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Abstract

The cellular arm of the immune response plays a central role in the defense against intracellular pathogens, such as F.
tularensis. To date, whole genome immunoinformatic analyses were limited either to relatively small genomes (e.g. viral) or
to preselected subsets of proteins in complex pathogens. Here we present, for the first time, an unbiased bacterial global
immunoinformatic screen of the 1740 proteins of F. tularensis subs. holarctica (LVS), aiming at identification of immunogenic
peptides eliciting a CTL response. The very large number of predicted MHC class I binders (about 100,000, IC50 of 1000 nM
or less) required the design of a strategy for further down selection of CTL candidates. The approach developed focused on
mapping clusters rich in overlapping predicted epitopes, and ranking these ‘‘hotspot’’ regions according to the density of
putative binding epitopes. Limited by the experimental load, we selected to screen a library of 1240 putative MHC binders
derived from 104 top-ranking highly dense clusters. Peptides were tested for their ability to stimulate IFNc secretion from
splenocytes isolated from LVS vaccinated C57BL/6 mice. The majority of the clusters contained one or more CTL responder
peptides and altogether 127 novel epitopes were identified, of which 82 are non-redundant. Accordingly, the level of
success in identification of positive CTL responders was 17–25 fold higher than that found for a randomly selected library of
500 predicted MHC binders (IC50 of 500 nM or less). Most proteins (ca. 2/3) harboring the highly dense hotspots are
membrane-associated. The approach for enrichment of true positive CTL epitopes described in this study, which allowed for
over 50% increase in the dataset of known T-cell epitopes of F. tularensis, could be applied in immunoinformatic analyses of
many other complex pathogen genomes.
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Introduction

Cell-mediated immunity plays a central role in protection of the

host against pathogens. The major key players of the cellular arm

of the adaptive immune response are CD4+ and CD8+ T-cells,

which recognize pathogenic determinants presented in the context

of MHC molecules on professional antigen presenting cells (APCs).

The contribution of the CD8 response, mediated by cytotoxic T-

cells (CTLs), to protection in the case of intracellular pathogens, is

well documented [1–4]. CTL epitopes are generated from proteins

which are degraded by the proteasome, and are subsequently

transported into the endoplasmatic reticulum (ER) by transporters

associated with antigen processing (TAP), where they are subjected

to further trimming. The binding of the processed peptides (8–11

amino acid in length) to the cleft of the various MHC-I alleles, is

based on sequence features embedded in the peptide sequence and

more specifically in anchor residues [5]. The identification of the

presented MHC-peptide complex by the T-cell receptor triggers a

whole cascade of cellular responses including cell proliferation and

secretion of cytokines (such as IFNc and IL-2).

F. tularensis, a relatively small Gram negative, facultative

intracellular bacterium, is the etiological agent causing tularemia.

The bacterium can infect many animal species, including humans.

The severity of the disease depends on the strain and the route of

infection. Several subspecies are recognized, namely F. tularensis

tularensis (also referred to as type A strains), F. tularensis holarctica

(type B strains), F. tularensis novicida and F. tularensis mediasiatica,

where the two former are documented as human pathogens.

Following inhalation of type A strains a respiratory disease may

develop, which can lead to 30–60% mortality if left untreated [6–

8]. Owing to the low respiratory lethal dose of the type A F.

tularensis isolates and ease of aerosol release, these isolates were

classified as Category A biothreat agents. These facts motivated in

recent years elaborate research efforts aiming at establishing

genetic tools, identification of virulence-related traits and devel-

opment of novel countermeasures [9,10]. Killed vaccines are

highly reactogenic and poorly immunogenic, whereas the live

attenuated LVS vaccine strain (a poorly characterized derivative of

a type B strain) confers partial protection and suffers from side

effects. In the absence of a licensed vaccine, major efforts are

dedicated to the development of a safe and efficacious vaccine

[11–17]. Genomic and proteomic identification of novel targets for

attenuation and/or design of subunit vaccines are currently being

pursued by various approaches. The methodologies underlying
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this large-scale, rational identification of novel vaccine targets rely

on the availability of the complete genomic sequence of various

pathogens. Such a ‘‘reverse vaccinology’’ approach was first

applied for Neisseria meningitidis [18] and since then for several other

pathogens [10,19,20–27]. The vital role of cellular immunity in

defense against pathogens resulted in incorporation of the cellular

immunity aspects into reverse vaccinology, sometimes referred to

as ‘‘reverse immunology’’. In parallel, a line of state-of-the-art

computational tools were developed in recent years ([28–30] and

references therein), which produce relatively accurate binding

predictions to many MHC alleles (in particular for MHC class I),

as well as prediction of proteasomal cleavage [31,32] and TAP-

related transport [33]. These methods were validated and proved

to be highly reliable [34–38] and therefore may allow to decipher

the potential repertoire of T-cell epitopes for a given pathogen.

In this study we describe a global immunoinformatic screen

conducted on the genome sequence of F. tularensis LVS strain, in

order to identify putative CTL epitopes and to evaluate their

ability to elicit a T-cell response. In spite of the well acknowledged

and documented contribution of CTLs to protection, the

information on F. tularensis existing CTL epitopes which have

been verified experimentally is very limited. Here we describe a

strategy for whole genome down selection of candidates, based on

mapping of clusters (‘‘hotspots’’) of putative MHC binders. This

whole genome analysis approach was experimentally evaluated on

a total of 1740 putative epitopes, of which 1240 were cluster-based

selected peptides (subset I) and 500 were randomly selected

putative, predicted MHC binders (subset II). The peptides were

synthesized and tested for their ability to induce a CTL response.

The results unequivocally demonstrate the strength of the

developed strategy for enrichment of possible responders among

the in silico candidates mapped from the complete theoretical

bacterial proteome.

Results

Immunoinformatic identification of MHC class I putative
binders

The purpose of the study was to develop a strategy which will

allow for identification of a significant fraction of the effective T-

cell epitope repertoire, in a complete bacterial proteome. The

analysis concentrated on prediction of peptide capability to bind

MHC class I molecules, an event considered as the most selective

in the cascade of events leading to epitope presentation on the

surface of APCs (the analysis did not include the two other

predictable pathway events, namely the proteasomal cleavage step

and TAP binding and transport). The 1754 open reading frame

(ORF) product sequences of F. tularensis can generate over 107

possible peptides, 8, 9, 10 and 11-amino acid long. The first step in

the analysis (Figure 1) mapped the putative MHC class I binders to

the various mouse alleles, with predicted binding affinity equal or

higher than 1000 nM. This analysis yielded a pool of 90,879

possible binders (encompassing 79,379 unique sequences) which

originate from almost every ORF product in the genome (1750 out

of 1754). This is still a very large library of possible binders to be

handled experimentally, requiring the development and applica-

tion of a rational strategy for a more rigorous down selection of

candidates towards generation of a subset of peptides for further

experimental evaluation.

Cluster mapping and the selection of putative binders for
experimental evaluation

With the intention to focus on antigen regions with maximal

potential to elicit a CTL response, we decided to search for clusters

of predicted binders along the entire proteome. As an operational

definition, we define a cluster as a succession of at least two

consecutive, overlapping predicted binders, with a maximal length

of 25 amino acids. Accordingly, the minimal length of a cluster can

be 8 amino acids if it contains a 8mer sequence recognizing two

different H2 mouse alleles. Using these boundaries, a total number

of 23,050 clusters could be identified. These contained 86,960

predicted binders, encompassing 75,785 unique sequences origi-

nating from 1736 proteins (Figure 1). Keeping in mind that we

started with 90,879 putative binders, it is quite clear that the

clustering procedure per se is insufficient to significantly reduce the

number of peptides for experimental evaluation. A commonly

used peptide ranking strategy applied for further down selection

relies on binding affinities. However, we decided to undertake a

different approach and to rank these clusters by the density of the

peptides within each cluster (see Materials and Methods; for

example, a density of 1.0 refers to 25 putative binders in a cluster

of 25 amino acids). According to this approach, a versatile cutoff

value for selection could be determined, depending on the size of

the peptide library that one can afford to prepare for experimental

evaluation. To test experimentally our approach, it was decided to

generate a library of 1000–1500 peptides. Accordingly, we found

that the top-ranking 104 clusters (having densities equal to or

greater than 1.0) contain about 1400 peptides. In addition, we

ensured that all 104 clusters include binders predicted to recognize

the MHC alleles of the experimental animal model - C57BL (H2-

Kb and H2-Db). We note that these 104 clusters represent a small

fraction of all 23,050 mapped clusters. Overall, this reductive

strategy (summarized in Figure 1) resulted in a total number of

1240 unique putative CTL epitopes and these peptides constituted

the cluster-based subset of peptides (subset I) for further

experimental evaluation (Table S1).

To test the validity of our approach, we also included a

reference group of predicted MHC binders selected regardless of

their location in clusters. This control group was composed of 500

potential CTL epitopes randomly selected out of the whole

repertoire of predicted binders (Figure 1, subset II), and

encompassing 402 proteins (Table S2). Rather than using the

1000 nM cutoff implemented for subset I, we employed a more

stringent predicted binding affinity cutoff of 500 nM, to increase

the chance of obtaining positive responders in this randomly

selected subset. Aside from this restriction, no other restriction as

inclusion criteria was imposed on the random set. The average

density of clusters in the 402 proteins (0.36) is comparable to the

average density of clusters in the whole genome (0.38). In addition,

as one could expect from a non-biased set, the fraction of binders

restricted to the mouse H2-Kb and H2-Db alleles in the random

set is similar to that in the cluster-based peptide library (77.4% and

82%, respectively; Table S1 and Table S2). The random set of

peptides constitutes therefore a ‘‘naı̈ve’’ and suitable control set to

evaluate the potential of the cluster-based approach for selection of

putative CTL epitopes. Altogether we synthesized 1740 putative

CTL epitopes for further experimental evaluation.

Antigenicity of the selected peptides
All 1740 potential MHC binders were tested for their ability to

stimulate F. tularensis specific, Kb and Db-restricted T-cell response.

To this end, groups of C57BL/6 mice were intranasally

immunized with sub-lethal dose of live LVS, splenocytes from

these mice were co-incubated with the individual peptides, and the

extent of stimulation of IFNc production was evaluated in an

EliSpot assay (see Materials & Methods). Two consecutive screens

were performed to identify potential responders: A ‘‘rough’’ screen

followed by a second screen, which was more quantitative

Hotspots of CTL Epitopes in F. tularensis Proteome
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(Figure 2). All peptides which were considered as positive

responders in the first screen were further confirmed as positive

also in the second screen. Furthermore, the strong responders in

the first screen ((+++) or (++++)), also exhibited the greatest extent

of response in the second screen (30–80 spots/well; Figure 2). A

total of 127 out of the 1240 peptides (10.7%) chosen by the cluster

approach (subset I) were found to stimulate IFNc production from

splenocytes of LVS-immunized mice (Figure 2 and Table S1). In

marked contrast to these results, of the randomly selected 500

potential CTL epitopes (control subset II), only 2 peptides (0.4%)

were found to induce production of IFNc (Figure 2 and Table S2).

Distribution of the parental antigens according to
functional categories

As described earlier, the mapped clusters covered essentially the

entire genome (1736 out of 1754 ORF products). Yet, the top-

ranking 104 clusters selected for analysis of 1240 peptides

represent only 51 ORF products. It was therefore interesting to

determine whether this small number of ORF products populates

functional categories enriched (or under-represented) in compar-

ison to their fraction in the 402 proteins of the random-based set

and to their fraction in the 1754 proteins of the whole genome.

The classification of the proteins into functional categories was

adapted from the CMR database (http://cmr.jcvi.org/tigr-

scripts/CMR/CmrHomePage.cgi), and is presented in Figure 3.

Most interestingly, a strong enrichment of two categories

(Transport and binding proteins and Cell envelope) can be

observed in the subset of 51 ORF products harboring the cluster-

based selected peptides (Figure 3C), as compared to their

frequency in the whole population (Figure 3A) and in the 402

ORF products harboring the random-based selected peptides

(Figure 3B). These two categories are related to the cell membrane

and presumably to membrane-associated proteins. None of the 51

proteins populate functional categories mostly associated with

housekeeping genes, such as protein/amino acid biosynthesis,

DNA and fatty acid metabolism. The percentage of ORF products

Figure 1. Flowchart of the whole-genome immunoinformatic analyses. A schematic representation of the reductive strategy conducted for
down selection of putative MHC binders from the F. tularensis LVS genome and of the cluster based (Subset I) and the randomly chosen (Subset II)
peptide selection for experimental evaluation.
doi:10.1371/journal.pone.0020050.g001

Hotspots of CTL Epitopes in F. tularensis Proteome
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populating the ‘‘unknown’’ functional category was found to be

lower in the 51 proteins, while for the remaining categories, the

frequency of proteins resembles their relevant frequency in the

whole genome and in the random-based set. The 127 positive

responders were found to be contained in 40 out of the 51 ORF

products. These 40 ORF products exhibit a distribution of

functional categories similar to that of the 51 proteins.

Biochemical characteristics of the parental antigens
The bias toward membrane-associated proteins as CTL peptide

carriers in subset I, and the highly significant percent of responders

within this subset as compared to the randomly selected peptide

binders (subset II), prompted us to analyze the hydrophobicity/

hydrophilicity character of the individual peptides (see Materials &

Methods). The average hydropathy scores of the groups of

peptides belonging to the cluster-based tested set (1240 peptides)

and of the responders group (127 peptides) are 1.86 and 1.66,

respectively. In both groups, the average hydropathy score values

are much higher than the average values of 0.52–0.6 obtained for

either peptides in subset II (the 500 peptides with IC50 values of

500 nM and below), or for the entire population of 90,879

peptides predicted as binders (IC50 values of 1000 nM and below),

or the average values of the peptides considered essentially as non-

binders (IC50.5000 nM). It therefore appears that peptides of

subset I are quite hydrophobic, in accordance with the bias

towards membrane-associated functional categories in the 51

proteins from which these peptides originated (Figure 3). Topo-

logical analysis of the parental antigen sequences for presence of

transmembranal helices revealed that the 51 ORF products indeed

show a strong bias towards integral membrane proteins (65%),

compared to a much lower frequency of 30% in ORFs

encompassing the peptides in the random set (subset II).

Examination of these topological analyses provided some insights

into the characteristics of the cluster regions within these proteins.

In 70% of the cases, the peptides embedded in the cluster regions

were found to co-localize with transmembranal helices and most of

the remaining peptides overlapped with inter-connecting loops.

These profiles are exemplified in Figure 4. We depict two

prototypical membranal polypeptides containing clusters

(Figure 4A and 4C), each cluster within these two polypeptides

harbors about 20 predicted epitopes. For both polypeptides, the

hotspots appear to overlap helical regions, but only in one protein,

two clusters contain CTL responder peptides (Figure 4A). This

example demonstrates that a highly dense cluster overlapping a

helical region is not by itself sufficient to ensure the presence of a

CTL responder. The example shown in Figure 4B demonstrates

co-localization of a hotspot region in a loop between two helices

(such loop region can also be seen in the N-terminal cluster of the

protein presented in Figure 4A). Again, cases of clusters

overlapping loop regions were found also in ORFs that did not

contain any CTL responder (not shown). A total of 26 out of the

51 ORFs containing the high density clusters possess a signal

peptide domain. Yet, only in few of these proteins (4 ORFs) this

signal peptide harbored a cluster of predicted MHC binders.

Figure 2. IFNc EliSpot assay and results of the experimental screens. Sample EliSpot plates from the cluster screen of the 1240 cluster-
derived peptides (left plate) and from the random screen of the 500 randomly selected MHC binders. Each peptide was tested in duplicates; positive
responders are highlighted in red box, while positive and negative control wells are marked by a blue box. (B) Distribution of peptides shown to elicit
IFNc production, according to the extent of their response in the 1st (‘‘rough’’) and the 2nd (qualitative) screens. (C) Summary of the total numbers of
tested and responding peptides, in each of the subsets evaluated. The 1240 tested peptides originate from the 104 top-ranking clusters (see Figure 1),
and the 127 responder peptides were found to be located in 86 of these 104 clusters.
doi:10.1371/journal.pone.0020050.g002
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Interestingly, in all these 4 cases, the clusters contained at least one

CTL responder peptide (cf. Figure 4D).

Discussion

Unraveling the immune response elicited by a pathogen is of

special significance for deciphering some of the organism routes of

infection and mechanisms of pathogenesis as well as for vaccine

development. Several studies relating to in silico mapping of T-cell

determinants have been described, however these were mainly

reported for individual viral or bacterial proteins, as well as tumor

antigens. More extensive, genome-based screens were conducted

mostly for the relatively small viral genomes. In the case of

complex pathogens, such as for M. tuberculosis and F. tularensis [39–

41], the screens included epitopes from subsets of antigens

preselected according to particular criteria (e.g. secreted antigens).

In view of documented evidence on the involvement of a relatively

large fraction of the genome in the cellular response, it was

recently stated [42] that there is a need for an unbiased analysis of

the whole genome to complement the gap of knowledge that exists

even for extensively studied pathogens, such as Mycobacterium

tuberculosis [43].

Our study focused on CTL epitope analysis of the intracellular

F. tularensis bacterium and to the best of our knowledge, it

represents the first example of a comprehensive whole genome,

unbiased attempt to screen for potential CTL epitopes in a complex

pathogen. The laborious and costly experimental approaches for

evaluation of predicted MHC binders as T-cell epitopes require

the design of a rational filtering strategy, in particular in case of a

bacterial proteome for which a vast number of potential

candidates is generated by the predictions. We show in this study

that a priori mapping of immunological hotspots constitutes an

efficient strategy to enrich the population of responders by

evaluation of a rather small number of potential determinants.

It is well established that there exists an overall correlation

between MHC binding affinity and immunogenicity, where

peptides having an IC50 value of 50 nM and less are considered

as strong binders and IC50 values above 1000 nM are only

occasionally detected. Indeed, studies analyzing the relation

between binding affinities and MHC binding of peptides revealed

that the vast majority of immunogenic peptides have a binding

affinity below 500 nM [44,45,46]. In the present study, the IC50

values assigned to the peptides are theoretical rather than actually

measured, and the mouse alleles under consideration are overall

less represented in the predictor training sets. We therefore

decided to start with a relatively tolerant affinity cutoff of

1000 nM, and to subject the rather large pool of mapped peptides

(a total of 90,879) to additional filtering steps (Figure 1). The

approach we have undertaken is based on identification of

‘‘hotspot’’ regions, namely regions of high density of predicted

MHC binders embedded in stretches of up to 25 amino acids.

Since we limited our analysis to a relatively small library size of

about 1500 peptides, the cutoff of top-ranking clusters was

determined at a density of 1.0 and above. Accordingly, we

selected a pool of 104 top-ranking clusters containing 1240

peptides. This library of peptides was tested for its ability to elicit a

T-cell response in an IFNc-EliSpot assay. It was found that the

majority of the clusters contained one or more positive CTL

epitopes and out of the 1240 tested peptides, 127 were detected as

responders. All 127 epitopes identified in this study are novel F.

tularensis CTL epitopes and none overlap any of the 200

experimentally verified F. tularensis T-cell epitopes compiled from

various studies in the Immune Epitope Database and Analysis

Resource (IEDB, www.immuneepitope.org [47]). Thus by our

approach, we have enlarged the library of F. tularensis T-cell

epitopes by over 50%.

Inspection of the subsets of mapped and evaluated peptides with

respect to their affinities reveals that there is a clear enrichment of

Figure 3. Distribution of F. tularensis proteins according to various functional categories. The classification of the F. tularensis LVS ORF
sequences into the different functional categories was adapted from the CMR database (http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi), with
minor modifications. The population of the proteins in the different categories is presented for the whole genome 1740 ORF products (A), the 402
ORF products containing the 500 randomly-selected putative MHC binders (B) and the 51 ORF products containing all the 1240 tested set of MHC
binders (C). Only functional categories with sufficiently high frequency in the whole genome (over 2%) were included in the chart.
doi:10.1371/journal.pone.0020050.g003
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peptides with stronger predicted binding affinities (IC50 up to

300 nM) concomitant with the increase in the density of the

parental cluster (Figure 5). While we find it difficult to provide an

explanation for this observation it emphasizes the added value of

focusing on relatively high cluster densities, and it may account, at

least in part, for the observed enrichment of immunogenic

peptides in these highly dense clusters. Yet, we note that due to

our selection strategy, the peptides in the library and the responder

peptides occupy a wide range of predicted affinities, and had we

not included peptides with affinities of 500–1000 nM, we could

have missed 28% of the responders.

Consequential to the selection strategy, a fraction of the selected

peptides as well as the responders are ‘‘nested’’ peptides, and

therefore might, theoretically, stimulate the same T-cell popula-

tion. These nested versions of peptides depend on several events of

degradation that might result in various peptide variations,

including the variation that fits the requirement for protection of

the epitope from peptidase degradation. Inspection of all the 66

sets of nested peptides (overall 166 peptides) among the 1240

cluster-based selected peptides evaluated in this study reveals, that

no rule of thumb (e.g. predicted affinity or peptide length) exists to

decide a priori which among these nested peptides will eventually

elicit the cellular response (see Table S1). In over 50% of the cases

the one peptide within the nested set which eventually elicited the

response was not among the peptides exhibiting the highest

predicted affinity (in ,30% of the cases it had the lowest affinity;

Table S1). Obviously, such nested peptides are scarce in the

random set. Nevertheless, if one would consider only the

‘‘unique’’, non-redundant responders (i.e. any two responder

peptides overlapping by at least 7 residues are suspicious to

stimulate a cross reactive response and therefore counted as one)

then the number of responders should be 82 instead of 127 (Table

S1). Even under such stringent assumptions the extent of response

generated by the cluster approach is 6.6% which is still

significantly high and about 17-fold higher than that found in

the control random set. Deconvolution of the contribution of each

Figure 4. Alignment of ‘‘hotspots’’ of putative CTL epitopes with secondary structure domains. Sample plots of predicted helix-spanning
regions of four selected proteins (graphical presentation of the output generated by TMHMM prediction), aligned with the highly-dense cluster
regions of putative CTL peptides mapped in this study. Briefly, red segments represent the probability of having a helical region, while the thin blue
and pink lines describe a possible topology of the membranal helices. In the lower part of every protein chart, a bar represents a predicted CTL
binder. Co-localization of the putative MHC binders with the predicted helix or loop region in the protein is marked by a grey box. The total number
of predicted CTL epitopes in the hotspot region is given on the rightside of the grey bar, and the stars on the leftside indicate responders. Note, that
in example D, the predicted helix segment overlaps a signal peptide domain, which contains only one out of the three marked responders in the
cluster.
doi:10.1371/journal.pone.0020050.g004
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of the nested peptides to stimulation of T-cell populations will be

the subject of future studies.

The most striking observation is that the fraction of immuno-

genic hits obtained among the peptides selected by the cluster-

based approach is 17–25 fold higher than in the case of responders

in the in silico preselected peptides of the random set. The

significance of this result is that the process of selection by highly

dense clusters leads to a substantial enrichment of responders,

without which almost 20,500 to 32,000 putative MHC binder

peptides (instead of the 1240 peptides) would have had to be

screened to identify a similar number of positive responders. It

should be noted though, that the peptides included in the random

set which were selected based on MHC binding alone, were not

the top predicted binding peptides, but rather had overall

comparable affinity to the cluster-based selected peptides.

Therefore, a comparison of our screening strategy (selecting

peptides from hotspots) vs. a conventional screening strategy

(selecting the highest affinity peptides) remains to be done.

Previous reports on hotspot regions of CD8/CTL epitopes (as

well as CD4/HTL epitopes [48,49]) were documented in the

experimental analysis of individual proteins [50–54]. The

tendency of defined CTL epitopes to cluster was detected in the

case of various HIV-1 proteins, and investigation of the amino

acid sequences of some of these protein revealed that the clustered

epitopes are concentrated in relatively conserved regions, an

observation which was proposed by the authors to relate to viral

variation and adaptation to the host. In addition, sites with large

number of overlapping epitopes were found mostly in helical

regions or in loops. Analysis of the CTL clustering in the HIV-1

Nef protein revealed that the sensitivity of hydrophobic regions to

proteasomal processing is the major contributor to the epitope

clustering in such regions [51]. A subsequent, comprehensive

analysis of the HIV proteome corroborated previous findings on

the correlation between epitope-rich regions and hydrophobicity,

however the authors claimed that the predicted CTL epitopes in

HIV-1 are randomly distributed [55]. Our comprehensive,

genome-scale analysis demonstrates a clear enrichment (up to

70%) of membranal proteins containing highly dense regions of

overlapping CTL epitopes. One could suggest that the enrichment

of membranal proteins could be one of the reasons for the high

Figure 5. Distribution of peptide affinities in various pools of predicted MHC binders. The percent of peptides populating a range of
affinities up to 1000 nM is indicated for the following pools: Whole genome (circle) 290,879 peptides; all mapped clusters (star) 275,785 peptides;
clusters with densities up to 0.3 (x sign) 260,870 peptides, up to 0.5 (triangle) 226,699 peptides, up to 0.7 (square) 29,240 peptides, 1.0–1.4
(diamond) 21240 peptides.
doi:10.1371/journal.pone.0020050.g005
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success rate of positive hits obtained by our ‘‘hotspots’’ approach.

It is important to note that in the control random set, the

proportion of membranal proteins is about 30% (vs. 70% in the

cluster-based set). This observation demonstrates that the

membranal characteristic of the protein may at best account for

2.5-fold enrichment in responders and not to the 17–25 fold

enrichment actually found in the cluster-based set. In addition, we

have also shown that such highly dense preselected regions of

putative epitopes frequently co-localize with hydrophobic regions,

and most explicitly, with the helical segments of the proteins, as

well as loops between helices (Figure 4).

To conclude, we have shown in this study that the strategy of a

priori mapping immunological hotspots can be exploited to cover a

relatively high percent of responders by testing a rather small

number of potential CTL determinants. This approach led to a

major increase (over 50%) in the number of documented T-cell

epitopes of F. tularensis. A relatively high fraction of the determinants

identified in this study are also identical to the orthologous

sequences in the virulent F. tularensis tularensis Schu S4 strain, as

could be anticipated from the extensive sequence identity between

these two strains. Studies are now underway to evaluate the

relevance of some of the responders, and specifically those which

consistently exhibited a high level of stimulation of IFNc
production, for their contribution to protection against the virulent

Schu S4 strain and for design of future vaccines. Finally, we believe

that the application of the approach for enrichment of true positive

responders, as demonstrated in this study, could be of general use

for immunoinformatic analysis of other complex pathogens.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institute of Health. The

protocol was approved by the Israel Institute for Biological

Research Animal Care and Use Committee (Permit Number:

IACUC-IIBR M-53-2009).

Prediction of MHC class I putative binders
A total of 1754 F. tularensis ORF products (holarctica LVS

strain, GenBank accession AM233362) were subjected to analysis

for identification of putative CTL epitopes, by the MHC class I

predictor NetMHC3.0 using artificial neural networks (ANN) [56].

Mouse MHC alleles were considered (H2-Kb, H2-Db, H2-Kd,

H2-Dd). Predicted affinities (IC50, nM) for all 8, 9, 10, 11-mer

peptides were computed. It should be mentioned that apparently,

predictions of 8, 10 and 11-mer Db-restricted epitopes by the

NetMHC3.0 approximation approach might be considered as less

reliable (however in our hands the fraction of Db-restricted

epitopes among the theoretical CTL epitopes and the responders

was similar).

Cluster mapping
A cluster of epitopes was defined as a polypeptide of up to 25

amino acids, containing at least 2 consecutive overlapping

predicted binders. According to this designation, the dataset of

all predicted binders was subjected to cluster mapping, using an in

house developed software package for cluster mapping, data

processing and visualization. The density of a given cluster was

calculated as the number of predicted binders contained within the

cluster divided by its length.

Peptide synthesis
All peptides were synthesized by the 9-fluorenyl-methyloxycar-

bonyl (FMOC) chemistry and validated by mass spectrometry

(Sigma, Israel). Peptides were adjusted to 500 mM stock solutions

and stored at 220uC until use.

Preparation of splenocytes
Animal procedures were approved by the Israel Institute for

Biological Research Animal Care and Use Committee (Permit

Number: IACUC-IIBR M-53-2009). Throughout the experi-

ments, all efforts were made to minimize animal suffering. Groups

of C57BL/6 mice were immunized with 102 CFU LVS by the i.n.

route after anesthesia with Ketamine and Xylazine. Six weeks later

mice were euthanized, spleens removed and splenocytes were

prepared using a gentle MACS C-tube (Milteny, Germany)

according to the manufacturer’s instructions. The freshly prepared

splenocytes were suspended in RPMI-1640 supplemented with

10% heat inactivated fetal calf serum and 1 mM of Pen-Strep,

non-essential amino acids, 2 mM L-glutamine and sodium

pyruvate (all tissue culture solutions were obtained from Biological

Industries, Bet Haemek, Israel).

IFNc EliSpot assay
A single-cell suspension of fresh splenocytes was seeded in

EliSpot 96-well plates in complete RPMI medium containing

10 mM of each individual peptide or 107 CFU/ml formalin

inactivated LVS as a positive control. Each peptide sample was

tested in duplicates. The frequency of epitope-specific T

lymphocytes was determined using eBioscience IFNc EliSpot kits

with strict adherence to manufacturer’s instructions. In the first

screen (the ‘‘rough’’ screen) we used 106 cells per well. A well was

considered to be positive when it contained over 10 spots and had

at least twice the number of spots counted in the negative control

well. Throughout the screen, the background number of spots in

negative control wells did not exceed five spots per well. The

second screen (a more quantitative screen) included only the

positive peptides from the first screen and contained less cells per

well (56105 cells per well), which allowed a more accurate

quantification of the results. In this second screen, the background

number of spots in negative control wells was 0–1 and the number

of spots among the positive peptide responders was at least 7.

Throughout the experiment, the positive control (inactivated LVS)

was confluent. Eventually, all of the responses that were

considered positive according to the mentioned criteria were also

positive by the two-tailed non-parametric Mann–Whitney U-test

(at p,0.05).

Transmembranal helices and signal peptide predictions
Analysis of membrane protein topology was conducted by the

program TMHMM v2.0 [57] for prediction of transmembranal

helices based on hidden Markov model. Analysis of proteins for

presence of a signal peptide domain was performed by the Signalp

3.0 server, using the Neural networks (NN)-based method [58].

Hydropathy score calculation
The hydropathicity of a peptide was calculated by an in-house

script based on the GRAVY value (ExPASy Proteomics Server,

http://expasy.org/tools/protparam-doc.html) defined as the sum

of hydropathy scores of all its amino acids divided by the number

of residues in the sequence. The scores are based on the amino

acid indices derived by Kyte and Doolittle [59].
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Supporting Information

Table S1 List of 1240 peptides selected by the cluster-based

approach. The affinity provided is the value predicted for a

particular responder sequence by the NetMHC3.0 program.

Cluster density is the number of predicted CTL epitopes in the

responder parental cluster, divided by the parental cluster length.

The gi number and annotation of the source protein are according

to the F. tularensis holarctica LVS sequence deposited at the NCBI

(GenBank accession AM233362); (a) Magnitude of T-cell response

for each identified epitope is indicated as follows (expressed in

SFC/million cells): L (low) - 7–19; M (medium) - 20–34; H (high) -

35 and above.

(PDF)

Table S2 List of 500 peptides selected by the random-based

approach. The affinity provided is the value predicted for a

particular responder sequence by the NetMHC3.0 program.

Cluster density is the number of predicted CTL epitopes in the

responder parental cluster, divided by the parental cluster length.

The gi number and annotation of the source protein are according

to the F. tularensis holarctica LVS sequence deposited at the NCBI

(GenBank accession AM233362); (a) Magnitude of T-cell response

for each identified epitope is indicated as follows (expressed in

SFC/million cells): L (low) - 7–19; M (medium) - 20–34; H (high) -

35 and above.

(PDF)
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