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Abstract: Subdiffusion is commonly observed in liquids with high density or in restricted geometries,
as the particles are constantly pushed back by their neighbors. Since this “cage effect” emerges from
many-body dynamics involving spatiotemporally correlated motions, the slow diffusion should be
understood not simply as a one-body problem but as a part of collective dynamics, described in
terms of space–time correlations. Such collective dynamics are illustrated here by calculations of
the two-particle displacement correlation in a system of repulsive Brownian particles confined in a
(quasi-)one-dimensional channel, whose subdiffusive behavior is known as the single-file diffusion
(SFD). The analytical calculation is formulated in terms of the Lagrangian correlation of density
fluctuations. In addition, numerical solutions to the Langevin equation with large but finite interaction
potential are studied to clarify the effect of overtaking. In the limiting case of the ideal SFD without
overtaking, correlated motion with a diffusively growing length scale is observed. By allowing
the particles to overtake each other, the short-range correlation is destroyed, but the long-range
weak correlation remains almost intact. These results describe nested space–time structure of cages,
whereby smaller cages are enclosed in larger cages with longer lifetimes.

Keywords: caged dynamics; stochastic processes; collective motion; single-file diffusion; normal
and anomalous diffusion; displacement correlation; overtaking; hopping rate; label variable;
Dean–Kawasaki equation

1. Introduction

Particles in dense liquids are hindered from free motion, being constantly pushed back by their
neighbors. This is often described as a “cage” that confines each particle. The cage effect makes the
motion subdiffusive and, in certain cases, leads to the glass transition [1,2].

To be specific, let us consider a system consisting of Brownian particles with a nearly hardcore
interaction. The position vector of the i-th particle, ri = ri(t), is governed by the Langevin equation

mr̈i = −µṙi −
∂U
∂ri

+ µfi(t), (1a)

with m and µ denoting the mass and the drag coefficient of the particle, µfi(t) representing the thermal
fluctuating force, and the interaction being prescribed as

U = U(r1, r2, . . .) = ∑
(j,k)

Vjk (1b)

in terms of the pair potential Vjk. Among the fundamental statistical quantities characterizing
this system is the mean square displacement (MSD), i.e., the second moment of the displacement
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Ri = ri(t)− ri(0). If the interaction through U is negligible, each particle diffuses freely so that
〈
R2

i
〉

grows in proportion to t (for timescales longer than m/µ). This occurs when the colloidal fluid modeled
by Equation (1) is dilute enough. In contrast, particles in a denser colloidal fluid are hindered from
free motion by the cage effect, so that the growth of

〈
R2

i
〉

is much slower. As is illustrated in Figure 1a,
every particle in such a system is almost arrested in a “cage” consisting of its neighbors. In extreme
cases, the system ceases to be fluid and becomes a kind of amorphous solid, referred to as colloidal
glass [1].

Although it is true that the cage effect suppresses the growth of MSD on the whole, the details
are rather complicated [2]. The behavior of the MSD in dense liquids reflects at least three aspects
of caged dynamics: nearly free motion within the cage for a short time, possible drift of the cage
enclosing the particle at a longer timescale, and hopping of the particle out of the cage as a rare event.
Proper characterization of these processes requires space–time description, typically in terms of some
four-point space–time correlation [2–4], as the cage effect actually emerges from many-body dynamics
involving collective motions of numerous particles correlated both spatially and temporally.

(a) (b)

Figure 1. (a) Schematic description of a cage in a dense liquid, consisting of the surrounding particles
that hinder free motion of the enclosed particle. (b) A (quasi-)one-dimensional model of the cage effect,
with the particles confined in a narrow channel.

In search of insight into the theoretical treatment of such collective motions, here, we take note
of the one-dimensional (1D) system illustrated in Figure 1b, following several authors who studied
it as a simplified model of the cage effect [4–10]. The slow dynamics of such a 1D system are known
by the name of single-file diffusion (SFD). In what we call the ideal SFD, every particle is eternally
trapped within the “cage” formed by their neighbors. The MSD in the ideal SFD is known to grow
subdiffusively as

〈
R2

i
〉

∝
√

t [11–14] (for 1D systems, we write Ri instead of Ri). The subdiffusion in
SFD emerges from collective motion of particles [5,10,15] and is also detected as a negative longtime
tail in the velocity autocorrelation [16,17], indicating that the particle is pushed back by its neighbors.
The importance of the collective motion is understood by considering the origin of the effective
stochastic equation for a single particle in SFD: the one-body equation (yielding the negative velocity
autocorrelation) is actually based on the collective dynamics described in terms of the fluctuating
density field [18].

Focusing on the collective motions in SFD, the group of the present authors has noticed
the usefulness of the displacement correlation

〈
RiRj

〉
[4,10,19]. It is a kind of four-point space–time

correlation that probes both the time scale and length scale; the definition of the displacement includes
t, while the spatial scale is included as the mean distance between the two particles (i, j). In the ideal
SFD in which the particles are forbidden to overtake each other, the displacement correlation has
been calculated both analytically and numerically [4,10,20]. The calculated displacement correlation
revealed collective motions behind the slow diffusion in SFD, in contrast to free diffusion in which〈

RiRj
〉

vanishes (unless i = j). The formalism for analytical calculation of the displacement correlation
can be extended to the case of two-dimensional (2D) colloidal liquids [10,21], which reproduces
some numerical findings in 2D systems, such as vortical cooperative motion, with negative velocity
autocorrelation being a manifestation of the cage effect. One of the delicate points in this extension is
that the cage effect in 2D liquids cannot be infinitely strong, in the sense that eventually the particles
can escape from the 2D cage. The escape from the cage is an important process, which requires
further investigation.
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Methodologically, it should be noted that one of the most powerful approaches to SFD, employing
the relation between the position of the tagged particle and the density fluctuation [10,12,17,22], has
been formulated in reliance on the assumption that overtaking is completely forbidden. To extend this
formalism to the case of “non-ideal SFD”—in which overtaking is allowed—is a challenging problem,
which is the main objective of the present work. Most of the existing works on SFD with overtaking
have reported numerical simulations [23–27], while analytical results are quite rare. In the exceptional
case of lattice SFD, the method of vacancy dynamics [15,16] has been applied to quasi-1D geometries
allowing some kind of overtaking [28,29]. The analysis of lattice SFD with overtaking, however, is not
readily extensible to the cases with a continuous space coordinate.

In the present work, we discuss how the analytical results on the displacement correlation in
SFD [4,10,20] are modified, if the particles are allowed to overtake each other and thereby escape
from the quasi-1D cage as a rare event. The probability of the escape is regulated by the height of
the potential barrier, denoted by Vmax, so that Vmax → +∞ and Vmax → 0 correspond to the ideal
SFD and the free diffusion, respectively. Some numerical solutions for finite Vmax were included in
our previous work [19], but analytical calculations were limited to the ideal case without overtaking,
for the very reason that overtaking was difficult to take into account in the theoretical framework
based on the density fluctuation. Now, the effect of a non-zero overtaking rate on the displacement
correlation will be shown analytically as a main result of the present work.

Logical presentation of the main results in Section 4 requires a considerable amount of review in
preparatory sections. For this reason, the paper is organized as follows: In Section 2, after the governing
equation of the 1D system is specified and the collective motion is illustrated in a space–time diagram,
we define some basic concepts and variables, such as the displacement correlation, overtaking, the
fluctuating density field ρ(x, t), and the label variable ξ, clarifying their background. In particular, the
kinematics of overtaking are discussed in Subsection 2.5. The usage of the label variable is a keystone
for the analytical calculation of the displacement correlation [4,10,30], as is reviewed in Section 3 in
the case of SFD without overtaking. The displacement correlation in this case is expressed in terms of
a similarity variable, implying a nested space–time structure of cages. Subsequently, we proceed to the
main topic in Section 4, in which we incorporate the effect of overtaking into the calculation of the
displacement correlation by considering the dynamics of overtaking in terms of the Ξi(t) prepared
in Subsection 2.5. It is shown analytically and confirmed numerically that the infrequent overtaking
events destroy the short-range correlation, while the long-range weak correlation remains almost
intact. The final section is allotted for discussion and concluding remarks.

2. Formulation and Background

2.1. Specification of the System

We consider a 1D system of Brownian particles with short-range repulsive interaction, confined
in a narrow channel, as is depicted in Figure 1b. With the position of the i-th particle denoted by
Xi = Xi(t), the system is governed by the 1D Langevin equation:

mẌi = −µẊi −
∂

∂Xi
∑
j<k

V(Xk − Xj) + µ fi(t), (2)

where m and µ represent the mass and the drag coefficient of the particle, respectively. The system
contains N particles within the length L. Posing the periodic boundary condition, Xi+N = Xi + L, we

consider the limit of N → ∞ with the density ρ0
def
= N/L kept constant.

The thermal fluctuating force, µ fi(t), is characterized by the variance,

〈
fi(t) f j(t′)

〉
=

2kBT
µ

δijδ(t− t′), (3)
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with T denoting the temperature of the medium. The whole system is assumed to be at thermal
equilibrium, which implies spacial homogeneity and temporal steadiness.

The interaction between the particles is expressed by the pairwise potential, V(r). We could
choose any family of V(r) that interpolates between the limiting case of V = 0 and the opposite limit
of the hardcore potential,

VHC(r) =

{
∞ (|r| ≤ σ)

0 (|r| > σ)
(4)

with the diameter σ. Here, we choose

V(r) =

Vmax

(
1− |r|

σ

)2
(|r| ≤ σ)

0 (|r| > σ)

(5)

which is parametrized by the barrier height Vmax. We also tested some other potentials [19], only to
find that the basic behavior of the 1D system is qualitatively unaffected by different choices of V(r).
Preference was given to Equation (5) merely because its hard sphere limit (Vmax � kBT) has been
studied systematically [31] in the context of 3D glassy dynamics.

In regard to the system governed by Equation (2), we refer to the case of Vmax → +∞ as the ideal
SFD, in which every particle is eternally caged by its neighbors. Large but finite values of Vmax allow
the particle to exchange positions with one of its neighbors as a rare event which we call overtaking
(borrowing the word from traffic flow). The ideal SFD means SFD without overtaking, and we may
say “non-ideal SFD” referring to the case of finite Vmax/kBT. Note that the description of non-ideal
SFD with the 1D equation (2) can be interpreted as modeling a quasi-1D system [19,23–27] in which,
typically, the position vector ri = (Xi, Yi) is governed by Equation (1a) with the potential term

U = U(r1, r2, . . .) = ∑
(j,k)

Vjk + ∑
j

Vex(Yj), (6)

where Vex = Vex(y) denotes the external confinement potential such that Vex(±∞) → +∞. In this
description, V(Xk − Xj) in Equation (2) represents the free energy of the subsystem consisting of
the neighboring particles j and k.

The specification of the system by Equations (2), (3) and (5), supplemented with the periodic
boundary condition, involves some dimensional constants. As the basic scales of the length
and the time, we take the particle diameter (σ) and the corresponding diffusive time (σ2/D),
where D = kBT/µ is the diffusion constant of a free Brownian particle. A finite value of mass, such that
m/µ : σ2/D = 1 : 1, is specified for computational ease, unless specified otherwise. The system size,
L, must be infinitely large; though, in numerical computations, we must specify some finite values

for it. For later convenience, we introduce `0
def
= L/N = 1/ρ0 which has the dimension of length.

The nondimensional barrier height, Vmax/kBT, has an effect on the dynamics through the overtaking
frequency, as will be discussed later.

In numerical simulations, the system is equilibrated by a preparatory run started at t = −Tw.
Subsequently, for a reason clarified in the next subsection, the particles are renumbered consecutively
in the sense that

X0 < X1 < · · · < Xi < Xi+1 < · · · < XN ( = X0 + L) (7)

at t = 0. It should be noted that Tw must be longer than max t for sufficient equilibration [4].
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2.2. Spatiotemporally Correlated Motion in SFD

As a graphic depiction of collective motions in SFD, let us examine Figure 2, in which a numerical
solution of Equation (2) in the case of the ideal SFD is represented as worldlines in the (x, t)-plane.
To visualize the correlation of the worldlines, we measured the displacement for each particle i,

Ri = Ri(t)
def
= Xi(t)− Xi(0), (8)

for the time interval from 0 to t = 2n × 10 σ2/D (with n = 1, 2, . . .), in accordance with Ref. [4].
If Ri(t) > 5σ, the position of the particle is marked with a filled circle (•); if Ri(t) < −5σ, it is marked
with an open square (�). As the time difference (t) increases, a string of the same kind of symbol is
formed, expressing a cluster of particles moving together in the same direction.

0 100 200 300 400 500

10

10
2

10
3

ti
m
e
D
t/
σ
2

position x/σ

Figure 2. A space–time diagram representing cooperative motion in SFD. A numerical solution to
Equation (2), calculated for ρ0 = N/L = 0.20 σ−1, is plotted as worldlines in the (x, t)-plane (note that
the t-axis is on a logarithmic scale). The symbols • and �mark particles displaced (by more than 5σ)
rightward and leftward, respectively.

The formation of clusters, visually shown in Figure 2, is quantified by calculating the displacement
correlation

〈
RiRj

〉
. Note that the consecutive numbering in Equation (7) is needed to make

〈
RiRj

〉
meaningful as a function of j − i ( = ∆) and t. Since Ri and Rj have the same sign within
the same cluster, their product must be positive if the distance in the numbering, ∆ = j − i, is
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small, while
〈

RiRj
〉

for distant particles (with `0∆ greater than the correlation length) is expected
to vanish. The average, denoted by 〈 〉, is taken over the initial condition and the Langevin noise.
Computationally, the displacement correlation is calculated as

〈
RiRj

〉
= 〈RiRi+∆〉 =

1
N ∑

i
〈RiRi+∆〉 . (9)

2.3. Continuum Description

Our theoretical approach to the displacement correlation,
〈

RiRj
〉
, is based on a continuum

description of the dynamics of Brownian particles. As fluctuating hydrodynamic fields describing
the temporally coarse-grained dynamics of {Xi}i=1,2,... for timescales longer than m/µ, one may take
the density fields

ρ(x, t) = ∑
i

ρi(x, t), ρi(x, t) = δ(x− Xi(t)), (10)

and their fluxes
Q(x, t) = ∑

i
Qi(x, t), Qi(x, t) = ρi(x, t)Ẋi(t). (11)

Note that the delta function in Equation (10) should be regarded as a blunted one, as a result of the
coarse-graining (see §II-B in Ref. [21] and references therein).

The density field, ρ(x, t), is governed by the Dean–Kawasaki equation [32–37], which can be
presented as a set of equations of the following form:

∂tρ + ∂xQ = 0, (12a)

Q = −D
(

∂xρ +
ρ

kBT
∂xU

)
+ ∑

i
ρi(x, t) fi(t), (12b)

U = U[ρ](x) =
∫

Veff(x− x′)ρ(x′)dx′. (12c)

The effective potential, Veff in Equation (12c), is determined by the condition that the density fluctuation,
described by Equations (12), should be consistent with the static structure factor,

S(k) def
=

1
N ∑

i
∑

j

〈
exp

[
ik
(
Xj − Xi

)]〉
(k 6= 0), (13)

determined directly from Equation (2). More specifically, with the Fourier mode of the density and its
correlation defined as

ρ̂(k, t) def
=
∫

eikxρ(x, t)dx = ∑
j

exp
[
ikXj(t)

]
, F(k, t) def

=
1
N
〈ρ̂(k, t)ρ̂(−k, 0)〉 (k 6= 0),

evidently, F(k, t = 0) must be equal to S(k), and the initial decay of F(k, t) is known to be exponential,
as is shown in Ref. [38] as Equation (4.144). In our notation, it reads

F(k, t) = S(k)e−Dck2t (for t� σ2/D), (14)

with Dc = Dc(k) = D/S(k) referred to as the (short-time) collective diffusion coefficient [38,39].
Once Veff is determined so as to make the linearized dynamics of Equations (12) consistent with
Equation (14), we may redefine S(k) by the ratio of D to Dc(k).

2.4. Label Variable

Now let us outline the main idea that makes it possible to calculate
〈

RiRj
〉

analytically on the
ground of Equations (12) [4,10,19,30]. The point is to introduce a new variable, ξ, referred to as the
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label variable, to incorporate the notion of particle tracking into the mathematical formalism that links〈
RiRj

〉
with Equations (12).

The necessity of the new variable for particle tracking is understood by noticing how a more
straightforward approach, based on ρi(x, t) in Equation (10), is confronted by a difficulty. In principle,〈

RiRj
〉

can be obtained from the Fourier mode of ρi(x, t), because the definition

ρ̂i(k, t) def
=
∫

eikxρi(x, t)dx = exp [ikXi(t)] (15)

implies ρ̂i(k, t)ρ̂i(−k, 0) = exp(ikRi), and therefore

〈
ρ̂i(k, t)ρ̂i(−k, 0)ρ̂j(±k, t)ρ̂j(∓k, 0)

〉
=
〈

eik(Ri±Rj)
〉
= 1− k2

2

〈
(Ri ± Rj)

2
〉
+ · · · . (16)

If the correlation on the left side is successfully evaluated by nonlinear analysis of the equation
governing ρi and ρj, analogous to Equation (12b) and later shown as Equation (48), then

〈
RiRj

〉
can be

obtained from the power series on the right side. This is insurmountable, unfortunately, as is evident
from the complication encountered in the apparently easier problem of evaluating 〈ρ̂i(k, t)ρ̂i(−k, 0)〉
in SFD [8,9].

The difficulty originates from the choice of the standard field representation with the independent
variables (x, t), referred to as the Eulerian description (according to the terminology of fluid
mechanics [40,41]). Since

〈
RiRj

〉
is treated as a kind of four-point space–time correlation [42,43],

it implies a four-body correlation in the Eulerian description, as is seen in Equation (16). However,
this difficulty can be avoided by switching to another way referred to as the Lagrangian
description [30,40,41], which means to include particle tracking mechanism in the definition of the
fields and their correlations. In this way, the displacement correlation can be treated simply as a
two-body Lagrangian correlation of the field [4,10,19].

Deferring a concrete calculation of
〈

RiRj
〉

until the next section, here we only define the label
variable ξ to lay the foundation for it. Instead of (x, t) for the standard space–time coordinate
system, we introduce a stretchable coordinate system (ξ, t), requiring ξ = ξ(x, t) to satisfy the
convective equation,

(ρ∂t + Q∂x)ξ = 0, (17)

which states that ξ should be convected with the velocity u = Q/ρ. To satisfy Equation (17), we define
ξ as a solution to

(ρ, Q) = (∂xξ, −∂tξ). (18)

This is solvable because of the continuity equation (12a), with the solution determined uniquely by
some initial condition, such as ξ(X0(t0), t0) = 0. Subsequently, by inverting the mapping (x, t) 7→ ξ,
we obtain the coordinate system with the independent variables (ξ, t) [4,10,19,21,30]. It should be
emphasized that we take Equation (18), not Equation (17), as the definition of the mapping between ξ

and x. In other words, we do not solve Equation (17) in the usual sense of the word; rather, Equation (17)
is satisfied as a consequence of Equation (18). In this way, we avoid complication of the attempt to
define ξ = ξ(x, t) directly with Equation (17), which would require specification of the initial condition
We also remind the readers that the delta function in the definition of ρ is a blunted one, as has been
noted immediately after Equations (10) and (11).

Using the label variable ξ, defined in this way, we can calculate
〈

RiRj
〉

analytically. The (ξ, t)
coordinate system has an advantage of making it easy to trace the worldlines, such as the ones plotted
in Figure 2, because ξ is expected to keep the same value if we follow the identical particle. In order to
see it, we define

Ξi(t)
def
= ξ(Xi(t), t) (19)
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as a function of the particle number i and the time t, and consider its t-derivative [30,44]. Provided that
the conventional chain rule is valid, the time-derivative of Ξi(t) is

dΞi(t)
dt

= Ẋi(t)
∂ξ

∂x

∣∣∣∣
x=Xi

+
∂ξ

∂t

∣∣∣∣
x=Xi

=
(
ρẊi −Q

)∣∣
x=Xi

, (20)

where the definition of ξ in Equation (18) is taken into account. The expression on the right side of
Equation (20) vanishes unless the i-th particle overlaps with another. In the ideal SFD, in which the
particles never overlap, Ξi(t) is none other than the numbering i; this is the key ingredient for the
analytical calculation of

〈
RiRj

〉
in the ideal SFD.

In the absence of overtaking, the particles can move only as a result of changes in inter-particle
spaces, which is illustrated schematically in Figure 3a as a migrating “vacancy” causing correlated
motion of particles. The overtaking allows another kind of motion, illustrated in Figure 3b, which does
not require migration of a vacancy. Before proceeding to a concrete calculation of

〈
RiRj

〉
, let us discuss

how to describe an overtaking event within the framework of the (ξ, t) coordinate system.

(a)

1 2 3 4 5

vacancy

1 2 3 4 5

vacancy

(b) 1 2

2

3 4

4

5

5

6

2
4

5

1 2

2

3 4

5

5

4

6

Figure 3. Schematic illustration of two kinds of processes in the 1D system under consideration.
The small digits represent the values of the label variable ξ, while the larger digits are numbers to
identify the particles. (a) Fluctuation of the inter-particle space without overtaking, interpretable as the
migration of a vacancy. (b) An overtaking event, in which two particles exchange their labels.

2.5. Kinematics of Overtaking Events

In the presence of overtaking, Ξi(t) = ξ(Xi(t), t) is not necessarily equal to i. In this case, we must
distinguish between them and discuss correspondence among three variables: the numbering (i ∈ Z),
the label variable (ξ ∈ R), and the position (x).

We still define ξ by Equation (18) without regard to overtaking. The constant of integration is
chosen appropriately so that Ξi(t) = ξ(Xi(t), t) has an integer value unless the i-th particle overlaps
with another. On this premise, the mapping from i ∈ Z to Ξi(t) = ξ(Xi(t), t) ∈ Z is injective,
which means, so to speak, a kind of exclusion principle whereby different particles must carry different
values of ξ.

The overtaking process is a transition from one such mapping to another. Since the effect of
overtaking on the mapping i 7→ Ξi(t) is local, as is readily seen from Equation (18), we may identify
the overtaking event with a process in which two particles exchange the value of their label. In the case
of a pair of particles (i, j), with t1 and t2 denoting points in time immediately before and after
the exchange, this process is described as

Ξi(t2) = Ξj(t1), Ξj(t2) = Ξi(t1). (21)
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To justify Equation (21), we consider what occurs in the time interval from t1 to t2.
Since the particles may overlap in the course of overtaking, the value of Ξi(t) is not limited to Z
but rather belongs to R. Using ρ and ρi given in Equation (10), we rewrite Equation (20) as

dΞi
dt

=
∫ (

ρẊi −Q
)

ρidx = ∑
j

∫ (
ρjẊi −Qj

)
ρidx

= ∑
j

∫ (
ρjQi − ρiQj

)
dx, (22)

which implies that Ξi(t) is locally conserved. Note that only overlapping particles contribute to
the integral. If no particle overlaps the i-th one, then the expression on the right side of Equation (20)
vanishes so that Ξi remains constant. If only one particle, say the j-th one, overlaps particle i,
Equation (22) gives

dΞi
dt

=
∫ (

ρjQi − ρiQj
)

dx = −
dΞj

dt
. (23)

By integrating Equation (23) over the time interval from t1 to t2 and taking the conditions such as
Ξi(t1) ∈ Z into account, we find

Ξi(t2)− Ξi(t1) = −Ξj(t2) + Ξj(t1) ∈ Z,

so that only two cases are possible: one is the case of unsuccessful or retracted overtaking, with the same
value of (Ξi, Ξj) restored after the interaction, and the other case corresponds to Equation (21) that
describes (successful) overtaking. Note that the other possibilities are eliminated by the “exclusion
principle” for the configurations before and after the overtaking process. As a rare case, three-body or
four-body interactions might be possible, but it suffices to approximate such a case with a sequence of
two-body exchange processes.

Changes of Ξi(t) = ξ(Xi(t), t) and Xi(t) = x(Ξi(t), t) are exemplified in Figure 3. Since ξ = ξ(x, t)
satisfies ∂ξ/∂x = ρ by definition in Equation (18), {Ξi} is always spatially consecutive, as is shown in
Figure 3 with small digits. The important point is that this spatial consecutiveness of {Ξi} holds true
even if the numbering is inverted by overtaking. In other words, ξ labels the order in the file and not
the particles themselves. In the case of Figure 3b, the particles are initially numbered consecutively so
that Ξi = i for all i, until particles 4 and 5 start to overlap. During overtaking, the values of Ξ4 and Ξ5

evolve according to Equation (23) with (i, j) = (4, 5), while the labels for other particles, such as Ξ2,
Ξ3 and Ξ6, remain unchanged. Finally, after overtaking, particle 4 carries the label Ξ4 = 5, while label
4 is now carried by particle 5 so that Ξ5 = 4.

In the next section, we start with the case of the ideal SFD, in which the requirement of
(d/dt)Ξi(t) = 0 is fulfilled so that ξ simply plays the role of particle numbering. Later, we consider
the temporal change of Ξi(t) to allow for overtaking in Section 4.

3. Displacement Correlation in SFD without Overtaking

3.1. Analytical Calculation of Displacement Correlation

Here we review the analytical calculation of
〈

RiRj
〉

in the ideal SFD [4,10,19], in which Ξi is
independent of t.

Out of the three equations composing the Dean–Kawasaki equation (12), the continuity
equation (12a) is already included in ξ = ξ(x, t), or its inverse mapping x = x(ξ, t),
through Equation (18). To relate x = x(ξ, t) to the remaining two equations, we solve Equation (12b)
for u = Q/ρ, which should be equal to u = ∂tx(ξ, t). Noticing that u(ξ, t) is the (negative) flux of
1/ρ = ∂ξ x(ξ, t), we introduce [30]

ψ = ψ(ξ, t) def
= ρ0

∂x
∂ξ
− 1 (24)
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so that 1/ρ = `0(1 + ψ). The fluctuating field ψ can be interpreted as a continuum representation
of migrating vacancies [16] or elongation of a chain [45]. As is illustrated schematically in Figure 3a,
migration of a vacancy can give rise to correlated motion of particles.

Once the dynamics of ψ are known from Equations (12), the remaining task for the calculation of〈
RiRj

〉
is only a problem of kinematics—given the field ψ, how can we find the displacement? This is

readily solved in a Fourier representation,

ψ(ξ, t) = ∑
k

ψ̌(k, t)e−ikξ , ψ̌(k, t) =
∫

eikξ ψ(ξ, t)
dξ

N

(
with

k
2π/N

∈ Z
)

, (25)

allowing us to express x = x(ξ, t) as an antiderivative of ψ:

x = x(ξ, t) = `0ξ + `0 ∑
k

e−ikξ ψ̌(k, t)
−ik

+ XG(t), (26)

where XG(t) corresponds to the center-of-mass motion which should be negligible in the limit of
N → +∞ [10]. The positions of the i-th or j-th particle are then obtained by substituting Ξi or Ξj into ξ

in Equation (26), which readily yields

Ri = x(Ξi, t)− x(Ξi, 0) = `0 ∑
k

e−ikΞi
ψ̌(k, t)− ψ̌(k, 0)

−ik
(27)

in the absence of overtaking (i.e., dΞi/dt = 0). To calculate
〈

RiRj
〉
, we multiply Equation (27) by

its duplicate with (i, k) replaced by (j,−k). Subsequently, taking it into account that
〈
ψ̌(k, t)ψ̌(k′, t′)

〉
generally vanishes unless k + k′ = 0 (due to the space-translation symmetry of the system), we find

〈
RiRj

〉
= `2

0 ∑
k

e−ik(Ξj−Ξi)
〈[

ψ̌(k, t)− ψ̌(k, 0)
][

ψ̌(−k, t)− ψ̌(−k, 0)
]〉

k2

→
`2

0
π

∫ ∞

−∞
e−ik∆ Cψ(k, 0)− Cψ(k, t)

k2 dk (N → ∞), (28)

where we have defined
Cψ(k, t) def

= N
〈
ψ̌(k, t)ψ̌(−k, 0)

〉
(29)

and used Ξj − Ξi = j− i = ∆. We refer to Equation (28) as the Alexander–Pincus formula [10,12],
which relates the displacement correlation to Cψ. Since Cψ is a two-body correlation, it is much more
tractable than the four-body correlation in Equation (16).

To allow concrete calculation of Cψ, Equations (12b) and (12c) are rewritten as an equation for
ψ̌(k, t) in the following form:

∂tψ̌(k, t) = −Dc
∗k

2ψ̌(k, t) + ∑
p+q+k=0

V pq
k ψ̌(−p, t)ψ̌(−q, t) + O(ψ̌3) + ρ0 f̌L(k, t). (30)

The statistics of the random force term are specified as

ρ2
0

〈
f̌L(k, t) f̌L(−k′, t′)

〉
=

2D∗
N

k2δkk′δ(t− t′), (31)

where D∗ = D/`2
0. The coefficient of the linear term is

Dc
∗ =

Dc

`2
0
= D∗

(
1 +

2 sin ρ0σk
k

)
, (32)
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which also gives S = D/Dc = D∗/Dc
∗, and the coefficients V pq

k in the nonlinear term are found
in Refs. [4,30].

Within the linear approximation to Equation (30), Cψ is readily calculated as

Cψ(k, t) = Se−Dc
∗k2t. (33)

Although a nonlinear theory producing a correction term to be added to Equation (33) is also
possible [4], here we ignore this correction, giving priority to the simpler expression in Equation (33).

The displacement correlation is obtained by substituting Equation (33) into the Alexander–Pincus
Formula (28) and evaluating the integral. As the contribution from the longwave modes is dominant,
S = S(k) and Dc

∗ = D∗/S(k) can be replaced by their limiting values for k → +0. Thus,
〈

RiRj
〉

is
obtained explicitly as a function of ∆ and t, expressible in terms of a similarity variable

θ
def
=

`0∆
λ(t)

=
∆

2
√

Dc
∗t

, λ(t) = 2
√

Dct , (34)

as [4,10,19] 〈
RiRj

〉
2S`2

0

√
(Dc
∗/π)t

= e−θ2 −
√

π |θ| erfc |θ| def
= ϕ(θ), (35)

so that
〈

RiRj
〉
= K
√

t ϕ(θ) where K = 2S`2
0
√

Dc
∗/π. The dynamical correlation length λ(t) grows

diffusively, which seems to be consistent with the observation of growing clusters in Figure 2.
Note that infrared and ultraviolet cutoffs are not necessary in Equation (28), as the integrand is

regular around k = 0 and decays for k → ±∞ (algebraically, but fast enough). This should not be
confused with the infrared divergence of x(ξ, t) in Equation (26) in the limit of L→ ∞.

3.2. Particle Simulation in the Absence of Overtaking

The theoretical prediction in Equation (35) is tested in Figure 4a, by plotting the values of the
displacement correlation,

〈
RiRj

〉
, obtained from numerical simulation of the ideal SFD. The computed

values are plotted in terms of rescaled variables; according to Equation (35), a plot of
〈

RiRj
〉
/(K
√

t)
against the similarity variable θ should give a single master curve for all values of the time interval t.
The ideal SFD was simulated by solving Equation (2) numerically with a very high barrier (we chose
Vmax = 50kBT). The system size and the density were specified as N = 104 and ρ0 = N/L = 0.2 σ−1

so that L = 5Nσ.
The three kinds of symbols in Figure 4a correspond to three different values of t. The plots for

all these values of t are seen to be reducible to a single master curve given by ϕ( · ) in Equation (35),
supporting the prediction of the analytical calculation.

To be precise, a small but finite discrepancy is found at θ = 0 for t = 10 σ2/D. One may be
tempted to explain this short-time discrepancy simply as indicating a lack of time to establish correlated
motion, because a particle, on average, takes time on the order of 1/Dc

∗ to encounter its neighbors.
Unfortunately, this argument appears too simple to explain the numerical result in Figure 4a in which
a positive correlation for θ 6= 0 (i.e., |∆| ≥ 1) has already been established at t = 10 σ2/D. We note,
on the other hand, that the discrepancy can be ascribed to the nonlinear term in Equation (30) which
was ignored in the previous subsection. It is shown that inclusion of the nonlinear term gives a
correction to Equation (35), which is significant only for |θ| � 1 and Dc

∗t < 1 [4], and the sign of the
correction for the MSD is negative [4,10]. Thus, the short-distance correlations are affected by nonlinear
coupling of ψ̌, while correlations over a long distance seem to be tractable with a linear theory.

It should be also noted that the theoretical predictions discussed here are based on
the Dean–Kawasaki equation in which inertia is completely ignored, while the particle-based
simulation is performed with finite m/µ. To check for consistency between the numerical simulation
and the theoretical predictions, three cases with different values of m/µ are compared in Figure 4b. It is
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seen that the change in m/µ does not make any remarkable difference. This is in agreement with the
general expectation that the Langevin dynamics on time scales longer than m/µ are basically independent
of the inertia, because the momentum can be eliminated by temporal coarse-graining [46–48].

In regard to correlations over long distances, one might be tempted to suppose that the static
structure factor, S(k) in Equation (13), could be helpful in the detection of such long-ranged correlations.
This point was discussed in Ref. [19], leading to the conclusion that the structure of the collective
motion is not properly captured by the static structure factor. It is for this reason that we focused on〈

RiRj
〉

rather than S(k).

(a)
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Figure 4. Comparison of the theoretical prediction (35) for the ideal single-file diffusion (SFD) with
a particle-based simulation. (a) Displacement correlation for different values of the time interval t.
The red squares (�), the blue circles (•) and the black triangles (N) represent the numerical values of
〈RiRj〉 /(K

√
t ) at the time intervals t/(σ2/D) = 10, 70 and 200, respectively. The ratio m/µ:σ2/D was

chosen to be 1:1. The values are plotted against θ = `0∆/λ(t), i.e., the distance rescaled with λ(t).
The thin, solid line shows the theoretical master curve given by ϕ( · ) in Equation (35). (b) Displacement
correlation for different values of m/µ. The open squares (�) represent the numerical result for
m/µ:σ2/D = 1:1, the open circles (◦) for 1:2, and the open triangles (4) for 1:5. The time interval was
chosen to be t = 200 σ2/D.

4. Effects of Overtaking on Displacement Correlation

Having reviewed the analytical calculation of the displacement correlation
〈

RiRj
〉
, which leads

to Equation (35) for the ideal SFD, let us now consider effects of overtaking that were ignored in the
previous section. We start with numerical observation, noticing how the behavior of

〈
RiRj

〉
deviates

from Equation (35) due to overtaking. This deviation is then compared with a modified theory in
which overtaking is allowed for.

4.1. Particle Simulation of SFD with Overtaking

The governing equations of the system, namely Equations (2), (3) and (5), contain a parameter
Vmax representing the barrier height. This parameter, Vmax, regulates the frequency of overtaking,
if the other parameters are kept unchanged.

Two extreme cases are already known theoretically: the case of Vmax → ∞ implying the ideal SFD
in which overtaking is completely forbidden, and Vmax = 0 corresponding to free diffusion in which
overtaking is always allowed. In the ideal SFD, there is a positive correlation between displacements
of two particles, as is shown in Equation (35), while in free diffusion, displacements of two particles
are totally uncorrelated, as is easily seen by proving
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〈
RiRj

〉
=

{
2Dt + O(Dm/µ) (i = j)

0 (i 6= j)
(36)

for Vmax = 0.
Between these two extreme cases, there are cases of finite values of Vmax, allowing overtaking

with some probability. Three such cases are shown in Figure 5, where the computed values of
〈

RiRj
〉

at t = 200σ2/D are plotted against ∆ = j− i. In the case of the lowest barrier, Vmax = kBT, the plot
is similar to Equation (36) in that

〈
RiRj

〉
almost vanishes for i 6=j; instead, the MSD (i = j) is greater

than in the other two cases, indicating that the particles are diffusing almost freely. The case of the
highest barrier with Vmax = 5kBT resembles the ideal SFD, although a close inspection reveals a slight
deviation from Equation (35) as a result of overtaking that occurs at a very small rate.

The intermediate case with Vmax = 3kBT is interesting. At large distances, the same correlation is
observed in the case of Vmax = 3kBT as in the case of Vmax = 5kBT (and as in the ideal SFD). In contrast,
at ∆ = ±1 and ±2, the correlation in the case of Vmax = 3kBT is remarkably smaller than that for
Vmax = 5kBT. The decrease in the displacement correlation and the increase in MSD must be attributed
to overtaking.

The numerical observation on the effects of a finite Vmax may be understood intuitively, if
〈

RiRj
〉

is regarded as representing a nested structure of cages with different radii. From this point of view,
the plot for Vmax = 3kBT in Figure 5 can be interpreted as describing the breakdown of inner cages,
while the outer ones persist (at least until t = 200σ2/D). To elevate this pictorial idea to a quantitative
theory on collective motion in SFD with overtaking, we raise the question: How can we modify
Equation (35) allowing for overtaking?

✵

✺✵

✶✵✵

✶✺✵

✷✵✵

✷✺✵

✸✵✵

✸✺✵

�✶✵ ✵ ✶✵

❤
❘
✐❘
❥
✁
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Figure 5. Two-particle displacement correlation, 〈RiRj〉 (nondimensionalized with σ2), numerically
obtained for three different values of Vmax. The red triangles (N), the blue circles (•) and the black
squares (�) represent the data for Vmax = kBT, 3kBT and 5kBT, respectively. The time interval is fixed
at t = 200σ2/D. The density and the system size are the same as in Figure 4.

4.2. Theory of Displacement Correlation in SFD with Overtaking

To find out how Equation (35) should be modified by overtaking, let us re-examine its derivation
process. A crucial step is found in Equation (27) where Ri is obtained on the assumption that Ξi is
independent of t. This is the point at which the “no overtaking” rule was enforced [30,44].
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Overtaking is incorporated into the theory though temporal changes of Ξi(t) [44]. The kinematics
of overtaking were discussed in Subsection 2.5: as is illustrated in Figure 3, two particles exchange
their labels according to Equation (21).

In order to recalculate the displacement correlation, now we need to consider the dynamics of
overtaking. In principle, the stochastic dynamics of Ξi(t) should be determined from “first principles”
through Equation (22). As a crude approximation, however, here we adopt a phenomenological
description characterized by the parameter να, referred to as the overtaking frequency or the hopping rate.

The dynamics of Ξi(t) is modeled as a simple Markovian process in which the labels of
neighboring particles are exchanged at a rate of να. More precisely speaking, for every pair (i, j)
such that Ξj(t1) = Ξi(t1)± 1, their labels are exchanged according to Equation (21) with a probability
of 1− να∆t in every short time interval, ∆t = t2 − t1. This process is essentially equivalent to what is
known as “Amida-kuji” (Amitabha’s lottery) or the “ladder lottery” [49,50]. In regard to the dynamics
of a single tagged particle, the Amida-kuji process is merely a diffusion on a 1D lattice [49,51] such that

[Ξi(t)− Ξi(0)]
2 = 2ναt. (37)

This is readily shown by solving the master equation for the one-tag diffusion propagator [51],

∂tP(a, t) = να [P(a + 1, t) + P(a− 1, t)− 2P(a, t)] , (38)

where P(a, t) = P(0, 0; a, t) denotes the probability that the tagged particle, the 0-th one such that
Ξ0(0) = 0, carries the label Ξ0(t) = a at the time t.

In order to calculate the contribution of overtaking to the displacement correlation
〈

RiRj
〉
, we need

to know the two-body diffusion propagator, P(i, j, 0; a, b, t), which represents the probability that the
tagged particles, initially labelled with Ξi(0) = i and Ξj(0) = j, are found to carry Ξi(t) = a and
Ξj(t) = b at the time t. Assuming j − i = ∆ > 0 without loss of generality, we write the master
equation for Pa,b = P(i, i + ∆, 0; a, b, t) with a 6= b as

∂tPa,b = να (Pa+1,b + Pa−1,b + Pa,b+1 + Pa,b−1 − 4Pa,b) + (δa+1,b + δa,b+1)να (Pb,a + Pa,b) (39)

and Pa,a = 0. This is more complicated than Equation (38) but still solvable in a Fourier representation
(as is shown in Appendix A), so that two-body correlations of Ξi(t) are given in terms of the modified
Bessel function in the limit of N → ∞.

Now, we are prepared for calculation of
〈

RiRj
〉
. From Equation (26) and Ri = x(Ξi, t)− x(Ξi, 0),

we find

Ri = `0 ∑
k 6=0

e−ikΞj(t)ψ̌(k, t)− e−ikΞj(0)ψ̌(k, 0)
−ik

+ `0 [Ξi(t)− Ξi(0)]

= `0 ∑
k 6=0

e−ikΞ0
i

−ik

[
e−ikδΞi ψ̌(k, t)− ψ̌(k, 0)

]
+ `0δΞi, (40)

where we have defined
Ξ0

i
def
= Ξi(0), δΞi = δΞi(t)

def
= Ξi(t)− Ξ0

i

for the sake of brevity. Following the same line of argument as in the derivation of Equation (28),
on the assumption that ψ̌ and Ξi are uncorrelated, we have

〈
RiRj

〉
= `2

0 ∑
k 6=0

eik(Ξ0
j−Ξ0

i )

k2

〈[
e−ikδΞi(t)ψ̌(k, t)− ψ̌(k, 0)

] [
eikδΞj(t)ψ̌(−k, t)− ψ̌(−k, 0)

]〉
+ `2

0
〈
δΞiδΞj

〉
. (41)



Entropy 2018, 20, 565 15 of 23

The summand can be expanded as〈[
e−ikδΞi ψ̌(k, t)− ψ̌(k, 0)

] [
eikδΞj ψ̌(−k, t)− ψ̌(−k, 0)

]〉
=
〈

eik(δΞj−δΞi)ψ̌(k, t)ψ̌(−k, t)
〉
−
〈

e−ikδΞi ψ̌(k, t)ψ̌(−k, 0)
〉
−
〈

eikδΞj ψ̌(−k, t)ψ̌(k, 0)
〉

+
〈
ψ̌(k, 0)ψ̌(−k, 0)

〉
'
(

1 +
〈

eik(δΞj−δΞi)
〉) 〈

ψ̌(k, t)ψ̌(−k, t)
〉
− 2Re

〈
e−ikδΞi

〉 〈
ψ̌(k, t)ψ̌(−k, 0)

〉
, (42)

again, with the assumption that ψ̌ and Ξi are uncorrelated. The terms including the exponentials of
δΞi can be evaluated analytically on the basis of solutions to the master equations (38) and (39).

In this way, after some calculation, we obtain the displacement correlation. For i = j, we have〈
Ri

2
〉

`2
0

= 2S

√
D′∗t
π

+ 2ναt, (43)

where D′∗ = Dc
∗ + να. Note that the last term, 2ναt, originates from Equation (37). In the case of i 6= j,

using ϕ( · ) defined in Equation (35), we obtain〈
RiRj

〉
`2

0
= S

[
2

√
D′∗t
π

ϕ

(
|j− i|√

4D′∗t

)
−
√

2ναt
π

ϕ

(
|j− i|√

8ναt

)]
+ 〈δΞiδΞj〉 . (44)

The last term (∆ = j− i ≥ 1 without loss of generality) needs to be evaluated with the two-body
diffusion propagator in the form of Equation (A13) in Appendix A, which yields

〈δΞiδΞi+∆〉 = −2ναt e−4ναt [I∆−1(4ναt) + I∆(4ναt)] +
(

∆− 1
2

)
e−4ναt

∞

∑
n=∆

In(4ναt), (45)

with In( · ) denoting the n-th modified Bessel function. It is easy to verify that, in the limit of να → 0,
Equations (43) and (44) are reduced to the ideal case in Equation (35).

The theoretical prediction in Equations (43)–(45) is compared with a result of our particle
simulation in Figure 6. With the barrier height and the density chosen as Vmax = 3kBT and
ρ0 = N/L = 0.2 σ−1 (N = 104 and L = 5Nσ), we calculated

〈
RiRj

〉
and delineated it for three different

values of t. The same rescaled variables were used as in Figure 4a: namely,
〈

RiRj
〉
/(K
√

t) is plotted
against θ, with K given immediately below Equation (35). The hopping rate was evaluated numerically
and estimated to be να = 0.0057 D/σ2 (see Appendix B), which was used to plot Equations (43)–(45)
as theoretical curves in Figure 6. The prediction for the ideal SFD (να = 0) in Equation (35) is also
included with a broken line.

In regard to the difference between the particle simulation and theory for the ideal SFD, Figure 6
exhibits qualitatively the same behavior as was observed in Figure 5—the difference due to overtaking
is remarkable only for small θ and occurs in such a way that, except for the self part (i = j, i.e., the MSD),
the numerical values of the displacement correlation are smaller than the prediction for the ideal SFD
in Equation (35). This means that the effect of overtaking should manifest itself as a negative correction
to
〈

RiRj
〉

for i 6= j. In this sense, the present theory modifies Equation (35) in the right direction, as the
theoretical curve in Figure 6 predicts smaller values of

〈
RiRj

〉
for i 6= j in comparison to Equation (35).
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Figure 6. Comparison of the theoretical predictions of 〈RiRj〉with particle-based numerical calculations
of SFD with overtaking (Vmax = 3kBT). The three symbols have the same meaning as in Figure 4
with the axes rescaled also in the same way: 〈RiRj〉 /(K

√
t ) is plotted against θ. The thinnest red

line, the thin blue line, and the solid black line represent Equation (44) that allows for overtaking
(να = 0.0057 D/σ2), evaluated at the values of t corresponding to the three kinds of symbols, namely,
at t/(σ2/D) = 10, 70, and 200, respectively. The theory without overtaking [να = 0, i.e., Equation (35)]
is shown by a broken line.

5. Discussion and Concluding Remarks

We have presented calculations of two-particle displacement correlation,
〈

RiRj
〉
, in a 1D or

quasi-1D system of Brownian particles with repulsive interaction, i.e., in SFD with or without
overtaking, as an illustrative model of collective dynamics associated with the cage effect. In the ideal
SFD (without overtaking), correlated motion with a diffusively growing length scale, λ = 2

√
Dct,

was observed. Subsequently, we studied how this result is modified by overtaking; it was shown
both numerically and analytically that the overtaking processes destroy short-range correlations alone,
leaving long-range correlations nearly intact. This behavior of

〈
RiRj

〉
, evidenced in Figures 5 and 6,

suggests a spatiotemporally nested structure of cages, such that smaller cages are enclosed in larger
cages with longer lifetimes.

The main objective of the present work was to shed theoretical light on overtaking in SFD,
by extending an analytical theory of SFD to the case of non-ideal SFD in which overtaking is allowed.
The analytical theory is based on the method of the label variable ξ. The Lagrangian correlation of the
field ψ links

〈
RiRj

〉
to the Dean–Kawasaki equation (12) that describes the fluctuating density field,

while overtaking is taken into account through δΞi(t). The main analytical result is represented by
Equations (43) and (44). This result is reasonably consistent with the numerical behavior of

〈
RiRj

〉
in Figure 6. A linear solution to the transformed Dean–Kawasaki equation (30) seems to suffice for
the description of the outer cages (long scales). Contrastively, the inner cages are not only affected by
overtaking via δΞi(t) but also subject to nonlinear coupling of ψ̌, as is suggested by the deviation from
the linear theory in Figure 4a.

In spite of the reasonable agreement between the analytical and numerical results, however,
there are at least two issues that need to be discussed and probably improved in the future.
Firstly, the hopping rate (να) could be obtained from βVmax and other parameters in a more
first-principle-oriented manner, as opposed to the numerical fitting adopted here. Secondly, the validity
of the decoupling approximation in Equation (42) is questionable.
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In regard to the first issue, we note that the numerical fit for να in Equation (A14) in Appendix B
is not simply given by an Arrhenius-like expression, e−βVmax [46], but includes a prefactor that
depends on ρ0 in a nontrivial way. Although accurate computation of overtaking is difficult and
may require improvement in the numerical scheme, which is outside the scope of the present work,
the numerical prefactor is interesting enough to motivate theoretical attempts to explain it. While Vmax

in Equation (2) corresponds to the Helmholtz free energy barrier in quasi-1D systems governed by
Equations (1a) and (6) [10,27], the hopping rate is rather related to a barrier in the Gibbs free energy [52].
The ρ0-dependent prefactor is also reminiscent of the escape probability in predator–prey problems on
a 2D lattice [53]. Theoretical evaluation of the hopping rate (να) in the present system will be quite
suggestive in a wider context, such as that of 2D colloidal liquids.

In fact, correspondence between the 2D dynamics of colloids and the non-ideal SFD may
deserve serious consideration. Displacement correlations in 2D colloidal liquids [54] were recently
calculated analytically with the method of the label variable [21]. A linear analysis of the transformed
Dean–Kawasaki equation was found to suffice to explain displacement correlations at larger scales,
while a phenomenological correction was needed for behavior at smaller scales. The 2D dynamics
involve dilatational and rotational modes; the former modes change the local density and correspond
to ψ(ξ, t) in SFD, while the latter (or, to be precise, their short-wave components) allow the particles to
escape from the cage and correspond to δΞi(t) in this sense. More intuitively speaking, the overtaking
event in Figure 3b can be understood as a small vortex involving two particles, namely 4 and 5.

The second issue concerns the approximation of treating ψ̌ and δΞi in Equation (42) as
uncorrelated, which seems to have made the behavior of Equations (43) and (44) quantitatively
incorrect for shorter distances. While a quantitative test of Equation (44) is already given in Figure 6,
the MSD in Equation (43) requires more discussion. The validity of Equation (43) could be checked by
way of

Dα
def
= lim

t→∞

〈
R2〉
2t

, (46)

which can be computed numerically and compared with analytical predictions. It seems, however,
that the να-dependence of Dα is in dispute. Hahn and Kärger [23] asserted Dα ∝ να, while Mon and
Percus [24] claimed Dα ∝ ν1/2

α . If Equation (43) is taken literally, it predicts that the longtime behavior
of MSD is dominated by the second term on the right side and makes essentially the same prediction
as Hahn and Kärger [23]; unfortunately, it contradicts the numerical results of Mon and Percus [24],
at least for a certain range of να. On the other hand, the reasoning about the origin of Dα ∝ ν1/2

α by
Mon and Percus [24] is unsatisfactory, as it seems to lack connection with the collective motion.

As a possible scenario for reconciliation, we may conjecture that the correlation between ψ̌ and
δΞi, ignored in the present theory, makes a difference to the short-range behavior of

〈
RiRj

〉
and in

the MSD as its limiting case. It seems physically plausible that the collapse of smaller cages may be
influenced by density fluctuations with long wavelengths which correlate ψ̌ and δΞi. If this correlation
modifies the term containing S in Equation (43) so as to give〈

R2〉
`2

0
'
(

2√
π

S + c
√

ναt
)√

D′∗t + 2ναt (47)

with some constant c, then it predicts Dα to be a sum of terms proportional to
√

να and να. This form
might be consistent at once with Hahn and Kärger [23] and with Mon and Percus [24], depending on
the values of parameters.

All these issues originate from the phenomenological treatment of overtaking. Improvement upon
the present analysis, going beyond the “Amida-kuji” or random exchange approximation, will need to
be grounded on the integral in Equation (22) that gives dΞi/dt. Its systematic treatment will allow
calculation of να, and it will also make it possible to take the correlation between ψ̌ and Ξi into account.
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The integrand in Equation (22) is given, in principle, by a solution of the Dean equation [32] for
the single particle density, ρi = ρi(x, t), and its flux, Qi:

∂tρi(x, t) + ∂xQi = 0 (48a)

Qi = −D

[
∂xρi +

ρi
kBT

∂x ∑
j

V(x− Xj(t))

]
+ ρi fi. (48b)

Technically difficult though it might be, this strategy seems quite natural, as it is consistent with the
treatment of ψ based on the Dean–Kawasaki equation (12). Development of this strategy for systematic
treatment of overtaking effects on SFD will provide useful insights into cage-breaking events in 2D
and 3D colloidal glasses.
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Appendix A. Two-Body Propagator in the Amida-Kuji Process

Here we outline solution of the master equation (39) for the two-body diffusion propagator in
the Amida-kuji process. Note that most of the symbols in this Appendix (such as λ, µ and σ) are
unrelated to the homonymous ones used in the main text.

To introduce some notation, we begin with a simpler problem of the one-body diffusion
propagator governed by Equation (38). Its solution is found to be expressible in terms of

Φn(s)
def
=
∫ π

−π
exp [inλ + s(cos λ− 1)]

dλ

2π
= e−s In(s) (n ∈ Z, s ∈ R), (A1)

where In denotes the n-th modified Bessel function. This is obtained by looking for a solution in
Fourier representation,

P(a, t) = ∑
l

P̂l(t)e
iaλ, P̂l(t) ∝ e−σt, λ =

2πl
N

,

which is found to satisfy Equation (38) if σ = 2να(1− cos λ). The amplitude of P̂l is determined by
the Fourier representation of the initial condition,

P(a, 0) = δa,0 =
1
N ∑

l
eiaλ,
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so that the solution is
P(a, t) =

1
N ∑

l
eiaλ−σt → Φa(2ναt) (A2)

in the limit of N → ∞. This solution allows calculating

〈
[δΞi(t)]

p〉 = +∞

∑
a=−∞

apP(a, t);

in particular, for p = 2 we obtain Equation (37).
The two-body problem in Equation (39) is more complicated. As a counterpart of ∆ = j − i,

we introduce d = b− a. Although a general solution could be sought in Fourier representation as
Pa,b = ∑l P̃l,d(t)eiaλ, here we concentrate on the mode with l = 0, introducing

Qd = Q(∆, d, t) def
= ∑

a
P(i, i + ∆, 0; a, a + d, t); (A3)

this is sufficient for the present purpose, as the knowledge of Qd will allow us to calculate〈[
δΞj(t)− δΞi(t)

]p
〉
= ∑

d
(d− ∆)pQ(∆, d, t). (A4)

In terms of Qd, the master equation (39) is rewritten as

∂tQd = 2να (Qd+1 + Qd−1 − 2Qd) + (δd,1 + δd,−1)να (Q1 + Q−1) (d 6= 0), (A5)

while Q0 vanishes identically. The initial condition can be expressed as

Qd|t=0 = Q(∆, d, 0) = δ∆,d =
1
N ∑

m
ei(d−∆)µ (A6)

where µ = 2πm/N, the summation ranges from −N/2 to N/2 (with the endpoints included by half),
and ∆ is taken to be positive without loss of generality.

To solve Equation (A5), we assume

Qd =


1
N ∑m Ameidµe−σmt (d > 0)

0 (d = 0)
1
N ∑m Bmeidµe−σmt (d < 0)

(A7)

with A−m = A∗m and B−m = B∗m. By considering the cases of |d| ≥ 2 in Equation (A5), we find

σm = σ−m = 2να (2− ε− ε∗) (A8)

with ε
def
= eiµ. Subsequently, evaluation of Equation (A5) for d = ±1 gives

(2− ε)Am + (2− ε∗)A−m = ε∗Bm + εB−m (A9a)

(2− ε∗)Bm + (2− ε)B−m = εAm + ε∗A−m, (A9b)

which also implies Am + A−m = Bm + B−m.
Although the initial condition (A6) seems to suggest Am = Bm = ε−∆, this naive choice does not

satisfy Equations (A9). Instead, we assume

Am = ε−∆ + C, Bm = ε−∆ + C∗, (A10)
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where C = C(ε) is a polynomial of ε (consisting of terms with non-negative powers only) so that

∑
m

C(ε)εd = 0

for d > 0. Substituting Equation (A10) into Equations (A9) yields

2(1− ε)C + 2(1− ε∗)C∗ = (−2 + ε + ε∗)
(

ε∆ + ε−∆
)

, (A11)

which is satisfied if we choose
C =

1
2

(
ε−1 − 1

)
ε∆. (A12)

Note that this is indeed a polynomial, since ∆ ≥ 1. Thus Qd is obtained in the form of Equation (A7),
with Am and Bm given by Equations (A10) and (A12), where ε = eiµ = e2πim/N .

In the limit of N → ∞, the summations in Equation (A7) are evaluated as integrals, expressible in
terms of Φn(s) in Equation (A1). The result reads

Qd =


Φd−∆(4ναt)− 1

2 Φd+∆(4ναt) + 1
2 Φd+∆−1(4ναt) (d > 0)

0 (d = 0)
1
2 Φd−∆(4ναt) + 1

2 Φd−∆+1(4ναt) (d < 0).

(A13)

This result allows us to calculate the moments of δΞj − δΞi in Equation (A4). In particular, using the
second moment, we can also calculate

〈
δΞiδΞj

〉
as

〈
δΞiδΞj

〉
=

1
2

[〈
δΞ2

i

〉
+
〈

δΞ2
j

〉
−
〈
(δΞj − δΞi)

2
〉]

,

where 〈δΞ2
i 〉 = 〈δΞ2

j 〉 = 2ναt according to Equation (37). After some rearrangement with the recurrence
formula for the modified Bessel function, we arrive at Equation (45).

Appendix B. Numerical Evaluation of the Hopping Rate

Within the approximation of the present work, the hopping rate να is regarded as a constant
whose value depends on the control parameters of the system. The problem of how to specify να

might be trivial if the lattice dynamics were adopted instead of the present system with the continuous
space, because the probability of overtaking, i.e., the ratio of να to the collision frequency, would be
given as a part of dynamical rules governing the lattice system. More consideration is required in the
present case, because overtaking is not given as an elementary process but determined as a result of
the Langevin dynamics regulated by the interaction potential V(r) with r ∈ R.

For the present, we have determined the function να = να(ρ0, Vmax) by solving Equation (2)
numerically, with V(r) given in Equation (5); for numerical ease, the mass is chosen to be finite so
that m/µ : σ2/D = 1 : 1. For each run with some specific values of (ρ0, Vmax), we counted overtaking
events that had occurred since the time 0, and plotted the cumulative number of overtaking, divided by
N, against t. Thus we obtain a plot analogous to Figure 4(a) in Ref. [25] that can be fitted with a straight
line, whose slope gives να. The values of να, collected in this way as a function of (ρ0, Vmax), are fitted
with an Arrhenius-like expression, with a prefactor that depends both on Vmax and ρ0 [44]:

να = D
(

a0
ρ0

σ
+ a1ρ2

0 βVmax

)
e−βVmax , β =

1
kBT

, (A14)

where a0 ≈ 1/2 and a1 ≈ 1/6.
The numerical values of να reported here, however, should not be regarded as decisive. We must

be cautious about difficulty in precise numerical calculation of rare events such as overtaking.
In comparison to other quantities, computation of να may be sensitive to the choice of the numerical
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scheme, and in the present calculation, based on a Verlet-like scheme, the computed values of να seem
to depend on the ratio m/µ:σ2/D. A systematic study of this issue will be expected in the future.
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