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A hierarchy of environmental 
covariates control the global 
biogeography of soil bacterial 
richness
Samuel Bickel   , Xi Chen, Andreas Papritz & Dani Or   

Soil bacterial communities are central to ecosystem functioning and services, yet spatial variations 
in their composition and diversity across biomes and climatic regions remain largely unknown. We 
employ multivariate general additive modeling of recent global soil bacterial datasets to elucidate 
dependencies of bacterial richness on key soil and climatic attributes. Although results support the 
well-known association between bacterial richness and soil pH, a hierarchy of novel covariates offers 
surprising new insights. Defining climatic soil water content explains both, the extent and connectivity 
of aqueous micro-habitats for bacterial diversity and soil pH, thus providing a better causal attribution. 
Results show that globally rare and abundant soil bacterial phylotypes exhibit different levels of 
dependency on environmental attributes. Surprisingly, the strong sensitivity of rare bacteria to certain 
environmental conditions improves their predictability relative to more abundant phylotypes that are 
often indifferent to variations in environmental drivers.

Delineating biogeographical patterns of soil bacterial richness could offer insights into potential links between 
natural bacterial community traits and belowground ecological functioning1. Various external drivers, land use 
and biome characteristics shape the soil bacterial community composition and structure. Spatial mapping of 
soil bacterial richness remains a challenge due to the high number of bacterial phylotypes and the sparse global 
coverage of available samples2–4 that originate from only few biomes. The vast number of possibilities for com-
munity assembly across environments with high intrinsic heterogeneity limit inference of globally representative 
biogeographical patterns from small-scale measurements3,5. The establishment of reliable global maps of bacte-
rial biogeography hinge on inclusion of ample sampling locations and tackle the hurdles of uneven sample sizes 
and primer biases in meta-analyses6. To overcome these limitations towards development of unbiased estimates 
of global bacterial richness patterns, comprehensive and well-harmonized data sets are required. Additionally, 
the primary drivers for soil bacterial richness are often obscured by large uncertainty in measurements and by 
sensitivity of species richness to methodology and sampling protocol2. Identifying drivers of bacterial richness is 
particularly error-prone due to the metrics sensitivity to the detection of rare and low abundant species; thereby 
challenges data analysis and interpretation. One of the most common predictor (covariate) of soil bacterial diver-
sity is the soil pH7–10. For near neutral soil pH, bacterial diversity peaks and then drops for acidic and basic soils7. 
Some have argued that such a pattern reflects increased abundance of specialist species in such environments 
or, alternatively, that pH is merely a proxy for other environmental factors7. Along with soil pH, many other 
environmental characteristics, such as mean annual precipitation and mean annual temperature are expected 
to affect soil microbial life, yet their effects are difficult to assess independently as they are often interlinked and 
only partly exhibited at scales relevant to soil bacterial habitats11,12. Soil hydration status has emerged as a primary 
factor affecting soil bacterial habitats13,14, as supported by empirical observation15–18. The wetness of a soil affects 
the connectivity of the aqueous bacterial habitats19, thereby modifying interactions and the motility of bacterial 
cells that in turn affect community composition and diversity. Yet few attempts have been made to statistically test 
the dependency of bacterial diversity on climatic soil moisture conditions at the global scale.
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Three recently published datasets of soil bacterial community composition17,20,21 combined with a consistent 
set of covariates (Supplementary Table S1) permit the (i) systematic consideration of composite soil and climate 
variables that could reflect salient conditions of soil bacterial habitats, and (ii) enable a process-based understand-
ing of the hierarchy in environmental factors that control soil bacterial richness. In this study, we (iii) analyze 
biogeographic trends to statistically test the explanatory power of composite variables, specifically climatic water 
content, with respect to soil bacterial richness and (iv) predict global biogeographic trends using general additive 
models (GAM) and tree-based methods.

Results and Discussion
Merging the geo-referenced 16S rRNA sequence data resulted in 844 valid soil samples, of which, 320 representative 
sampling sites were obtained after sample aggregation (Fig. 1a). Only bacterial diversity was analyzed, as the use of 
16S rRNA sequences precludes the investigation of fungal diversity in the current study. Despite covering all 14 clas-
sified biomes of the world22, sampling was not even, and some biomes and continents were under- or overrepresented 
(e.g., deserts contribute to about 18.9% of the terrestrial surface, yet only 6.3% of samples originated from these 
environments). From a total of 256,620 amplicon sequence variants (ASV) detected, we removed Archaea and unas-
signed sequences (at kingdom level, 1.55%) leaving 98.45% of bacterial ASVs. For ease of communication, we refer to 
the designated bacterial ASVs as “species” throughout the text. The widest range of species richness was observed in 
deserts (Fig. 1b) and could be attributed to the wide span of variations in environmental conditions in such biomes23. 
The relatively low richness in montane grassland and tundra could be indicative of a non-monotonic relation between 
moisture availability and soil bacterial richness. Boreal forests (n = 11) exhibited lower richness compared to tropical 
(n = 23) and temperate forests (n = 122; p = 0.0311 and p = 0.0063, respectively, Wilcoxon rank sum test). This lati-
tudinal shift in species richness17,20 suggests that temperature plays an important role in regulating bacterial richness. 
However, consideration of temperature alone provides no distinction between the richness observed in tropical and 
temperate forests (p = 0.6575, Wilcoxon rank sum test), suggesting more complex interactions and mechanisms.

Univariate analysis of bacterial richness.  We first evaluate trends of species richness considering climate 
and soil properties within univariate general additive modeling. Selected covariates were used that represent dif-
ferent aspects of the soil environment (Supplementary Table S1). Climatic water content (CWC) represents the soil 
water storage capacity and climatic water balance based on the number of consecutive dry days (DRY) and potential 
evapotranspiration (PET) (Supplementary Methods). It is a proxy for the soils wetness, its dynamics and aqueous 
phase connectivity. Both shape the number of distinct aqueous habitats and their connectedness in a soil. We found 
an optimal CWC in the range of 0.15 to 0.20 where bacterial richness peaks (Fig. 2a). A generally linear drop in 
richness seen towards low water availability is potentially due to nutrient limitations by the physically constrained 
diffusion processes and reduced carbon input. Soil pH exhibited a trend similar to the CWC with a peak near neu-
tral values (pH 7, Fig. 2b) as reported in previous studies7,21. We note, however, a strong linear association between 
pH and climatic water content (R2 = 61%, n = 320, Fig. 2c). Climatically humid regions tend to be acidic and dry 
regions basic. Such trends have been attributed to the difference between mean annual precipitation (MAP) and 
PET that determine the climatic soil water balance for the region24. A net accumulation of salt in soil (e.g. in arid 
regions) directly results from a negative water balance with more evaporation than precipitation. This increase of 
mineral concentrations enhances the soil pH buffering capacity and can result in high soil pH. With an increase 
in ionic strength we would also expect effects on bacterial physiology (e.g. increased osmotic pressures11,12) and 
possible, specialized adaptations to these environments. A recent study attempted to disentangle the effect of salts 
and soil pH on bacterial community composition and revealed a strong effect of salinity25. This may also suggest 
that previously reported dependencies of bacterial diversity on soil pH7,8,17 could have been mediated by climatic 
soil water conditions via the accumulation of salts. Although pH is related to the suitability of bacterial habitats by 
increasing the tolerance (and competitive ability) of pH-adapted species25, it might not be the underlying driver of 
bacterial diversity. This reasoning is based on the idea that competitive exclusion can only occur with some degree 

Figure 1.  Distribution of sites and representative samples obtained from three recent studies (EMBL17, EMP21, 
ZHOU20) used in this meta-analysis. (a) Geographical locations of sites (n = 320, by continent: AF = 27, 
AS = 42, AU = 30, EU = 55, NA = 104, SA = 62). Size of the points represents the number of samples that were 
aggregated within 0.1° × 0.1° cells. Colors orange, blue and green represent the three studies EMBL, EMP and 
ZHOU respectively. (b) Bacterial richness grouped by biomes (F. forest, G. grassland). Site values are shown in 
grey, while the red points represent mean values. Boxes show the inter quartile range (median as solid line) with 
bars indicating central 95%-range of values.
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of habitat overlap and interactions between species. Under most conditions in natural soils the aqueous phase is 
largely fragmented and the (micro-) environments experienced by bacteria are not necessarily the same. This frag-
mentation permits coexistence and suppresses the elimination of inferior competitors and, hence, promotes bacte-
rial diversity. The distinct optimality of bacterial richness related to soil wetness could be attributed to (i) resource 
limitation for extremely dry soils and (ii) the increased habitat connectivity that suppresses diversity by promoting 
competitive exclusion in wet soils. In this context, pH represents the chemical niche environment, a variable under 
control of primary (physical) factors, i.e. resulting from a soil’s climatic water balance24. Temperature is another 
primary variable that might confound many processes. The mean annual temperature (MAT) is expected to alter 
species richness according to the metabolic theory of ecology20,26. This trend was manifested by a slight increase of 
richness with MAT peaking at 0–10 °C and 20–30 °C (Supplementary Fig. S1), in agreement with a previous study4. 
One explanation for the lack of clear patterns could be that temperature not only modifies growth rates of bacterial 
cells, but also affects habitat connectedness via effects on precipitation and water balance. This may counteract the 
enhancing effect of temperature on richness in wet and warm regions (e.g. the Tropics) where bacterial habitats are 
frequently connected. Furthermore, despite the strong variation of MAT near the soil surface, the effective range 
at the sampled depth of 10 cm might be narrower due to the damping effects of soil and leads to a limited range of 
conditions experienced in bacterial habitats. Additionally, bacteria could be able to tolerate a wide range of tem-
peratures. Bacterial richness was found to be driven by temperature near geothermal springs only beyond 70 °C27; 
conditions that are not frequently found in soil. Nonetheless, changes in light intensity (solar radiation, RAD) are 
strongly correlated with temperature and latitude. A direct effect of light on bacterial richness would be expected by 
enabling growth of photoautotrophs and possible adaptation to high doses of UV light (or the lack thereof). Both 
effects could be masked by the presence of vegetation (e.g. NPP) that would intercept the solar radiation. We thus 
do not expect strong changes in the distribution of bacterial richness caused by light in vegetated environments 
and in sub surface soils (due to the strong attenuation of light). Nevertheless, the indirect effects of solar radiation 
should be well described by the used covariates (e.g. MAT and CWC) as light and water availability both shape the 
vegetation of an ecosystem. We used net primary productivity (NPP) to represent vegetation patterns at the ecosys-
tem level and to characterize carbon input into subsurface bacterial habitats. NPP did not display a notable effect 
on species richness (slightly increasing richness up to 500 g C m−2 yr−1, constant richness beyond, Supplementary 
Fig. S1). Only in extreme environments, such as deserts and tundra, NPP seems to influence species richness.

Figure 2.  Univariate general additive model (GAM) of soil bacterial richness. (a) Relation between climatic 
water content and bacterial richness. Bacterial richness peaks in soils with intermediate climatic water contents 
(0.15–0.2) and drops in dry and wet soils (R2 = 27.7%, RMSE = 298.1, AIC = 4557.5, EDF = 4.7). (b) Commonly 
observed trend of bacterial richness peaking at near neutral conditions (pH 7) and showing distinct drops in 
acidic and basic soils (R2 = 23.8%, RMSE = 306.0, AIC = 4574.0, EDF = 5.1). (c) A strong linear association 
(adjusted R2 = 60.8%, deviance explained 61.1%) is observed between climatic water contents and soil pH 
pointing to possible confounding effects of these covariates on bacterial richness. Shaded areas correspond to 
standard errors (n = 320).
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Multivariate general additive model (GAM) of bacterial richness.  The complexity of interactions 
among environmental factors, vegetation and soil microorganisms suggests that a single variable alone is not 
likely to explain the observed patterns of soil bacterial species richness. We therefore tested the robustness of the 
observed single-variable trends using a multivariate general additive model (GAM) with forward selection of 
covariates (Table 1, Supplementary Fig. S2). The ranking of the most influential covariates remained consistent 
with the results of univariate GAM, with CWC slightly outperforming pH. Interestingly MAT occupied the third 
rank, suggesting that we were able to successfully capture combined effects on soil bacterial species richness. The 
goodness-of-fit statistics of the multivariate GAM using only the six selected covariates (R2 = 35%, RMSE = 283.7) 
were better than the statistics of any univariate GAM, suggesting that soil and climatic covariates provide addi-
tional information on species richness. Although we observed significant associations between bacterial diver-
sity and environmental factors in uni- and multivariate modeling, these associations do not necessarily imply 
causation.

To mitigate limitations of commonly used structural equation models (SEM) in discerning causal nonlinear 
effects, we have used a causal additive model (CAM)28 to explore potential causes of soil bacterial diversity. We 
used this novel approach to generate a graph of inferred structural dependencies between covariates and bacte-
rial richness (Supplementary Fig. S3). By removing links between variables that are not considered significant 
(p ≤ 0.0005), we can distinguish direct from indirect relations between covariates and bacterial richness; as vari-
ables that remain linked to richness directly and variables that are connected to richness via others. Compared to 
the results of the multivariate GAM, we obtained a similar set of covariates with direct effect on species richness, 
i.e. CWC and DRY. Surprisingly, pH and MAT were not selected as potential direct causes, implying that they may 
have weaker effects on species richness or their associations with species richness were attributed to confounding 
effects. This approach enables further exploration of potential model structure. Nevertheless, care should be taken 
when interpreting inferred causal relationships as the method relies on the strong assumption of “no hidden var-
iables” that are unknown in most natural environmental systems. Yet, it is noteworthy that no prior expectations 
or knowledge is imposed on the model structure, as is necessary with many SEM17. All direct and indirect links 
are deduced only from the observations with a given set of covariates. A drawback of this approach is that not all 
dependencies might be physically meaningful.

Varying proportions of low abundance species.  Thus far, we have focused on explaining bacterial spe-
cies richness without considering environmental effects on species with different levels of abundance. We eval-
uated the performance of the univariate (CWC, pH) and multivariate GAM for metrics of diversity other than 
species richness and found a consistent increase in R2 with increasing weight of species with low abundances 
(Supplementary Fig. S4). The observation indicates that species with low abundance show greater sensitivity 
to environmental conditions than the species dominating within samples. To further evaluate effects of envi-
ronmental variables on rare and common fractions of the soil bacterial populations, we split the species in two 
groups by using a threshold (0.005%) of global relative abundance. For each sample, we computed the log-ratio 
of the number of rare and common species. A value of zero indicates that a sample contains the same number 
of rare and abundant species, and larger values indicate that the rare species are more numerous. We explored 
the dependence of the log-ratio on environmental covariates by univariate GAM (Supplementary Table S2). 
Interestingly we find similar, but complementary trends for CWC and pH (Fig. 3a,b). Most notably, a distinct 
drop in the number of rare species appears under elevated climatic soil water contents. This trend compares 
well with univariate and multivariate model results for species richness. The modeled dependencies of rare and 
common species diversity on climatic water content (Fig. 3c) demonstrate a higher susceptibility of rare species 
to increased aqueous phase connectivity associated with high water contents. While the common species remain 
abundant, the number of rare members of the soil bacterial community shows a steep decline towards wetter soil 
conditions. This discrepancy is weaker for soil pH where diversity of both rare and common species decrease at 
similar rates when approaching acidic conditions (Fig. 3d). The gradual increase in the proportion of globally 
rare species under drier conditions (low CWC) is likely due to the more fragmented aqueous phase that may 
shelter bacterial species in small but numerous isolated aqueous habitats13,14. Alternatively, one might argue that 
the emergence of rare species under basic (high pH) — and possibly also very dry— conditions is attributed to 
the presence of specialist phylotypes capable of coping with such an environment8,29. However, if neutral pH 
would be favored by most bacterial species (i.e. leading to more diversity) we would expect less balanced soil 
bacterial communities with more of the rare species present around pH 7. Interestingly, the log-ratio does not 
increase again towards acidic conditions. Hence, acidic environments reduce diversity of rare and common spe-
cies to a similar extent, and rare (specialist) species that benefit from weaker competition with common species 

Step Selected ΔAICa p-valueb

1 Climatic water content −104.64 <0.0005

2 Soil pH −19.43 <0.0005

3 Mean annual temperature −16.82 <0.0005

4 Silt fraction −7.18 0.0083

5 Consecutive dry days −1.59 0.0385

6 Cation exchange capacity −0.08 0.1497

Table 1.  Ranking of covariates determined by forward selection for the multivariate general additive model 
(GAM). aChange of Akaike information criterion (ΔAIC) when the variable was added to a model that already 
contained the covariates listed above the current step. bLikelihood ratio test of nested models.
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seem to be missing. Although, information on many additional factors that could affect the presence of rare 
and common species (e.g. nutrient status of the soil) could not be included in the analysis, general tendencies 
could be identified using the variables considered. We thus conclude that aqueous habitat connectivity largely 
dominates the soil bacterial richness picture and should be taken into account together with additional factors 
when data is available.

Global patterns of soil bacterial richness.  The GAM used in this study accounts only for independ-
ent and additive effects of covariates on species richness. This may not be a realistic depiction of processes in 
natural ecosystems with numerous connections and interdependencies. Tree-based statistical models seem 
better suited to account for (higher-order) interactions between variables. For prediction of global maps of 
species richness we therefore combined independently trained random forest and gradient boosting trees by 
simple averaging. The procedure was reinitialized and repeated ten times to stabilize the results and increase 
reproducibility. The tree-based model (R2 = 40%, RMSE = 261.5) performed better than the multivariate GAM 
(R2 = 35%, RMSE = 283.0) indicating that interactions between covariates are important for predicting species 
richness. Despite the considerably better performance, a large portion of variance remained unexplained. This is 
not unexpected, given the different sampling strategies and methodology of the studies. Additionally, covariates 
derived from remote sensing products and digital soil maps smooth the actual spatial variation of the respective 
characteristics and do not (yet) capture the full heterogeneity of natural soils. Another limitation of this study 
is the lack of fungal data. The data used does not permit analysis of fungal richness, and we can only speculate 
about potential, general trends. However, one study used in our dataset (EMBL)17 investigated fungal diversity 
across biomes and report that fungal diversity does not peak in temperate regions (unlike bacterial diversity). The 
authors further suggest niche differentiation lead to contrasting responses of fungal diversity with precipitation 
and soil pH compared to bacterial diversity17. We thus would expect fungi to play a dominant role in vegetated 
soils with lower pH and high C:N ratios17,30. Such regions (biomes) are represented by high NPP and high climatic 
water contents. In these environments the aqueous phase connectedness could additionally enhance competi-
tion; potentially also between bacteria and fungi. The global map of predicted bacterial richness shows distinct 
regions of varying bacterial richness (Fig. 4). Tropical regions (e.g. the Amazon and the Congo Basin rainforests) 
exhibit remarkably lower bacterial richness highlighting the adverse effects of high levels of soil wetness on bac-
terial diversity. Lowest richness values were also found in regions where resources are most limiting, such as in 
the Sahara or the Atacama deserts. “Hotspots” of species richness lie in temperate regions and climatic transi-
tion zones where resource availability is not limiting and the aqueous phase remains fragmented, such as in the 
northern regions of India or in the Sahel. Tree-based methods provide a complementary approach to GAM as 

Figure 3.  Dependence of the log-ratio of number of rare and common species per sample on the two main 
predictors of bacterial richness; (a) climatic water content (adjusted R2 = 24.5%, deviance explained 25.5%, 
AIC = 70.5, EDF = 4.3) and (b) soil pH (R2 = 23.0%, deviance explained 23.9%, AIC = 77.0, EDF = 4.1). The 
log ratio is calculated by splitting species into two groups based on a threshold of global relative abundance 
(0.005%). A log ratio of zero indicates a balanced population, where the number of rare species per sample 
equals the number of common species. The modeled curves of both groups richness (rare and common) are 
shown for (c) climatic water content and (d) soil pH. Shaded areas correspond to standard errors (n = 320).
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they efficiently handle higher order interactions between covariates and provide an efficient interface for spatial 
mapping. The implicit representation of covariate dependencies and model averaging, however, do not offer as 
much insight into the model structure as is possible with GAMs.

Conclusions
Incorporating the effects of soil and climate in the analysis of bacterial biogeography based on global datasets 
provides new insights into the key factors, namely climatic water content and pH that shape soil bacterial richness 
and community structure. The dominant role of climatic soil water content has not been fully recognized in pre-
vious studies. The inherent links between climatic soil water content and soil pH suggest that part of the soil bac-
terial diversity previously attributed to soil pH may reflect effects of climatic water content. We find that regions 
of intermediate climatic soil water content exhibit a peak in bacterial richness owing to the fragmentation of 
aqueous bacterial habitats that remain sufficiently supplied with resources, thus ensuring growth and protection 
from competitive exclusion. The results suggest that soil pH acts as a secondary driver of soil bacterial richness 
and represents a proxy of soil properties and climatic conditions. Placing local bacterial relative abundance in a 
global context provides fruitful insights into the biogeography of soil bacteria and the factors shaping spatial pat-
terns of bacterial diversity. Especially the rare component of the soil bacterial community that contributes a large 
fraction of diversity is surprisingly predictable. This highlights the importance of environmental drivers, such as 
climatic water content, in shaping the genetic pool of potential functional capabilities by changing the size of the 
soil bacterial “seedbank”.

Materials and Methods
Data collection and processing.  All 16S rRNA sequences of soil samples were obtained from three 
different studies. We hereafter use the terms EMBL (European Molecular Biology Laboratory)17, EMP (Earth 
Microbiome Project)21, and ZHOU20 to refer to the sources of samples and metadata. Since sequences were dif-
ferent in terms of their representativity and amplification protocols, filters based on sample metadata, primer 
sequences as well as assigned taxonomy were applied to minimize methodological differences and maximize 
compatibility.

Metadata-based filtering.  The metadata of soil samples (n = 235, 7974 and 126 for EMBL, EMP and 
ZHOU, respectively) were obtained from QIITA31 and the European Nucleotide Archive ENA32. Although most 
soil samples were initially collected with the aim to study soil microbial communities, some of them could not be 
considered natural. The following procedures were applied to each study:

EMP: We selected representative samples carefully based on the metadata by removing potential artificial 
soils (e.g. sand filter in water purification system), managed soils (e.g. agricultural soil) and soils which cannot be 
considered as “natural” (e.g. soil samples taken from urban environments). Further, samples of Antarctic soils and 
from depth >0.1 m were excluded due to limited information on local environments. The 16S rRNA sequences of 
all selected samples (n = 587) were retrieved from ENA.

EMBL & ZHOU: No metadata-based filtering was done since all samples could be considered representative 
according to the criteria applied to EMP. 16S rRNA sequences for EMBL and ZHOU were obtained from ENA 
using study accession ID PRJEB19856 and PRJNA308872, respectively.

Primer-based filtering.  EMBL, EMP and ZHOU used the marker gene sequencing method for amplifi-
cation33, yet their chosen primer sets and targeted regions of 16S rRNA differed substantially. To avoid primer 
biases, we only included samples which amplified the V4 region of 16S rRNA. Furthermore, two slightly different 
primer sets were used between studies, i.e. the original 515F-806R primer34 and its modification35. The original 
primer (forward: GTGCCAGCMGCCGCGGTAA, reverse: GGACTACHVGGGTWTCTAAT) is known to be 
biased towards certain archaeal and bacterial groups, such as Crenarchaeota, Thaumarchaeota and SAR1136,37. 
The modified one adds one degeneracy in both the forward (GTGYCAGCMGCCGCGGTAA) and reverse 
(GGACTACNVGGGTWTCTAAT) primer to reduce those biases. However, most samples in EMP and ZHOU 

Figure 4.  Global prediction of bacterial richness delineating spatial patterns of contrasting diversity (R2 = 40%, 
RMSE = 261.5). Tropics (e.g. Amazon, Congo) and northern higher latitudes (e.g. Siberia) show low bacterial 
richness. This is potentially linked to increased prevalence of frequently wet soils fostering connectedness of 
bacterial habitats. Low bacterial richness in deserts (e.g. Sahara, Atacama) is likely due to resource limitation. 
The highest bacterial richness is found in temperate regions and climatic transition zones (e.g. Sahel).
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were published before the modified primer set came in use, whereas all samples in EMBL were amplified using the 
modified one. To make a valid comparison, we either filtered particular sequences which could only be captured 
by the modified primer set (if the primers were retained in the raw sequences), or dropped the entire sample (if 
no information was available about the primers). We additionally removed sequences in which adapters could be 
identified (adapter contamination).

EMBL.  All sequences in EMBL were raw and unjoined. We discarded pairs of sequences if 
GTGTCAGCMGCCGCGGTAA could be found in the forward reads or GGACTACGVGGGTWTCTAAT in 
the reverse reads (difference between the original and the modified primer). The forward and reverse reads were 
subsequently joined, trimmed and quality controlled (Phred threshold of three) using VSEARCH (QIIME2, 
2018.8.0)38, cutadapt39 and split_libraries_fastq.py (QIIME1, 1.9.1)34, respectively.

EMP and ZHOU.  Unlike EMBL, sequences in EMP and ZHOU obtained from ENA were already preprocessed, 
i.e. de-multiplexed, and trimmed. Both of them were quality filtered with a Phred threshold of three using the 
script split_libraries_fastq.py (QIIME1, 1.9.1)34,40.

Denoising.  The Deblur (1.1.0) algorithm41 was chosen to de-replicate sequences and remove potential 
sequencing errors. All sequences were trimmed to a length of 90 base pairs since most sequences in EMP had a 
length of 90 bases pairs, and the algorithm requires all sequences to have the same length. To strengthen the filtering 
rules, singletons per sample were removed before denoising by setting the min_size parameter to two. The algorithm 
corrected sequences based on a predefined error profile and returned amplicon sequence variants (ASV), which 
could be considered as putative error-free (representative) sequences for each sample. We adopted a method based 
on ASV instead of clustering sequences into operational taxonomic units (OTUs) because ASVs are (i) consistently 
labeled, thus facilitating meta-analysis of cross-study samples, and (ii) are not affected by the incompleteness 
of reference databases, hereby providing more accurate diversity estimates for bacterial communities42–44.  
A total of 256,620 unique ASV were identified with most of the sequences being relatively rare (14.94% observed 
only once and 70.79% less than ten times across all soil samples).

Taxonomy assignment for filtering of archaea.  ASVs were assigned to taxonomic units using a mul-
tinomial Naive Bayes classifier (QIIME2, 2018.8.0), trained on the Greengenes 13_845, 99% OTUs (515F-806R 
region, 90 base pairs). Nevertheless, only 1.08% of the sequences could be assigned to a unique species designa-
tion. Sequences which were classified as archaea were removed, as they only contributed to a small proportion 
and may behave differently from bacteria46. Sequences that could not be classified confidently (<70%) at the 
lowest taxonomic levels (Kingdom) were discarded. Global singletons (observed only once across all samples) 
were dropped to remove potential errors and increase reliability.

Rarefaction and estimation of diversity.  The optimal sequence rarefication depth (number of randomly 
drawn sequences without replacement from each sample) with respect to diversity was determined by a grid 
search over 2,500 to 15,000 (Supplementary Fig. S5). After determining the rarefication depth, the procedure was 
repeated 100 times to increase reproducibility of ASVs abundance distributions. For each soil sample, diversity 
indices were calculated independently for each of the 100 rarefied ASVs tables and subsequently averaged17. The 
abundance of each ASVs was averaged over the 100 rarefied species abundance distributions, and thus may not be 
integer valued. We note that this procedure differs from common practices in ecological fields in which only one 
randomly generated rarefied ASVs (or OTUs) table is used for both diversity estimation and interpretation. From 
an ecological point of view, the randomness in the latter approach can be desired since in reality we would not 
have the ability to take multiple soil samples from the same site, amplify them independently and take the aver-
aged diversity (corresponding to rarefying multiple times from an existing ASV or OTU table). However, from 
a statistical point of view, it lacks stability. In the foregoing analysis, we used the averaged (n = 100) 7,500 ASVs 
as representative phylotypes for calculations of bacterial diversity in its general form (Supplementary Methods).

Covariates.  Soil properties were collected from 250 m SoilGrids47 according to samples’ geographical loca-
tions and soil depth. We did not use the on-site measured soil properties due to missing values and inconsistent 
methodologies of measurement across studies. Of additional concern was the comparison of variables measured 
at different scales. While it is common practice to compare remotely sensed covariates (e.g. temperature, primary 
productivity, precipitation) with sample scale measurements (e.g. pH, carbon-, nitrogen content) it is not desira-
ble from a statistical point as the level of support varies. This can lead to misinterpretation of the relative variable 
importance with respect to their explanatory power and hereby would obscure our understanding of underlying 
processes. The mean annual net primary (NPP) productivity, obtained from MODIS 2000–201548 was used as 
a proxy for the net carbon influx and the distribution of land covers. Mean annual temperature (MAT) and 
solar radiation (RAD) were retrieved from WorldClim49. Mean annual precipitation (MAP) was estimated using 
MSWEP rainfall data50. Using mean monthly temperature and shortwave radiation as inputs, mean monthly 
potential evapotranspiration (PET) was calculated according to the empirical equation proposed by Jensen and 
Haise51. The empirical equation produced negative values at extremely low temperatures. These estimated neg-
ative PET are unrealistic and were replaced by zeros. The resulting mean monthly PET was averaged over one 
climatic year yielding the mean annual PET. The average number of consecutive dry days (DRY) was estimated 
from the MSWEP precipitation time series. Briefly, daily precipitation was compared against the mean annual 
potential evapotranspiration (PET) to detect rainfall events that were expected to alter soil moisture conditions, 
i.e. exceeding the threshold set by PET. The values were reported as an absolute averaged spacing between rain-
fall events and could exceed one year. The available water capacity (AWC) in SoilGrids was derived based on a 
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pedo-transfer function that depends on soil chemical conditions, e.g. soil pH (PH)47. Including soil chemistry 
in calculating AWC may potentially interfere with later interpretations. To avoid this, we alternatively estimated 
AWC by a function that only uses bulk density (BLD), organic carbon content (ORC), silt content (SLT) and clay 
content (CLY)52. Climatic water content (CWC) was introduced to describe the climatic state of soil wetness 
(Supplementary Methods). It was calculated based on the assumption that the top one meter of soil can be fully 
replenished up to field capacity during rainfall events, and dry exponentially in consecutive days without rain 
(DRY). Summary of covariates is given in the Supplementary Table S1.

Correlation and clustering.  Spearman’s rank correlation ρs was used to measure the pairwise correlation 
between covariates (Supplementary Fig. S6). Covariates were then hierarchically clustered53 according to their 
dissimilarity (distance), defined as ρ−1 s . The inter-cluster distance was determined by the averaged dissimilar-
ity of objects in different clusters (average linkage). The cluster size was selected by applying a dissimilarity thresh-
old of 0.15. Within each cluster, only one covariate with the simpler physical interpretation was retained 
(Supplementary Fig. S6). Further, since sand (SND), silt (SLT) and clay content (CLY) are compositional, SND 
was discarded.

Generalized additive models.  Generalized additive models (GAM) (R package mgcv, 1.8–24) were used 
to model the associations in both univariate and multivariate analysis54. Thin plate regression spline was chosen 
as basis function and the smoothing parameters were estimated by restricted maximum likelihood (REML). The 
dimension of the basis used for each smoothing term was not restricted (default parameter k). Forward selec-
tion in multivariate modeling was performed based on Akaike information criterion (AIC) and likelihood ratio 
tests (conditional on the estimated smoothing parameters). The double penalty approach of GAM was used for 
regularization. Covariates were considered as negligible in terms of contributions to model fits if their estimated 
degree of freedom were shrunk approximately to zero (<10−3). The prediction performance was evaluated using 
leave-one-out cross-validated coefficient of determination (R2) and root mean squared error (RMSE).

Causal additive models.  Causal additive models (CAM) (R package CAM, 1.0) were used to infer the 
underlying data generating mechanism (causal structure) from observational data28. The model is a special case 
of the general structural equation model (SEM)55, namely in that the structural equations are additive in varia-
bles and errors. The model further assumes no hidden variables, i.e. all variables involved in the data generating 
mechanism are observed, and absence of directed cycles in the causal graph. Since the dimension of the dataset 
was low (15 covariates, except SND), we did not use preliminary neighborhood selection (screening of covariates 
primarily aimed for reduction of computational time). Furthermore, in order to avoid using data twice (for both 
variable selection and inference after selection)56,57, as well as the issue of “p-value lottery”58–60, the last step (prun-
ing of the directed graph) of CAM was combined with the multi-splits method59. Briefly, the method randomly 
splits data into training and testing sets; the training set is used for estimating the graph structure while the testing 
set is used for computing p-values of each covariate (repeated 100 times to avoid noisy selection of covariates and 
to stabilize the results).

Prediction of global maps using tree-based algorithms.  Random forests (RF) (RandomForestRegressor 
in scikit-learn, 0.19.1) and gradient boosting trees (GB) (GradientBoostingRegressor in scikit-learn, 0.19.1) were 
used for prediction61. Hyperparameters (n_estimators, max_features, max_depth and min_samples_leaf) in both 
algorithms were optimized using cross validation (CV) with respect to R2. Additionally, the learning rate in the 
boosting algorithm was set to a constant value of 0.05 since it can be compensated by the number of iterations. 
Independently trained random forest and gradient boosting trees were stacked by simple averaging. The gener-
alization errors (R2 and RMSE) were estimated using nested (ten by ten folds) CV, i.e. the inner CV selected the 
best-fit models (optimizing hyperparameters with respect to R2) while the outer CV computed the test errors of the 
selected models. The entire procedure was repeated ten times using different random splits (or seeds) to increase 
stability. Using the estimated model we predicted global bacterial richness at the full spatial coverage of covariates.

Data Availability
All generated data and code used for the analysis are available from the corresponding author upon request. Com-
puter code necessary to reproduce the main findings is accessible online (https://gitlab.ethz.ch/bickels/biogeo) 
and is archived in a public repository with DOI https://doi.org/10.5281/zenodo.3366252.
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