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Abstract

Recent empirical findings have indicated that gaze allocation plays a crucial role in simple

decision behaviour. Many of these findings point towards an influence of gaze allocation

onto the speed of evidence accumulation in an accumulation-to-bound decision process

(resulting in generally higher choice probabilities for items that have been looked at longer).

Further, researchers have shown that the strength of the association between gaze and

choice behaviour is highly variable between individuals, encouraging future work to study

this association on the individual level. However, few decision models exist that enable a

straightforward characterization of the gaze-choice association at the individual level, due to

the high cost of developing and implementing them. The model space is particularly scarce

for choice sets with more than two choice alternatives. Here, we present GLAMbox, a

Python-based toolbox that is built upon PyMC3 and allows the easy application of the gaze-

weighted linear accumulator model (GLAM) to experimental choice data. The GLAM

assumes gaze-dependent evidence accumulation in a linear stochastic race that extends to

decision scenarios with many choice alternatives. GLAMbox enables Bayesian parameter

estimation of the GLAM for individual, pooled or hierarchical models, provides an easy-to-

use interface to predict choice behaviour and visualize choice data, and benefits from all of

PyMC3’s Bayesian statistical modeling functionality. Further documentation, resources and

the toolbox itself are available at https://glambox.readthedocs.io.

Introduction

A plethora of empirical findings has established an association between gaze allocation and

decision behaviour on the group-level. For example, in value-based decision making, it has

been repeatedly shown that longer gaze towards one option is associated with a higher choice
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probability for that option [1–13] and that external manipulation of gaze allocation changes

choice probabilities accordingly [1, 9, 10, 14]. Such gaze bias effects are not limited to value-

based decisions, but have recently also been observed in perceptual choices, where participants

judge the perceptual attributes of stimuli based on available sensory information [14].

These findings have led to the development of a set of computational models, aimed at cap-

turing the empirically observed association between gaze allocation and choice behaviour by

utilizing gaze data to inform the momentary accumulation rates of diffusion decision processes

[2, 7, 8, 14–17]. Specifically, these models assume that evidence accumulation in favour of an

item continues while it is not looked at, but at a discounted rate. The application of these mod-

els is limited so far, as fitting them to empirical data depends on computationally expensive

simulations, involving the simulation of fixation trajectories. These simulations, as well as the

creation of models of the underlying fixation process, become increasingly difficult with

increasing complexity of the decision setting (e.g., growing choice set sizes or number of

option attributes, etc). Existing approaches that circumvent the need for simulations, model

the evidence accumulation process as a single diffusion process between two decision bounds

and are therefore limited to binary decisions [2, 18].

However, researchers are increasingly interested in choice settings involving more than two

alternatives. Choices outside the laboratory usually involve larger choice sets or describe items

on multiple attributes. Besides, many established behavioural effects only occur in multi-alter-

native and multi-attribute choice situations [19].

Furthermore, recent findings indicate strong individual differences in the association

between gaze allocation and choice behaviour [20, 21] as well as individual differences in the

decision mechanisms used [15]. While the nature of individual differences in gaze biases is still

not fully understood, different mechanisms have been suggested: Smith and Krajbich [20]

showed that gaze bias differences can be related to individual differences in attentional scope

(“tunnel vision”). Vaidya and Fellows [13] found stronger gaze biases in patients with damage

in dorsomedial prefrontal cortex (PFC). Further, recent empirical work has investigated the

roles of learning and attitude accessibility in gaze dependent decision making [22, 23]. How-

ever, more systematic investigations of these differences are needed, as the majority of model-

based investigations of the relationship between gaze allocation and choice behaviour were

focused on the group level, disregarding differences between individuals.

With the Gaze-weighted linear accumulator model (GLAM; [21]), we have proposed an

analytical tool that allows the model-based investigation of the relationship between gaze allo-

cation and choice behaviour at the level of the individual, in choice situations involving more

than two alternatives, solely requiring participants’ choice, response time (RT) and gaze data,

in addition to estimates of the items’ values.

Like the attentional Drift Diffusion Model (aDDM) [7, 8, 17], the GLAM assumes that the

decision process is biased by momentary gaze behaviour: While an item is not fixated, its value

representation is discounted. The GLAM, however, differs from the aDDM in other important

aspects: In contrast to the aDDM, the fixation-dependent value signals are averaged across the

trial, using the relative amount of time individuals spend fixating the items. This step abstracts

away the specific sequence of fixations in a trial, that can be investigated with the aDDM. On

the other hand, this simplification allows for the construction of trial-wise constant drift rates

that can enter a basic stochastic race framework. While race models like the GLAM are not sta-

tistically optimal [24] the GLAM has been shown to provide a good fit to empirical data [21].

In general, race models have at least two practical advantages: First, they often have analytical

solutions to their first-passage density distributions, and secondly, they naturally generalize to

choice scenarios involving more than two alternatives. The analytical tractability of the race
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framework further allows for efficient parameter estimation in a hierarchical Bayesian manner.

The GLAM thereby integrates gaze-dependent accumulation into a practical race model shell.

To make GLAM more accessible, we now introduce GLAMbox, a Python-based toolbox for

the application of the GLAM to empirical choice, RT and gaze data. GLAMbox allows for indi-

vidual and hierarchical estimation of the GLAM parameters, simulation of response data and

model-based comparisons between experimental conditions and groups. It further contains a

set of visualization functions to inspect choice and gaze data and evaluate model fit. We illus-

trate three application examples of the toolbox: In Example 1, we illustrate how GLAMbox can

be used to analyze individual participant data with the GLAM. In particular, we perform an

exemplary model comparison between multiple model variants on the individual level, as well

as an out-of-sample prediction of participants’ choice and RT data. In Example 2, we demon-

strate the application of the GLAM to perform a comparison of group-level parameters in a

setting with limited amounts of data, using hierarchical parameter estimation. Lastly, in Exam-

ple 3, we walk the reader through a step-by-step parameter recovery study with the GLAM,

which is encouraged to increase confidence in the estimated parameter values.

Materials and methods

Gaze-weighted linear accumulator model details

Like the aDDM, the GLAM assumes that preference formation, during a simple choice pro-

cess, is guided by the allocation of visual gaze (for an overview, see Fig 1). Particularly, the deci-

sion process is guided by a set of decision signals: An absolute and relative decision signal.

Throughout the trial, the absolute signal of an item i can be in two states: An unbiased state,

Fig 1. Gaze-weighted linear accumulator model. In the GLAM, preference formation during the decision process is dependent on the allocation of

visual gaze (A). For each item in the choice set, an average absolute decision signal �Ai is computed (dashed lines in A). The magnitude of this signal is

determined by the momentary allocation of visual gaze: While an item is currently not looked at, its signal is discounted by parameter γ (γ� 1;

discounting is illustrated by gray arrows) (A). To determine a relative decision signal Ri for each item in the choice set, absolute evidence signals are

transformed in two steps (B): First, the difference between each average absolute decision signal �Ai and the maximum of all others is determined.

Second, the resulting differences are scaled through a logistic transform, as the GLAM assumes an adaptive representation of the relative decision

signals that is especially sensitive to differences close to 0 (where the absolute signal for an item is very close to the maximum of all others). The

resulting relative decision signals Ri can be used to predict choice and RT, by determining the speed of the accumulation process in a linear stochastic

race (C). The stochastic race then provides first-passage time distributions pi, describing the likelihood of each item being chosen at each time point.

https://doi.org/10.1371/journal.pone.0226428.g001

GLAMbox

PLOS ONE | https://doi.org/10.1371/journal.pone.0226428 December 16, 2019 3 / 23

https://doi.org/10.1371/journal.pone.0226428.g001
https://doi.org/10.1371/journal.pone.0226428


equal to the item’s value ri while the item is looked at, and a biased state while any other item is

looked at, where the item value ri is discounted by a parameter γ. The average absolute decision

signal �Ai is given by

�Ai ¼ giri þ ð1 � giÞgri; ð1Þ

where gi is defined as the fraction of total trial time that item i was looked at. If γ = 1, there is

no difference between the biased and unbiased state, resulting in no influence of gaze alloca-

tion on choice behaviour. For γ values less than 1, the absolute decision signal Ai is discounted,

resulting in generally higher choice probabilities for items that have been looked at longer. For

γ values less than 0, the sign of the absolute decision signal Ai changes, when the item is not

looked at, leading to an overall even stronger gaze bias, as evidence for these items is actively

lost, when they are not looked at. This type of gaze-dependent leakage mechanism is supported

by a variety of recent empirical findings [15, 21].

To determine the relative decision signals, the average absolute decision signals �Ai are

transformed in two steps: First, for each item i, the relative evidence R�i is computed as the dif-

ference between the average absolute decision signal of the item �Ai (Eq 1) and the maximum

of all other average absolute decision signals �Aj6¼i (also obtained from Eq 2) is computed:

R�i ¼ �Ai � max
j6¼i

�Aj : ð2Þ

Second, the resulting difference signals R�i are scaled through a logistic transform s(x). The

GLAM assumes an adaptive representation of the relative decision signals, which is maximally

sensitive to small differences in the absolute decision signals close to 0 (where the difference

between the absolute decision signal of an item and the maximum of all others is small):

Ri ¼ sðR�i Þ ð3Þ

sðxÞ ¼
1

1þ exp ð� txÞ
ð4Þ

The sensitivity of this transform is determined by the temperature parameter τ of the logis-

tic function. Larger values of τ indicate stronger sensitivity to small differences in the average

absolute decision signals �Ai .

Unlike more traditional diffusion models (including the aDDM), the GLAM employs a lin-

ear stochastic race to capture response behaviour as well as RTs. The relative signals Ri enter a

race process, where one item accumulator Ei is defined for each item in the choice set:

EiðtÞ ¼ Eiðt � 1Þ þ vRi þ Nð0; s2Þ;with Eið0Þ ¼ 0 ð5Þ

At each time step t, the amount of accumulated evidence is determined by the accumulation

rate vRi, and zero-centered normally distributed noise with standard deviation σ. The velocity

parameter v linearly scales the item drift rates in the race process and thereby affects the

response times produced by the model: Lower values of v produce longer response times,

larger vs result in shorter response times. A choice for an item is made as soon as one accumu-

lator reaches the decision boundary b. To avoid underdetermination of the model, either the

velocity parameter v, the noise parameter σ or the boundary has to be fixed. Similar to the

aDDM, the GLAM fixes the boundary to a value of 1. The first passage time density fi(t) of a

single linear stochastic accumulator Ei, with decision boundary b, is given by the inverse

GLAMbox
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Gaussian distribution:

fiðtÞ ¼
l

2pt3

� �1
2

exp
� lðt � mÞ2

2m2t

� �

ð6Þ

with m ¼
b
vRi

and l ¼
b2

s2

However, this density does not take into account that there are multiple accumulators in

each trial racing towards the same boundary. For this reason, fi(t) must be corrected for the

probability that any other accumulator crosses the boundary first. The probability that an

accumulator crosses the boundary prior to t, is given by its cumulative distribution function

Fi(t):

FiðtÞ ¼ F

ffiffiffi
l

t

r
t
m
� 1

� � !

þ exp
2l

m

� �

� F �

ffiffiffi
l

t

r
t
m
þ 1

� � !

ð7Þ

Here, F(x) defines the standard normal cumulative distribution function. Hence, the joint

probability pi(t) that accumulator Ei crosses b at time t, and that no other accumulator Ej6¼i has

reached b first, is given by:

piðtÞ ¼ fiðtÞ
Y

j6¼i

ð1 � FjðtÞÞ ð8Þ

Contaminant response model. To reduce the influence of erroneous responses (e.g.,

when the participant presses a button by accident or has a lapse of attention during the task)

on parameter estimation, we include a model of contaminant response processes in all estima-

tion procedures: In line with existing drift diffusion modelling toolboxes [25], we assume a

fixed 5% rate of erroneous responses � that is modeled as a participant-specific uniform likeli-

hood distribution us(t). This likelihood describes the probability of a random choice for any of

the N available choice items at a random time point in the interval of empirically observed RTs

[25, 26]:

usðtÞ ¼
1

Nðmax rts � min rtsÞ
ð9Þ

The resulting likelihood for participant s choosing item i, accounting for erroneous

responses, is then given by:

liðtÞ ¼ ð1 � �Þ � piðtÞ þ � � usðtÞ ð10Þ

The rate of error responses � can be specified by the user to a different value than the default

of 5% using the error_weight keyword in the make_model method (see below).

Individual parameter estimation details. The GLAM is implemented in a Bayesian

framework using the Python library PyMC3 [27]. The model has four parameters (v, γ, σ, τ).

By default, uninformative, uniform priors between sensible limits (derived from earlier

GLAMbox
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applications to four different datasets: [21]) are placed on all parameters:

v � Uð0; 4Þ

g � Uð� 2; 1Þ

s � Uð0; 4Þ

t � Uð0; 10Þ

These limits were derived by extending the range of observed parameter estimates in earlier

applications of the GLAM to four different empirical choice datasets. These datasets encom-

pass data of 117 participants in value-based and perceptual choice tasks with up to three choice

alternatives (including a wide range of possible response times, gaze bias strengths and choice

accuracies; for further details [21]). Parameter estimates for these datasets are illustrated and

summarised in S1 Table, S1 Fig and S1 Fig.

The velocity parameter v and the noise parameter σ must be strictly positive. Smaller v pro-

duce slower and less accurate responses (for constant σ), while smaller σ produce more accu-

rate and slower responses (for constant v). The gaze bias parameter γ has a natural upper

bound at 1 (indicating no gaze bias), while decreasing γ values indicate an increasing gaze bias

strength. The sensitivity parameter τ has a natural lower bound at 0 (resulting in no sensitivity

to differences in average absolute decision signals �Ai), with larger values indicating increased

sensitivity.

Hierarchical parameter estimation details. For hierarchical models, individual parame-

ters are assumed to be drawn from Truncated Normal distributions, parameterized by mean

and standard deviation, over which weakly informative, Truncated Normal priors are assumed

(based on the distribution of group level parameter estimates obtained from four different

datasets in [21]; see Fig 2, S1 and S2 Figs and S1 Table):

vm � Nð0:63; 10 � 0:26Þ; truncated to ½0; 2�

vs � Nð0:26; 10 � 0:11Þ; truncated to ½0; 1�

gm � Nð0:12; 10 � 0:11Þ; truncated to ½� 2; 1�

gs � Nð0:35; 10 � 0:1Þ; truncated to ½0; 1�

sm � Nð0:27; 10 � 0:08Þ; truncated to ½0; 1�

ss � Nð0:05; 10 � 0:01Þ; truncated to ½0; 0:2�

tm � Nð1:03; 10 � 0:58Þ; truncated to ½0; 5�

ts � Nð0:62; 10 � 0:26Þ; truncated to ½0; 3�

Basic usage

Data format, the GLAM class. The core functionality of the GLAMbox is implemented in

the GLAM model class. To apply the GLAM to data, an instance of the model class needs to be

instantiated and supplied with the experimental data, first:

import glambox as gb
glam = gb.GLAM(data=data)

The data must be a pandas [28] DataFrame with one row per trial, containing the following

variable entries:

• subject: Subject index (integer, first subject should be 0)

GLAMbox
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• trial: Trial index (integer, first trial should be 0)

• choice: Chosen item in this trial (integer, items should be 0, 1, . . ., N)

• rt: Response time (float, in seconds)

• for each item i in the choice set:

• item_value_i: The item value (float, we recommend to re-scale all item values to a

range between 1 and 10 to allow comparison of parameter estimates between studies)

• gaze_i: The fraction of total time in this trial that the participant spent looking at this

item (float, between 0 and 1)

• additional variables coding groups or conditions (string or integer)

For reference, the first two rows of a pandas DataFrame ready to be used with

GLAMbox are shown in Table 1.

Next, the respective PyMC3 model, which will later be used to estimate the model’s parame-

ters, can be built using the make_model method. Here, the researcher specifies the kind of

the model: ‘individual’ if the parameters should be estimated for each subject individu-

ally, ‘hierarchical’ for hierarchical parameter estimation, or ‘pooled’ to estimate a

single parameter set for all subjects. At this stage, the researcher can also specify experimental

parameter dependencies: For example, a parameter could be expected to vary between groups

or conditions. In line with existing modeling toolboxes (e.g., [25, 29]) dependencies are

Table 1. The first two rows of a pandas DataFrame ready to be used with GLAM.

subject trial choice rt item_value_0 item_value_1 item_value_2 gaze_0 gaze_1 gaze_2 speed

0 0 0 2.056 5 1 3 0.16 0.62 0.22 ‘fast’

0 1 2 3.685 3 6 9 0.44 0.22 0.34 ‘slow’

https://doi.org/10.1371/journal.pone.0226428.t001

Fig 2. Hierarchical model structure. In the hierarchical model, individual subject parameters γi, vi. σi, and τi (subject

plate) are drawn from Truncated Normal group level distributions with means μ and standard deviations σ (outside of

the subject plate). Weakly informative Truncated Normal priors are placed on the group level parameters. RT and

choice data xi,t for each trial t is distributed according to the subject parameters and the GLAM likelihood (Eq (8);

inner trial plate).

https://doi.org/10.1371/journal.pone.0226428.g002
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defined using the depends_on argument. depends_on expects a dictionary with parame-

ters as keys and experimental factors as values (e.g., depends_on=dict(v=’speed’) for

factor ‘speed’ with conditions ‘fast’ and ‘slow’ in the data). The toolbox internally

handles within- and between subject designs and assigns parameters accordingly. If multiple

conditions are given for a factor, one parameter will be designated for each condition. Finally,

the make_model method allows parameters to be fixed to a specific value using the �_val
arguments (e.g., gamma_val=1 for a model without gaze bias). If parameters should be fixed

for individual subjects, a list of individual values needs to be passed.

model.make_model(kind=‘individual’,
depends_on=dict(v=‘speed’),
gamma_val=1)

Inference. Once the PyMC3 model is built, parameters can be estimated using the fit
method:

model.fit(method=‘MCMC’)

The fit method defaults to Markov-Chain-Monte-Carlo (MCMC; [30]) sampling, but

also allows for Variational Inference (see below).

Markov-Chain-Monte-Carlo. MCMC methods approximate the Bayesian posterior

parameter distributions, describing the probability of a parameter taking certain values given

the data and prior probabilities, through repeated sampling. GLAMbox can utilize all available

MCMC step methods provided by PyMC3. The resulting MCMC traces can be accessed using

the trace attribute of the model instance (note that a list of traces is stored for models of

kind ‘individual’). They should always be checked for convergence, to ascertain that the

posterior distribution is approximated well. Both qualitative visual and more quantitative

numerical checks of convergence, such as the Gelman-Rubin statistic R̂ and the number of

effective samples are recommended (for detailed recommendations, see [31, 32]). PyMC3 con-

tains a range of diagnostic tools to perform such checks (such as the summary function).

Variational inference. Estimation can also be done using all other estimation procedures

provided in the PyMC3 library. This includes variational methods like Automatic Differentia-

tion Variational Inference (ADVI; [33]). To use variational inference, the method argument

can be set to ‘VI’, defaulting to the default variational method in PyMC3. We found varia-

tional methods to quickly yield usable, but sometimes inaccurate parameter estimates, and

therefore recommend using MCMC for final analyses.

Accessing parameter estimates. After parameter estimation is completed, the resulting

estimates can be accessed with the estimates attribute of the GLAM model instance. This

returns a table with one row for each set of parameter estimates for each individual and condi-

tion in the data. For each parameter, a maximum a posteriori (MAP) estimate is given, in addi-

tion to the 95% Highest-Posterior Density Interval (HPD). If the parameters were estimated

hierarchically, the table also contains estimates of the group-level parameters.

Comparing parameters between groups or conditions. Parameter estimates can be com-

pared between different experimental groups or conditions (specified with the depends_on
keyword when calling make_model) using the compare_parameters function from the

analysis module. It takes as input the fitted GLAM instance, a list of parameters (‘v’,

‘s’, ‘gamma’, ‘tau’), and a list of pairwise comparisons between groups or conditions.

The comparison argument expects a list of tuples (e.g., [(‘group1’, ‘group2’),
(’group1’, ‘group3’)). For example, given a fitted model instance (here glam) a

comparison of the γ parameter between two groups (group1 and group2) can be computed

as:

GLAMbox
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from gb.analysis import compare_parameters
comparison = compare_parameters(model=glam,

parameters=[‘gamma’],
comparisons=[(‘group1’, ‘group2’)])

The function then returns a table with one row per specified comparison, and columns con-

taining the mean posterior difference, percentage of the posterior above zero, and correspond-

ing 95% HPD interval. If supplied with a hierarchical model, the function computes

differences between group-level parameters. If an individual type model is given, it returns

comparison statistics for each individual.

Comparisons can be visualized using the compare_parameters function from the

plots module. It takes the same input as its analogue in the alysis module. It plots poste-

rior distributions of parameters and the posterior distributions of any differences specified

using the comparisons argument. For a usage example and plot see Example 2.

Comparing model variants. Model comparisons between multiple GLAM variants (e.g.,

full and restricted variants) can be performed using the compare_models function, which

wraps the function of the same name from the PyMC3 library. The compare_models func-

tion takes as input a list of fitted model instances that are to be compared. Additional keyword

arguments can be given and are passed on to the underlying PyMC3 compare function. This

allows the user, for example, to specify the information criterion used for the comparison via

the ic argument (‘WAIC’ or ‘LOO’ for Leave-One-Out cross validation). It returns a table

containing an estimate of the specified information criterion, standard errors, difference to

the best-fitting model, standard error of the difference, and other output variables from

PyMC3 for each inputted model (and subject, if individually estimated models were given).

We refer the reader to Example 1 for a usage example and exemplary output from the

compare_models function.

Predicting choices and response times. Choices and RTs can be predicted with the

GLAM by the use of the predict method:

model.predict(n_repeats=50)

For each trial of the dataset that is attached to the model instance, this method predicts a

choice and RT according to Eq (10), using the previously determined MAP parameter esti-

mates. To obtain a stable estimate of the GLAM’s predictions, as well as the noise contained

within them, it is recommended to repeat every trial multiple times during the prediction. The

number of trial repeats can be specified with the n_repeats argument. After the prediction

is completed, the predicted data can be accessed with the prediction attribute of the

model.

Results

Example 1: Individual level data & model comparison

Our first example is based on the study by [21]. Here, the authors study the association

between gaze allocation and choice behaviour on the level of the individual. In particular, they

explore whether (1) gaze biases are present on the individual level and (2) the strength of this

association varies between individuals. In this example, we replicate this type of individual

model-based analysis, including parameter estimation, comparison between multiple model

variants, and out-of-sample prediction of choice and RT data.

Simulating data. First, we simulate a dataset containing 30 subjects, each performing 300

simple value-based choice trials. We assume that in each trial participants are asked to choose

the item that they like most out of a set of three presented alternatives (e.g., snack food items;
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similar to the task described in [8]). While participants perform the task, their eye movements,

choices and RTs are measured. Before completing the choice trials, participants were asked to

indicate their liking rating for each of the items used in the choice task on a liking rating scale

between 1 and 10 (with 10 indicating strong liking and 1 indicating little liking). The resulting

dataset contains a liking value for each item in a trial, the participants’ choice and RT, as well

as the participant’s gaze towards each item in a trial (describing the fraction of trial time that

the participant spent looking at each item in the choice set).

To simulate individuals’ response behaviour, we utilize the parameter estimates that were

obtained by [21] for the individuals in the three item choice dataset by [8] (see S1 Fig). Impor-

tantly, we assume that ten individuals do not exhibit a gaze bias, meaning that their choices are

independent of the time that they spend looking at each item. To this end, we set the γ value of

ten randomly selected individuals to 1. We further assume that individuals’ gaze is distributed

randomly with respect to the values of the items in a choice set. An overview of the generating

parameter estimates is given in S3 Fig.

We first instantiate a GLAM model instance using gb.GLAM() and then use its

simulate_group method. This method requires us to specify whether the individuals of

the group are either simulated individually (and thereby independent of one another) or as

part of a group with hierarchical parameter structure (where the individual model parameters

are drawn from a group distribution, see below). For the former, the generating model param-

eters (indicated in the following as gen_parameters) are provided as a dictionary, contain-

ing a list of the individual participant values for each model parameter:

import glambox as gb
import numpy as np
glam = gb.GLAM()
no_bias_subjects = np.random.choice(a=gen_parameters
[’gamma’].size,

size=10,
replace=False)

gen_parameters[’gamma’][no_bias_subjects] = 1
glam.simulate_group(kind=’individual’,

n_individuals=30,
n_trials=300,
n_items=3,
parameters=gen_parameters)

As this example is focused on the individual level, we can further create a summary

table, describing individuals’ response behaviour on three behavioural metrics, using the

aggregate_subject_level_data function from the analysis module. The result-

ing table contains individuals’ mean RT, their probability of choosing the item with the highest

item value from a choice set and a behavioural measure of the strength of the association

between individuals’ gaze allocation and choice behaviour (indicating the mean increase in

choice probability for an item that was fixated on longer than the others, after correcting for

the influence of the item value on choice behaviour; for further details, see [21]).

from glambox.analysis import aggregate_subject_level_data
subject_data_summary = aggregate_subject_level_data
(data=glam.data,

n_items=3)

Exploring the behavioural data. In a first step of our analysis, we explore differences in

individuals’ response behaviour. To this end, we plot the distributions of individuals’ scores on

GLAMbox
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the three behavioural metrics, and their associations, using the plot_behaviour_asso-
ciations function implemented in the plots module:

gb.plots.plot_behaviour_associations(data=data)

The resulting plot is displayed in Fig 3 and shows that individuals’ probability of choosing

the best item, as well as the strength of their behavioural association of gaze and choice, are not

associated with their mean RT (Fig 3D and 3E). However, individuals’ probability of choosing

the best item increases with decreasing strength of the behavioural association of gaze and

choice (Fig 3F).

Likelihood-based model comparison. In a second step of our analysis, we want to test

whether the response behaviour of each individual is better described by a decision model with

or without gaze bias. To this end, we set up the two GLAM variants:

glam_bias = gb.GLAM(data=data)
glam_bias.make_model(kind=’individual’, name=’glam_bias’)

glam_nobias = gb.GLAM(data=data)
glam_nobias.make_model(kind=’individual’, gamma_val=1,
name=’glam_nobias’)

For the GLAM variant without gaze bias mechanism, we use the gamma_val argument

and set it to a value of 1 (fixing γ to 1 for all subjects). We also assign different names to each

model with the name attribute to better identify them in our subsequent analyses.

Fig 3. Individual differences in the data. A-C: distributions of individuals’ mean RT (A), probability of choosing the highest-valued item in a trial (B),

and behavioural influence of gaze allocation on choice behaviour (C). D-F: associations between individuals’ probability of choosing the highest-valued

item and mean RT (D), individuals’ behavioural influence of gaze allocation on choice behaviour and their mean RT (E), individuals’ behavioural

influence of gaze allocation on choice behaviour and their probability of choosing the highest-valued item (F). Red lines indicate linear regression fits

with confidence bands surrounding them. Pearson’s r coefficients with corresponding P-values are reported for each association in D-F.

https://doi.org/10.1371/journal.pone.0226428.g003
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Subsequently, we fit both models to the data of each individual and compare their fit by

means of the Widely Applicable Information Criterion (WAIC; [34]):

glam_bias.fit(method=’MCMC’,
tune=5000,
draws=5000,
chains=4)

glam_nobias.fit(method=’MCMC’,
tune=5000,
draws=5000,
chains=4)

The fit method defaults to Metropolis-Hastings MCMC sampling (for methodological

details, see Methods Section). The draws argument sets the number of samples to be drawn.

This excludes the tuning (or burn-in) samples, which can be set with the tune argument. In

addition, the fit method accepts the same keyword arguments as the PyMC3 sample func-

tion, which it wraps (see the PyMC3 documentation for additional details). The chains argu-

ment sets the number of MCMC traces (it defaults to four and should be set to at least two, in

order to allow convergence diagnostics).

After convergence has been established for all parameter traces (for details on the suggested

convergence criteria, see Methods), we perform a model comparison on the individual level,

using the compare_models function from the analysis (see Basic Usage: Comparing

model variants):

comparison_df = gb.analysis.compare_models(models=[glam_bias,
glam_nobias],

ic=’WAIC’)

The resulting table (shown in Table 2) can be used to identify the best fitting model (indi-

cated by the lowest WAIC score) per individual.

With this comparison, we are able to identify those participants whose response behaviour

matches the assumption of gaze-biased evidence accumulation. In particular, we find that we

accurately recover whether an individual has a gaze bias or not for 29 out of 30 individuals.

Looking at the individual parameter estimates (defined as MAP of the posterior distribu-

tions), we find that the individually fitted γ values (Fig 4A) cover a wide range between -0.8

and 1, indicating strong variability in the strength of individuals’ gaze bias. We also find that γ
estimates have a strong negative correlation with individuals’ scores on the behavioural gaze

bias measure (Fig 4B).

Out-of-sample prediction. We have identified those participants whose response behav-

iour is better described by a GLAM variant with gaze-bias than one without. Yet, this analysis

does not indicate whether the GLAM is a good model of individuals’ response behaviour on

an absolute level. To test this, we perform an out-of-sample prediction exercise.

Table 2. Output from compare_models function for the first two subjects.

subject model WAIC pWAIC dWAIC weight SE dSE var_warn

0 glam_bias 523.6 5.75 0 0.94 50.25 0 0

0 glam_nobias 645.09 3.64 121.49 0.06 44.15 23.56 0

1 glam_bias 1097.86 3.69 0 1 40.32 0 0

1 glam_nobias 1185.02 2.85 87.16 0 38.22 18 0

https://doi.org/10.1371/journal.pone.0226428.t002
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We divide the data of each subject into even- and odd-numbered experiment trials and use

the data of the even-numbered trials to fit both GLAM variants:

glam_bias.exchange_data(data_even)
glam_bias.fit(method=’MCMC’,

tune=5000,
draws=5000,
chains=4)

glam_nobias.exchange_data(data_even)
glam_nobias.fit(method=’MCMC’,

tune=5000,
draws=5000,
chains=4)

Subsequently, we evaluate the performance of both models in predicting individuals’

response behaviour using the MAP estimates and item value and gaze data from the odd-

numbered trials. To predict response behaviour for the odd-numbered trials, we use the

predict method. We repeat every trial 50 times in the prediction (as specified through the

n_repeats argument) to obtain a stable pattern of predictions:

glam_bias.exchange_data(data_odd)
glam_bias.predict(n_repeats=50)

glam_nobias.exchange_data(data_odd)
glam_nobias.predict(n_repeats=50)

Lastly, to determine the absolute fit of both model variants to the data, we plot the individu-

ally predicted against the individually observed data on all three behavioural metrics. To do

this, we use the plot_individual_fit function of the plots module. This function

takes as input the observed data, as well as a list of the predictions of all model variants that

ought to be compared. The argument prediction_labels specifies the naming used for

Fig 4. Individual differences in the strength of the association of gaze allocation and choice behaviour. A: Distribution of γ estimates resulting from

the in-sample individual model fits. B: Association of γ estimates and individuals’ values on the behavioural gaze bias measure. The red line indicates a

linear regression fit, with surrounding 95% confidence bands. Pearson’s r correlation with P-value is given.

https://doi.org/10.1371/journal.pone.0226428.g004
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each model in the resulting figure. For each model variant, the function creates a row of panels,

plotting the observed against the predicted data:

from glambox.plots import plot_individual_fit
plot_individual_fit(observed = data_odd,

predictions=[glam_bias.prediction,
glam_nobias.prediction],

prediction_labels=[’gaze-bias’,
‘no gaze-bias’])

The resulting plot is displayed in Fig 5. We find that both model variants perform well in

capturing individuals’ RTs and probability of choosing the best item (Fig 5A, 5D, 5B and 5E).

Importantly, only the GLAM variant with gaze bias is able to also recover the strength of the

association between individuals’ choice behaviour and gaze allocation (Fig 5C).

Conclusion. GLAMbox provides an easy-to-use tool to test the presence (and variability)

of gaze biases on the individual level. With GLAMbox, we can easily fit the GLAM to individ-

ual participant data, compare different model variants and predict individuals’ response

behaviour. It also provides a set of analysis functions to explore behavioural differences

between individuals and to compare the fit of different model variants to observed response

behaviour.

Fig 5. Out-of-sample model fits. Comparison of individuals’ simulated observed response behaviour with the out-of-sample predictions of a GLAM

variant with (A-C) and without gaze bias (D-F): Individuals’ mean RT (A, D), probability of choosing the best item (B, E), and influence of gaze

allocation on choice probability (C, F). Points indicate individual participant means.

https://doi.org/10.1371/journal.pone.0226428.g005
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Example 2: Hierarchical parameter estimation in cases with limited data

In some research settings, the total amount of data one can collect per individual is limited,

conflicting with the large amounts of data required to obtain reliable and precise individual

parameter estimates from diffusion models [35, 36]. Hierarchical modeling can offer a solution

to this problem. Here, each individual’s parameter estimates are assumed to be drawn from a

group level distribution. Thereby, during parameter estimation, individual parameter esti-

mates are informed by the data of the entire group. This can greatly improve parameter esti-

mation, especially in the face of limited amounts of data [25, 37]. In this example, we will

simulate a clinical application setting, in which different patient groups are to be compared on

the strengths of their gaze biases, during a simple value-based choice task that includes eye

tracking. It is reasonable to assume that the amount of data that can be collected in such a set-

ting is limited on at least two accounts:

1. The number of patients available for the experiment might be low

2. The number of trials that can be performed by each participant might be low, for clinical

reasons (e.g., patients feel exhausted more quickly, time to perform tests is limited, etc.)

Therefore, we simulate a dataset with a low number of individuals within each group

(between 5 and 15 per group), and a low number of trials per participant (50 trials). We then

estimate model parameters in a hierarchical fashion, and compare the group level gaze bias

parameter estimates between groups.

Simulating data. We simulate data of three patient groups (N1 = 5, N2 = 10, N3 = 15),

with 50 trials per individual, in a simple three item value-based choice task, where participants

are instructed to simply choose the item they like the best. These numbers are roughly based

on a recent clinical study on the role of the prefrontal cortex in fixation-dependent value repre-

sentations [13]. Here, the authors found no systematic differences between frontal lobe

patients and controls on integration speed or the decision threshold, controlling speed-accu-

racy trade-offs. Therefore, in our example we only let the gaze bias parameter γ differ systemat-

ically between the groups, with means of γ1 = 0.7 (weak gaze bias), γ2 = 0.1 (moderate gaze

bias) and γ3 = −0.5 (strong gaze bias), respectively. We do not assume any other systematic dif-

ferences between the groups and sample all other model parameters from the estimates

obtained from fitting the model to the data of [8] (for an overview of the generating parame-

ters, see S4 Fig).

Behavioural differences between the three groups are plotted in Fig 6, using the

plot_behaviour_aggregate function from the plots module. Group-level

Fig 6. Aggregate view of the simulated data for Example 2. (A) Mean RT binned by trial difficulty (the difference between the highest item value in a

choice set and the maximum value of all other items). (B) The probability that an item is chosen based on its relative value (the difference of the item’s

value and the maximum value of all other items in the choice set). (C) The probability of choosing an item based on its relative gaze (the difference

between the gaze towards this item and the maximum gaze towards a different item). (D) The probability of choosing an item based on its relative gaze,

when correcting for the influence of its value. Bars correspond to the pooled data, while coloured lines indicate individual groups.

https://doi.org/10.1371/journal.pone.0226428.g006
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summary tables can be created using the aggregate_group_level_data from the

analysis module. Even though the groups only differ in the gaze bias parameter, they also

exhibit differences in RT (Group 1 mean ± s.d. = 1.96 ± 0.33 s, Group 2 mean ± s.d. =

2.38 ± 1.4 s; Group 3 mean ± s.d. = 2.59 ± 1.26 ms; Fig 6A) and choice accuracy (Group 1

mean ± s.d. = 0.88 ± 0.06, Group 2 mean ± s.d. = 0.71 ± 0.07, Group 3 mean ± s.d. =

0.50 ± 0.16; Fig 6B). As is to be expected, we can also observe behavioural differences in gaze

influence measure (Group 1 mean ± s.d. = 0.08 ± 0.07, Group 2 mean ± s.d. = 0.26 ± 0.11,

Group 3 mean ± s.d. = 0.38 ± 0.11; Fig 6C and 6D, where the choices of Group 3 are driven by

gaze more than those of the other groups.

Building the hierarchical model. When specifying the hierarchical model, we allow all

model parameters to differ between the three groups. This way, we will subsequently be able to

address the question whether individuals from different groups differ on one or more model

parameters (including the gaze bias parameter γ, which we are mainly interested in here).

As for the individual models, we first initialize the model object using the GLAM class and

supply it with the behavioural data using the data argument. Here, we set the model kind to

‘hierarchical’ (in contrast to ‘individual’). Further, we specify that each model

parameter can vary between groups (referring to a ‘group’ variable in the data):

hglam = gb.GLAM(data=data)
hglam.make_model(kind=’hierarchical’,

depends_on = dict(v=’group’,
gamma=’group’,
s=’group’,
tau=’group’))

In this model, each parameter is set up hierarchically within each group, so that individual

estimates are informed by other individuals in that group. If the researcher does not

expect group differences on a parameter, this parameter can simply be omitted from the

depends_on dictionary. The resulting model would then have a hierarchical setup of this

parameter across groups, so that individual parameter estimates were informed by all other

individuals (not only those in the same group).

Parameter estimation with MCMC. After the model is built, the next step is to perform

statistical inference over its parameters. As we have done with the individual models, we can

use MCMC to approximate the parameters’ posterior distributions (see Methods for details).

Due to the more complex structure and drastically increased number of parameters, the chains

from the hierarchical model usually have higher levels autocorrelation. To still obtain a reason-

able number of effective samples [32], we increase the number of tuning- and draw steps:

hglam.fit(method=’MCMC’,
draws=20000,
tune=20000,
chains=4)

Evaluating parameter estimates, interpreting results. After sampling is finished, and the

chains were checked for convergence, we can turn back to the research question: Do the

groups differ with respect to their gaze biases? Questions about differences between group-

level parameters can be addressed by inspecting their posterior distributions. For example, the

probability that the mean γ1,μ for Group 1 is larger than the mean γ2,μ of Group 2 is given by

the proportion of posterior samples in which this was the case.

GLAMbox includes a compare_parameters function that plots posterior distributions

of group level parameters. Additionally, the user can specify a list of comparisons between
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groups or conditions. If comparisons are specified, the posterior distributions of their differ-

ence and corresponding relevant statistics are added to the figure:

from glambox.plots import compare_parameters
parameters = [’v’, ‘gamma’, ‘s’, ‘tau’]
comparisons = [(’group1’, ‘group2’),

(’group1’, ‘group3’),
(’group2’, ‘group3’)]

compare_parameters(model=hglam,
parameters=parameters,
comparisons=comparisons)

With the resulting plot (Fig 7), the researcher can infer that the groups did not differ with

respect to their mean velocity parameters vi,μ (top row, pairwise comparisons), mean accumu-

lation noise σi,μ (third row), or scaling parameters τi,μ. The groups differ, however, in the

strength of their mean gaze bias γi,μ (second row): All differences between the groups were

Fig 7. Pairwise comparison of posterior group-level parameter estimates between groups. Each row corresponds to one model parameter. The

leftmost column shows the estimated posterior distributions for each parameter and group. Pairwise differences between the group posterior

distributions are shown in all other columns. For each posterior distribution of the difference, the mean and 95% HPD are indicated, as well as the

proportion of samples below and above zero (in red). All three groups differ on the γ parameter (row B). No evidence for differences on any of the other

model parameters is found (the 95% HPD of the pairwise differences between groups all include zero).

https://doi.org/10.1371/journal.pone.0226428.g007
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statistically meaningful (as inferred by the fact that the corresponding 95% HPD did not con-

tain zero; second row, columns 2-4).

Conclusion. When faced with limited data, GLAMbox allows users to easily build and

estimate hierarchical GLAM variants, including conditional dependencies of model parame-

ters. The Bayesian inference framework allows the researcher to answer relevant questions in a

straightforward fashion. To this end, GLAMbox provides basic functions for computation and

visualization.

Example 3: Parameter recovery

When performing model-based analyses of behaviour that include the interpretation of

parameter estimates, or comparisons of parameter estimates between groups or conditions,

the researcher should be confident that the model’s parameters are actually identifiable. In par-

ticular, the researcher needs to be confident that the set of estimated parameters unambigu-

ously describes the observed data better than any other set of parameters. A straightforward

way of testing this is to perform a parameter recovery: The general intuition of a parameter

recovery analysis is to first generate a synthetic dataset from a model using a set of known

parameters, and then fitting the model to the synthetic data. Finally, the estimated parameters

can be compared to the known generating parameters. If they match to a satisfying degree, the

parameters were recovered successfully. Previous analyses have already indicated that the

GLAM’s parameters can be recovered to a satisfying degree [21]. Yet, the ability to identify a

given set of parameters always depends on the specific features of a given dataset. The most

obvious feature of a dataset that influences recoverability of model parameters is the number

of data points included. Usually this quantity refers to the number of trials that participants

performed. For hierarchical models, the precision of group-level estimates also depends on the

number of individuals per group. Additional features that vary between datasets and that

could influence parameter estimation are the observed distribution of gaze, the distribution of

item values or the number of items in each trial. For this reason, it is recommended to test

whether the estimated parameters of a model can be recovered in the context of a specific data-

set. slac To demonstrate the procedure of a basic parameter recovery analysis using GLAMbox,

suppose we have collected and loaded a dataset called data. In the first step, we perform

parameter estimation as in the previous examples:

glam = gb.GLAM(data=data)
glam.make_model(kind=’individual’)
glam.fit(method=’MCMC’,

draws=5000,
tune=5000,
chains=4)

The next step is to create a synthetic, model-generated dataset using the model parameters

estimated from the empirical data, together with the empirically observed stimulus and gaze

data using the predict method. Setting n_repeats to 1 results in a dataset of the same

size as the observed one:

glam.predict(n_repeats=1)
synthetic = glam.prediction

The synthetic dataset should resemble the empirically observed data closely. If there are

major discrepancies between the synthetic and observed data, this indicates that GLAM might

not be a good candidate model for the data at hand. Next, we create a new model instance,

attach the synthetic data, build a model and re-estimate its parameters:
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glam_rec = gb.GLAM(data=synthetic)
glam_rec.make_model(kind=’individual’)
glam_rec.fit(method=’MCMC’,

draws=5000,
tune=5000,
chains=4)

Finally, the recovered and generating parameters can be compared. If the recovered param-

eters do not match the generating parameters, the parameters cannot be identified given this

specific dataset. In this case, parameter estimates should not be interpreted.

If, on the other hand, generating and recovered parameters do align, the parameters have

been recovered successfully. This indicates that the model’s parameters can be identified

unambiguously given the general characteristics of the dataset and thereby increases confi-

dence that the parameters obtained from the empirical data are valid and can be interpreted.

Here, all parameters could be recovered as illustrated in Fig 8. For most individuals, the

MAP estimates and their 95% HPDs are close to the known generating parameters. Across

individuals, no systematic biases in the estimation can be identified.

Conclusion. In this example, we demonstrated how to perform a basic parameter recov-

ery for a given dataset. When successful, this increases confidence that the parameters can be

identified with the given dataset.

Discussion

Researchers have recently started to systematically investigate the role of visual gaze in the

decision making process. By now, it is established that eye movements do not merely serve to

sample information that is then processed independently to produce a choice, but that they are

actively involved in the construction of preferences [2, 4, 6–8, 10, 14, 15, 21, 38]. The dominant

theoretical perspective is that evidence accumulation in favor of each option is modulated by

gaze allocation, so that accumulation for non-fixated options is attenuated. This mechanism is

formally specified in various models of gaze-dependent decision making, such as the atten-

tional Drift Diffusion Model (aDDM; [7, 8]) and the conceptually related Gaze-weighted Lin-

ear Accumulator Model (GLAM; [21]). In contrast to analyses based on behavioural and eye

Fig 8. Results from a basic parameter recovery. The lower row (E-H) shows deviations between known generating parameter values and recovered

MAP estimates (circles) and their 95% HPDs (horizontal error bars) for each participant. Green (red) colour indicates that the true value is within

(outside) the 95% HPD. Most parameters were recovered with small deviations. Panels A-D show distributions of deviations across individuals.

Distributions are mostly centered around zero, indicating no systematic under- or overestimation (bias) across individuals.

https://doi.org/10.1371/journal.pone.0226428.g008
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tracking data alone, these models can act as analytical tools that enable researchers to address

questions regarding specific mechanisms in the decision process, like the gaze bias.

The goal of GLAM is to provide a model-based estimate of the gaze bias on the level of an

individual (as indicated by GLAM’s γ parameter), in choice situations involving more than

two choice alternatives. To estimate the gaze bias, GLAM describes the decision process in the

form of a linear stochastic race and aggregates over the specific sequence of fixations during

the decision process (by only utilizing the fraction of the decision time that each item was

looked at). These two characteristics distinguish the GLAM from other existing approaches of

obtaining an estimate of individuals’ gaze bias:

First, the GLAM is focused on quantifying the gaze bias on the individual level. It does

not capture dynamics of the decision process on the level of single fixations. If these fine-

grained dynamics are of interest to the researcher, the aDDM can be used. Here, the fixa-

tion-dependent changes in evidence accumulation rates throughout the trial are not aver-

aged out. Keeping this level of detail, however, comes at a cost: Fitting the aDDM relies on

extensive model simulations (including a simulation of the fixation process; for a more

detailed discussion see [21]). The GLAM, on the other hand, aggregates over the fixation-

dependent changes in the accumulator’s drift rate in order to simplify the estimation process

of the gaze bias.

Second, the GLAM directly applies to choice situations involving more than two choice

alternatives. While the GLAM has been shown to also capture individuals’ gaze bias and

choice behaviour well in two-alternative choice situations [21], there exist other computa-

tional approaches that can estimate the gaze bias of an individual in binary decisions: If

response times are of interest to the researcher, the gaze bias can be estimated in the form of a

gaze-weighted DDM (see for example [2, 18]). Similar to the GLAM, this approach also aggre-

gates over the dynamics of the fixation process within a trial, by only utilizing the fraction of

trial time that each item was looked at. In contrast to the GLAM, however, gaze-weighted

DDM approaches describe the decision process in the form of a single accumulator that

evolves between two decision bounds (each representing one of the two choice alternatives).

For two-alternative choice scenarios, where response times are not of interest to the

researcher, Smith and colleagues [39] proposed a method of estimating the aDDM gaze-bias

parameter through a random utility model. Here, the gaze bias can be estimated in a simple

logit model.

Even though the advantages of applying these types of models are apparent, their use is

often limited by their complexity and the high cost of implementing, validating and optimizing

them. Further, there are only few off-the-shelf solutions researchers can turn to, if they want to

perform model-based analyses of gaze-dependent choice data, particularly for choice settings

involving more than two alternatives.

With GLAMbox, we present a Python-based toolbox, built on top of PyMC3, that allows

researchers to perform model-based analyses of gaze-bias effects in decision making easily. We

have provided step-by-step instructions and code to perform essential modeling analyses using

the GLAM. These entail application of the GLAM to individual and group-level data, specifica-

tion of parameter dependencies for both within- and between-subject designs, (hierarchical)

Bayesian parameter estimation, comparisons between multiple model variants, out-of-sample

prediction of choice and RT data, data visualization, Bayesian comparison of posterior param-

eter estimates between conditions, and parameter recovery. We hope that GLAMbox will

make studying the association between gaze allocation and choice behaviour more accessible.

We also hope that the resulting findings will ultimately help us better understand this associa-

tion, its inter-individual variability and link to brain activity.
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Supporting information

S1 Fig. Distribution of individual parameter estimates from four datasets analysed in

Thomas et al. (2019). The top row contains distributions of parameter estimates across data-

sets. Subsequent rows show distributions per dataset: Krajbich et al. (2010; blue), Krajbich &

Rangel (2011; orange), Experiment 2 from Folke et al. (2017; green) and Experiment 1 from

Tavares et al. (2017; red).

(TIFF)

S2 Fig. Illustration of hyperpriors. Different hyperpriors based on group-averaged parameter

values were obtained from fitting the model to four different datasets (Folke et al., 2017; Kraj-

bich et al., 2010; Krajbich & Rangel, 2011; Tavares et al., 2017; see S1 Table and S1 Fig). Panels

show prior distributions on group level mean (upper row) and standard deviation (lower row)

for each model parameter (columns; from left to right: v, γ, σ, τ). Observed group level esti-

mates from the four datasets are indicated as red ticks in each panel. Blue, orange and green

lines represent prior distributions with increasing levels of vagueness f. They are constructed

as normal distributions with mean equal to the mean of the observed group level parameters

across datasets (M), and standard deviation equal to f times the observed standard deviation

across datasets (SD). Higher values of f correspond to wider, less informative priors. Prior dis-

tributions are further bounded between sensible limits. The user can specify the factor f during

specification of hierarchical models. By default, hyperpriors with f = 10 (orange lines) are

used.

(TIFF)

S3 Fig. Distribution of individual generating GLAM parameters of Example 1. Colours

indicate whether a subject was simulated with or without gaze bias.

(TIFF)

S4 Fig. Distributions of data-generating parameters for the three groups in Example 2.

The top row shows distributions pooled across groups. The bottom three rows show distribu-

tions per group. Note that the groups do not differ systematically with respect to the velocity

parameter v, the noise parameter σ, or the scaling parameter τ (first, second and last column;

even though there is some variability between individuals). The groups differ, however, on the

gaze bias parameter γ (third column): Group 1 only has a weak gaze bias (large γ), group 2 has

a medium strong gaze bias (smaller γ), and group 3 has a very strong gaze bias (even smaller,

negative γ).

(TIFF)

S1 Table. Description of individual parameter estimates from four datasets analysed in

Thomas et al. (2019). The datasets are originally from Folke et al., 2017 (Experiment 2); Kraj-

bich et al., 2010; Krajbich & Rangel, 2011 and Tavares et al., 2017 (Experiment 1).

(PDF)
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3. Fiedler S, Glöckner A. The Dynamics of Decision Making in Risky Choice: An Eye-Tracking Analysis.

Frontiers in Psychology. 2012; 3. https://doi.org/10.3389/fpsyg.2012.00335

4. Folke T, Jacobsen C, Fleming SM, De Martino B. Explicit representation of confidence informs future

value-based decisions. Nature Human Behaviour. 2017; 1(1):0002. https://doi.org/10.1038/s41562-

016-0002
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