rate of about 36% (4). Nevertheless,
the clinical course of LGGmay be unpredictable, as some of these
tumors recur soon after primary treatment and/or undergo
malignant transformation (5–7). A previous report indicated
that low-grade gliomas (WHO II grade) have a 5-year survival
rate of as high as 50% (8). Surgical resection followed by
chemoradiation is the standard treatment option for gliomas.
However, the risk and timing of recurrence following treatment
in LGG are still difficult to predict accurately (9–12). Therefore,
there is a need to identify accurate indicators for early detection
and recurrence to provide timely, optimal treatment and
improve survival.

Although histological analysis of surgical specimens is still
considered the gold standard to grade gliomas, it may not always
provide an accurate result (13) as the small sample obtained
during the biopsy may not always reflect the grading
heterogeneity within the entire tumor (14, 15). A substantial
assessment would require the acquisition of samples from
multiple regions within the tumor currently not widely
accepted in clinical practice. Furthermore, a biopsy is an
invasive procedure and also carries some risk. The acquisition
of repeated biopsies is not always considered to be ethical as it
may aggravate patient suffering.

The factors leading to poor OS post-surgery in LGG are still
not well understood. Previous studies identified age, the extent of
the tumor resection, and the expression of specific genes,
including Ki-67 and the isocitrate dehydrogenase 1 (IDH1), as
indicators for OS (16). Yet, to our knowledge, there is no accurate
quantitative tool that could be used to predict at an early stage
the risk of recurrence following the first tumor resection,
highlighting the need to develop predictive models.

An alternative method that can be used to assess tumor
recurrence post-surgery is magnetic resonance imaging
(MRI). Previous studies have shown that radiomics could be
used to quantitatively extract and assess numerous imaging
features to effectively differentiate between high and low-
grade gliomas (17, 18) and differentiate tumor recurrence
from radiation necrosis (19). When combined with clinical
data, imaging features could be used to assess the OS and
hence optimize the treatment for the patient. Therefore, this
study aimed to create a radiomics model based on clinical and
2

imaging features to predict the risk of developing recurrence
in grade II glioma after the first resection.
MATERIALS AND METHODS

Participants
Retrospective analyses were performed on the follow-up medical
records of 103 adult patients with histologically confirmed
supratentorial grade II gliomas (according to WHO 2016
classification). All patients who had their first extensive glioma
resection between May 2017 and November 2019 were included
in the study. All patients had a MRI T1-contrast enhanced
(T1CE) examination within 72 h after surgery to exclude the
presence of a conspicuous residual tumor after surgery and
received the same adjuvant chemoradiation treatment using a
radiotherapy dose of 50.4 Gy in 28 fractions and 75 mg/m2 of
temozolomide orally (20). Patients below 18 years with poor MRI
images and tumor hemorrhage were excluded from the study
(Figure 1). A total of 64 patients were ultimately included in
the study.

Data Collection
After being discharged, the patients were regularly followed up
by the neurosurgery group of the hospital. A periodical MRI
examination was performed after treatment, and any tumor
progression was noted in the patient’s medical records
according to the neuro-oncology (RANO) criteria (21). A
biopsy was performed in those patients who had an obvious
tumor progression noted on the MRI to further confirm the
findings. The age, sex, progression-free survival (PFS), Ki-67, and
IDH1 mutations were obtained from the patients’ medical
records. Three magnetic resonance imaging (MRI) sequences,
including T1-weighted (T1W1), T2-weighted (T2WI), and T1-
contrast enhanced (T1CE), were acquired.

MRI Parameters
All the patients underwent multi-sequence imaging protocol on a
3.0 Tesla MRI system (Discovery 750; GE Healthcare, Milwaukee,
WI, USA), with an eight-channel head coil (GE Healthcare,
Chicago, IL, USA). For the T1-weighted image (T1WI)
acquisition, the repetition time/echo time (TR/TE), matrix size,
field-of-view (FOV), slice thickness, slice gap, and acquisition time
were 1,750/25.4 ms; 512 × 512, 220 × 220, 5 mm, 1.5 mm, and 89 s,
respectively. For the T2WI acquisition, the (TR/TE), matrix size,
FOV, layer thickness, layer spacing, and the number of layers were
4600/102 ms, 224 × 320, 220 × 220, 6 mm, 1, and 18, respectively.
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The axial T1CE sequence was acquired by repeating the T1WI
described above after a bolus injection of 0.1 mmol/kg of
gadodiamide (Omniscan, GE Healthcare, Cork, Ireland).

Description of the Region of Interest and
Assessment of the MRI Sequences
The ITK-snap software (www.itk-snap.org) was used to analyze
the MRIs. A region of interest (ROI) was blindly delineated by
two senior radiologists with more than 10 years of work
experience. The boundaries of most low-grade tumors without
contrast enhancement were determined on the T2WI images as
these images are widely accepted in the identification of
hyperintense signals representing the tumor regions (22).
Then, the contours of the tumor delineated on the T2WI were
transferred to the T1WI and T1CE images. In tumors with
Frontiers in Oncology | www.frontiersin.org 3
contrast enhancement, the tumor boundaries were delineated
on the T1CE images by selecting the enhanced region. The
delineated region was transferred onto the T1WI and
T2WI images.

After the delineation of the ROI, all the patients were divided
into the recurrent group (RG) and non-recurrent group (NRG)
based on the RANO criteria (indicated in Table 1) and biopsy
findings by two radiologists. In case of any disagreement, a
consensus was reached through discussion, especially when there
was a discrepancy between the two readers, as illustrated
in Figure 2.

Feature Extraction
Radiomic features were extracted using the AK software
(Artificial Intelligence Kit V3.0.0.R, GE Healthcare). A total of
FIGURE 1 | Flow diagram illustrating the patient selection process.
TABLE 1 | RANO criteria used to evaluate treatment response in low-grade gliomas.

Criterion Complete remission Partial remission Stable disease Progress disease

T1CE Not seen Decrease ≥50% Increase or decrease in the range
of -25% ~ +25%

Increase ≥ 25%*

T2WI/FLAIR Stable or diminished Stable or diminished Stable or diminished Increase*
New lesion None (apart from those consistent

with radiation effects, and no new
or increased enhancement)

None (apart from those consistent
with radiation effects, and no new
or increased enhancement)

None (apart from those consistent
with radiation effects, and no new
or increased enhancement)

Present*

Corticosteroids None Stable or diminished Stable or diminished Not apply
Clinical status Stable or improved Stable or improved Stable or improved Deteriorative*(not attributable to other

causes apart from the tumor, or
decrease in corticosteroid dose)

Requirement for
response

All All All Any
Septembe
CE, contrast-enhanced; FLAIR, fluid-attenuated inversion recovery.
*Progress is determined by anyone project.
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396 features were extracted from each MRI sequence, including
the Laplacian of Gaussian (LoG), rotation invariant local binary
patterns (RILBP), the gray level co-occurrence matrix (GLCM),
intensity-based features (IBF), directional Gabor texture features
(DGTF), and rotation invariant circular Gabor features
(RICGF), etc. These features were then used to construct the
multiparametric model.

Data Preprocessing and
Feature Screening
The dataset was randomly categorized into the training or
validation set using a ratio of 7:3. All cases in the training set
were used to train the predictive model, while cases in the
validation set were used to evaluate the model’s performance
independently. Variables with zero variance were excluded from
the analysis. The missing values were substituted with the median
value. Finally, the z-score was used to standardize the data (23).
Feature screening was performed by using the minimum
redundancy-maximum relevance (mRMR) (24) method alone or
in combination with univariate logistic analysis. A p-value below
0.05 was deemed statistically significant.

Development and Validation of Models
Logistic regression analysis was used to construct predictive
models based on the extracted optimal feature subsets of the
training dataset. A receiver operator curve (ROC) was used to
assess the performance of the radiomics models, and the
sensitivity, specificity, and area under the curve (AUC) were
Frontiers in Oncology | www.frontiersin.org 4
calculated using five-fold cross validation. Calibration curves and
decision curve analyses (DCA) were used to assess the clinical
predictive performance of the models. The models were
constructed using the R software (version 4.0.2), and a two-
tailed p-value below 0.05 was deemed statistically significant.

Statistical Analysis
According to the normality of samples based on the Shapiro-
Wilk test, the independent samples t-test, the chi-square (x2) test,
Fisher’s exact test and the Mann-Whitney U-test were used to
identify any differences in age, gender, and other baseline
characteristics between the training set and validation set. This
data was analyzed using the statistical package for the social
sciences (SPSS) version 22.0 software.

Ethical Considerations
Ethical approval was obtained from our hospital ethics
committee. The need to obtain informed consent from patients
was waived due to the retrospective nature of the study.
RESULTS

Patient Characteristics
The characteristics of the tumors and patients are summarized in
Table 2. A total of 64 patients were included in the analysis.
Following the first surgical resection, 64 patients were confirmed
as grade II gliomas. According to the RANO criteria, 29 patients
FIGURE 2 | An example of image segmentation: (A–C) illustrate T1CE, T1WI, and T2WI sequences, respectively. Images (D–F) illustrate the region of interest (ROI)
in red delineated by the radiologists for feature extraction.
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were thought to have a tumor recurrence and underwent a
biopsy. The biopsy confirmed the recurrence in 22 patients,
while the other 7 patients were diagnosed with pseudo-response.

Clinicopathological Characteristics
Among the 64 patients included in the study, 22 had a
pathologically confirmed recurrent tumor, and the rest did not
have any recurrence. The patients were randomly divided into
training and validation datasets using a ratio of 7:3. The baseline
characteristics of the subjects are summarized in Table 2. There
was no significant difference in the age (p = 0.251), gender (p =
0.475), frequency of glioma recurrence (p = 0.845), Ki-67 (p =
0.486), and IDH1 (p = 0.885) mutation status and tumors
crossing the midline (p = 0.307) between the training and
validation group. There was a statistically significant difference
(p < 0.05) in age between the RG and NRG in the training set. All
other clinicopathological features did not differ significantly
between the two groups.

Performance of the Radiomics Models
We extracted 396 features from the ROIs of every sequence. After
running the mRMR algorithm, six features were selected from
the T1WI images, five features from the T2WI images, and four
features from the T1CE images. These three sequences were
subsequently combined to identify the most important predictive
features of the multiparametric model. Based on the univariate
logistic analysis and mRMR, nine predictive features were
eventually identified, and their correlation coefficients are
illustrated in Figure 3. The low correlation coefficient between
the nine features indicates little redundancy among every
feature cluster.

The features screened from the T1WI, T2WI, T1CE, and
multiparametric sequences are summarized in Table 3. Four
radiomics models were established for predicting tumor
recurrence based on the screened optimal predictive features
and their contributing predictive weight for each image
sequence, as illustrated in Table 3. In the T1WI sequence, six
predictive features were included in the model, eventually
resulting in an AUC of 0.842 and 0.79 in the training and
validation datasets, respectively. In the T2WI sequence, five
predictive features were used to construct the models, resulting
in an AUC of 0.785 in the training set and 0.790 in the
Frontiers in Oncology | www.frontiersin.org 5
validation set. In the T1CE sequence, four predictive features
were used to develop the predictive model, which resulted in an
AUC of 0.784 in the training set and 0.803 in the validation set.
The multiparametric MRI model included nine predictive
features from the T1WI, T2WI, and T1CE sequence, resulting
in the best overall performance with an AUC of 0.966 and 0.930
for the training and validation datasets, respectively (Table 4 and
Figure 4). The calibration curves of the model also indicated a
good agreement between the predicted probability and actual
tumor recurrence both in the training set and validation set,
indicating that the model was well-calibrated (Figure 5).

The DCA for the individual T1WI, T2WI, T1CE, and these
combined multiparametric models are illustrated in Figure 6.
The net benefit of the model constructed based on the three
sequences was higher than the one based on the individual
TABLE 2 | Baseline demographics and clinical characteristics of patients in the training and validation datasets.

Clinicopathological Variable Training set (n=44) Validation set (n=20)

NRG RG p-value NRG RG p-value

Numbers of cases 30 14 12 8
Age 40.60 ± 12.20 48.36 ± 9.74 0.047 39.77 ± 14.31 51.25 ± 8.12 0.053
Gender, n(%) Female 15 (50) 6 (42.9) 0.659 4 (30) 4 (50) 0.648

Male 15 (50) 8 (57.1) 8 (70) 4 (50)
IDH1-mutation, n(%) Wild-type 6 (20) 5 (35.7) 0.287 5 (41.7) 3 (37.5) 1.00

Mutation-type 24 (80) 9 (64.3) 7 (58.3) 5 (62.5)
Tumor crossing the midline, n(%) Non 25 (83.3) 10 (71.4) 0.610 9 (75) 6 (75) 1.00

Yes 5 (16.7) 4 (28.6) 3 (25) 2 (25)
Ki-67 [median (IQR)] 5.0 (2.0-8.0) 5.5 (3.0-10.0) 0.533 5.0 (2.25-8.0) 7.0 (5.0-14.75) 0.238
September 2021
 | Volume 11 | Article
NRG, Non-recurrent group; RG, recurrent group; IQR, interquartile range.
FIGURE 3 | Correlation coefficient of the combined multiparametric models.
The correlation coefficients of the selected nine features were low, indicating
that the nine feature clusters were not redundant. The magnitude of the
correlation is illustrated in the color bar on the right.
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imaging sequence, to which it was superior across nearly the
entire range of clinically useful threshold risks.
DISCUSSION

Surgery followed by chemoradiation is the main treatment option
for patients diagnosed with LGG. Tumor recurrence post-treatment
is one of the factors leading to poor OS. Surgical resection is one of
the treatment options for patients diagnosed with recurrent LGG.
Still, guidelines issued by several professional bodies state that there
is limited high-level clinical evidence on the effectiveness of a
secondary invasive resection on survival. A study by Patrizz et al.
(25) indicated that histopathologic findings following
chemoradiation do not always correlate with clinical outcomes in
patients diagnosed with recurrence post-surgery. First of all, the
Frontiers in Oncology | www.frontiersin.org 6
pathological specimens may not always reflect the nature of the
whole tumor. Furthermore, several studies found that other clinical
factors that may have an impact on survival including age,
radiotherapy dose, and the extent of tumor resection (16).
Multiparametric MRI has played an important role in
distinguishing between LGG and HGG as well as recurrence from
radiation-induced necrosis. However, to our knowledge, currently,
there is no suitable clinical and image-based predictive model to
assess the risk of recurrence post-surgery in LGG patients. Therefore
in this study, we made use of the imaging data of 64 LGG patients to
develop a model that could be used to predict recurrence in these
patients and hence enable clinicians to identify the patients that are
most likely to benefit from additional surgery.

In our study, there was no difference in the baseline
characteristics between the RG and NRG except for age.
Consistent with the retrospective study by Li et al. (16), age
TABLE 3 | The screened features and their coefficients in the models for the different imaging sequences.

Modality Variables Coefficient. Std.Err. Z P > |z| [0.025 0.975]

T1CE Intercept -0.3825 0.5451 -0.7017 0.4828 -1.4508 0.6858
GLCMEntropy_AllDirection_offset4_SD 0.5540 0.5905 0.9382 0.3481 -0.6034 1.7114
Compactness2 0.6443 0.6101 1.0560 0.2910 -0.5515 1.8401
ShortRunEmphasis_AllDirection_offset7_SD -1.1118 0.9869 -1.1265 0.2600 -3.0461 0.8226
LongRunEmphasis_angle0_offset1 -1.2584 0.7682 -1.6382 0.1014 -2.7640 0.2472

T1WI intercept 0.0196 0.3750 0.0523 0.9583 -0.7154 0.7546
GLCMEntropy_AllDirection_offset7_SD 0.9189 1.1705 0.7850 0.4324 -1.3753 3.2132
LowGreyLevelRunEmphasis_AllDirection_offset1_SD -3.9480 3.5082 -1.1254 0.2604 -10.8240 2.9279
RunLengthNonuniformity_AllDirection_offset4_SD 0.3930 0.4920 0.7987 0.4245 -0.5714 1.3573
ShortRunEmphasis_AllDirection_offset7_SD -0.3207 0.4130 -0.7765 0.4375 -1.1302 0.4888
ShortRunEmphasis_angle90_offset4 1.0657 2.3549 0.4525 0.6509 -3.5498 5.6812
Variance 1.7391 0.7825 2.2225 0.0262 0.2054 3.2728

T2WI intercept -0.1973 0.4298 -0.4591 0.6461 -1.0397 0.6451
ClusterShade_angle45_offset7 0.0706 0.3401 0.2075 0.8356 -0.5960 0.7372
Correlation_AllDirection_offset1_SD -0.4181 0.4751 -0.8800 0.3788 -1.3494 0.5131
Sphericity -0.6831 0.4032 -1.6941 0.0902 -1.4734 0.1072
HighIntensityLargeAreaEmphasis -0.0726 0.4370 -0.1662 0.8680 -0.9291 0.7838
LongRunEmphasis_angle90_offset1 -1.4411 0.9134 -1.5777 0.1146 -3.2313 0.3491

Multiparametric intercept -0.1338 2.3732 -0.0564 0.9550 -4.7852 4.5176
T1CE_ClusterProminence_angle90_offset7 -2.4287 2.7045 -0.8980 0.3692 -7.7295 2.8721
T1CE_InverseDifferenceMoment_AllDirection_offset7_SD 2.3638 3.4494 0.6853 0.4932 -4.3970 9.1245
T2_GLCMEntropy_AllDirection_offset1_SD 2.0994 2.7421 0.7656 0.4439 -3.2750 7.4739
T2_GLCMEntropy_AllDirection_offset4_SD -1.2254 0.0745 1.683 0.0924 -0.8635 1.5517
T2_LongRunHighGrayLevelEmphasis_AllDirection_offset1_SD 0.9696 1.2682 0.7646 0.4445 -1.5161 3.4553
T2_HaralickCorrelation_AllDirection_offset7_SD -10.1476 6.6254 -1.5316 0.1256 -23.1332 2.8380
T1_HaralickCorrelation_AllDirection_offset4_SD -1.8642 1.6618 -1.1218 0.2620 -5.1213 1.3929
T1_ShortRunEmphasis_AllDirection_offset7_SD -1.9502 1.4283 -1.3654 0.1721 -4.7497 0.8493
T1_HighIntensityLargeAreaEmphasis 2.6325 1.6886 1.5590 0.1190 -0.6770 5.9420
September 2
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TABLE 4 | The performance of the models for predicting tumor recurrence in the training and validation datasets.

Modality Features screening
method

Number of features
after screened

Cohort AUC (95% CI) Sensitivity Specificity Accuracy

T1WI mRMR 6 Training 0.842 (0.674–0.905) 0.7 0.7 0.75
Validation 0.79 (0.687–0.902) 0.778 0.778 0.78

T2WI mRMR 5 Training 0.785 (0.697–0.912) 0.727 0.682 0.705
Validation 0.79 (0.679–0.92) 0.8 0.5 0.65

T1CE mRMR 4 Training 0.784 (0.665–0.913) 0.889 0.556 0.722
Validation 0.802 (0.693–0.911) 0.78 0.778 0.8

Multi-modalities ULA + mRMR 9 Training 0.966 (0.949–0.99) 0.905 0.952 0.929
Validation 0.93 (0.905–0.973) 1 0.8 0.90
ULA, univariate logistic analysis.
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was found to be an important risk factor for recurrence in grade
II gliomas following the first surgery. Jansen et al. (26) conducted
a long-term follow-up of 110 patients with LGG (WHO Grade
II) after resection. Their results demonstrated that the initial
extent of the resection influenced the progression-free survival,
time to malignant transformation, and overall survival.
Moreover, Patrizz et al. (25) indicated that the radiotherapy
dose after surgery has a significant impact on survival in LGG
patients. In our study, all patients had an extensive tumor
resection and received the same radiation dose. Therefore, the
effects of these variables on tumor recurrence could not
be assessed.

Studies have shown a high correlation between certain genetic
alterations, recurrence, and prognosis in grade II and III gliomas.
Mutations of the isocitrate dehydrogenase (IDH)1/2 genes are
common events in gliomas (27), especially among grade II
gliomas, where IDH1 mutations are observed in about 70% to
80% of cases (27, 28). Some studies indicated that IDH1
mutation status could improve OS and PFS in grade II and III
glioma (19, 29). Although the IDH1 mutation has been identified
as an independent positive prognostic biomarker for survival in
patients with glioma (26, 30), the association between the IDH
mutant status and the risk of developing recurrence is still not
clear. In the present study, the proportion of IDH mutation cases
was noticeably higher in NRG compared with RG [31/42(73.8%)
vs 14/22(63.6%)]; however, the statistic results showed that there
was not a significant difference between NRG and RG (Table 2),
which indicated that there might not be a link between the IDHI
mutation and tumor recurrence; nevertheless, due to the
limitation of our relatively small sample size, it still needs a big
sample for further verification.

The RANO criteria are still widely used to assess the tumor
response post-treatment and the need for additional treatment
(31, 32). Despite being used extensively, the accuracy rate of the
RANO criteria in distinguishing between tumor recurrence and
Frontiers in Oncology | www.frontiersin.org 7
pseudo-response (32, 33) in our study was only 75.86%. The
multi-parameters radiomics model developed in our study
resulted in higher prediction accuracy in both testing and
validation datasets.

In order to develop our radiomics model, numerous features
were extracted from each of the three MRI sequences. It is
important to acknowledge that the sample size in our study
was relatively small, potentially over-fitting the model (34). In
order to reduce this risk, mRMR was used for feature
dimensionality reduction. This technique has been widely used
in several studies and involves selecting features from the
mutually correlated distance or similarity score hence
facilitating the data screening process (35, 36).

Numerous studies evaluated the use of radiomics models in
predicting recurrence in glioma after radiotherapy. Wang et al.
(37) proposed a radiomics model based on MRI and PET images
to discriminate between tumor recurrence from radiation
necrosis. The model performed well in both training and
validation datasets with an AUC of 0.988 and 0.914,
FIGURE 4 | The ROC curves of the four imaging prediction models whereby
the green curve represents the T1WI model, the blue curve represents the
T2WI, the purple curve represents T1CE, and the red curve represents the
multiparametric MRI model.
A

B

FIGURE 5 | Performance of the four imaging models for predicting the
recurrence of grade II gliomas. The y-axis represents the actual probability,
and the x-axis represents the predicted probability. Figure (A) shows the
model’s calibration of the training set, and Figure (B) shows the validation set.
A calibration curve describes the consistency between the predicted and
actual tumor recurrence rate. The 45° gray heavy lines represent the ideal
prediction performance, the non-45dotted lines represent the prediction
performance of the model, and non-45° solid lines represent the corrected
prediction performance of the model. The closer the solid line is to the ideal
gray line, the better the prediction accuracy of the model.
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respectively. A similar model based on 51 glioma patients
developed by Quan Zhang et al. (19) achieved outstanding
performance with an AUC of 0.962 following validation.
However, to the best of our knowledge, this is the first
multiparametric model developed to predict recurrence in
LGG before surgery. Our model also achieved an excellent
performance, with an AUC of 0.966 and 0.930 in the testing
and validation dataset, respectively.

In the study, a total of nine optimal features were selected for
the construction of the multiparametric radiomics model.
Among these features, there were three gray level run length
matrix (GLRLM) features (T2_LongRunHighGrayLevel
Emphasis_AllDirection_offset1_SD, T1_ShortRunEmphasis_
AllDirection_offset7_SD, and T1_ShortRunEmphasis_
AllDirection_offset7_SD), one gray level size zone matrix
(GLSZM) feature (T1_HighIntensityLargeAreaEmphasis), and
the rest were gray level co-occurrence matrix (GLCM) features
(Table 3). The above results indicate that GLCM features played
the most important role in the model. In some previous
radiomics studies, the GLCM features also played an important
role in predicting the IDH mutation status. Checkout et al.
developed a new approach to predict IDH mutation status that
outperformed competing methods (38), while Park et al. (39)
found that GLCMwas one of the strongest IDH status prediction
factors. Furthermore, in a study by Chaddad et al. (40), GLCM
had a significant role in predicting survival in patients with
glioblastoma. Combined with these previous studies, we can
reasonably infer that GLCM may convey information that could
potentially be used to predict recurrence.

Both calibration and discrimination are valuable aspects of a
prediction model (41). AUC is a common evaluation index of
discrimination, while calibration reflects the level of agreement
between the actual observed outcomes and the model’s predicted
outcomes (42). However, the AUC focuses merely on the
predictive accuracy of the signature. As such, it does not tell us
Frontiers in Oncology | www.frontiersin.org 8
whether the model is worth using at all. DCA is a statistical
method that incorporate consequences and, thus, can inform the
decision of whether to use this model (43). Therefore to further
complement the AUC findings, a DCA was also performed to
evaluate the clinical value of the models (44). In our study, both
the AUC and calibration curve (Figure 5) showed that our model
has a high prediction accuracy. Furthermore, the DCA curves
showed that within a relatively large threshold range, our
proposed radiomics models could be used to improve the
treatment decision-making process. However, the DCA showed
that multiparametric MRI models had a significantly higher
performance when compared with models based on a single
MRI sequence across nearly the entire range of clinically useful
threshold risks (Figure 6).

This study has some limitations that have to be acknowledged.
The majority of the patients with recurrent LGG at our institution
generally prefer to be treated with radiotherapy and chemotherapy
as opposed to surgery. This limited the sample size in our study and
hence limited the number of clinical, pathological, molecular, and
imaging features that could be used to train the model. In order to
improve the robustness and generalizability of the model, further
studies with a larger sample frommultiple institutions with a longer
follow-up are warranted. A larger sample will also allow us to apply
different machine learning strategies to improve the prediction
performance of the model. Further research is also recommended
to illustrate the relationship between specific imaging features and
pathology. Finally, additional studies are also recommended to
evaluate the impact of early recurrence prediction on the
provision of timely interventions and ultimately survival.
CONCLUSION

The application of our radiomics model-based features extracted
from multiparametric MRI could be used to predict the risk of
early recurrence of grade II gliomas after the first surgical
resection. This model could be used to guide the clinicians’
decision on the need for further invasive treatment such as
biopsy and surgery in LGG patients.
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