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Abstract

Background: Following injury, microglia become activated with subsets expressing nestin as well as other neural markers.
Moreover, cerebral microglia can give rise to neurons in vitro. In a previous study, we analysed the proliferation potential
and nestin re-expression of retinal macroglial cells such as astrocytes and Müller cells after optic nerve (ON) lesion. However,
we were unable to identify the majority of proliferative nestin+ cells. Thus, the present study evaluates expression of nestin
and other neural markers in quiescent and proliferating microglia in naı̈ve retina and following ON transection in adult rats
in vivo.

Methodology/Principal Findings: For analysis of cell proliferation and cells fates, rats received BrdU injections. Microglia in
retinal sections or isolated cells were characterized using immunofluorescence labeling with markers for microglia (e.g.,
Iba1, CD11b), cell proliferation, and neural cells (e.g., nestin, vimentin, NG2, GFAP, Doublecortin etc.). Cellular analyses were
performed using confocal laser scanning microscopy. In the naı̈ve adult rat retina, about 60% of resting ramified microglia
expressed nestin. After ON transection, numbers of nestin+ microglia peaked to a maximum at 7 days, primarily due to in
situ cell proliferation of exclusively nestin+ microglia. After 8 weeks, microglia numbers re-attained control levels, but 20%
were still BrdU+ and nestin+, although no further local cell proliferation occurred. In addition, nestin+ microglia co-expressed
vimentin and NG2, but not GFAP or neuronal markers. Fourteen days after injury and following retrograde labeling of retinal
ganglion cells (RGCs) with Fluorogold (FG), nestin+NG2+ microglia were positive for the dye indicating an active involvement
of a proliferating cell population in phagocytosing apoptotic retinal neurons.

Conclusions/Significance: The current study provides evidence that in adult rat retina, a specific resident population of
microglia expresses proteins of immature neural cells that are involved in injury-induced cell proliferation and phagocytosis
while transdifferentiation was not observed.
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Introduction

Microglia constitute immune competent cells of the central

nervous system (CNS) including the neural retina [1,2]. In naı̈ve

tissue, the cells continuously survey their microenvironment via

extremely motile processes [3]. Microglia are involved in the

inflammatory response after injury as well as in major neurode-

generative diseases of the CNS. Injury-induced neuronal cell death

in the brain and retina leads to activation of microglial cells [4,5].

Depending on the lesion type, they change their morphology from

ramified into ameboid, proliferate, secrete cytokines to induce cell

proliferation, e.g. of macroglia, secrete chemokines to attract other

immune cells, and accumulate at the lesion site [5,6]. In particular,

transection of the ON, and, therefore, of projecting axons from

(RGCs), leads to delayed apoptotic cell death within 4–5 days after

injury with a peak at day 7 [7,8,9]. Within this time, resident retinal

microglia proliferate in situ [10] and phagocytose debris from dying

RGCs [11,12]. The blood-retinal barrier (BRB) is not affected

following an ON lesion, and there is no increased cell infiltration of

hematogenously-derived inflammatory cells [13,14,15]. Thus, an

ON lesion is an appropriate model for analyzing intrinsic

immunological and cellular response mechanisms.

After injury in the brain or spinal cord of adult rats, subsets of

activated microglia have been reported to transiently express

markers of immature neural cells including nestin [16,17] and the

chondroitin sulfate proteoglycan NG2 [18,19,20,21], which was

primarily described for oligodendrocyte precursor cells [22,23].

Moreover, in vitro studies suggest that nestin and NG2 expression

in cerebral microglia is an indication of a rather immature

phenotype with high plasticity similar to that found in the neonate

brain [21,24].

In a previous study, we evaluated cell proliferative responses

and nestin re-expression from cells with known neurogenic

potential in the retina, i.e. Müller cells and astrocytes following

an ON lesion [25]. Both cell populations expressed nestin, albeit at

a low proliferation rate. Moreover, the majority of dividing cells in
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the injured retina were identified as resident microglia. Interest-

ingly, the transient increase in microglial cell number was due to

local cell division [10]. Nestin expression was not restricted to

activated macroglial and blood vessel cells, i.e. endothelial cells

and pericytes, as already described [26,27,28], but this interme-

diate filament was also present in another cell type identified

herein as resident parenchymal retinal microglia.

Recently, nestin+ microglia were also observed in the naı̈ve

brain. Their numbers were dependent on the cerebral region

analysed [29]. Nestin is thought to be responsible for changes in

the cytoskeleton and, consequently, the cell shape [29]. In

addition, nestin expression is associated with migration and

proliferation of immature cells [30,31], particularly the neural

progenitor cells (NPCs) [32,33], as well as non-neural cell types

[30,31]. To our knowledge, there are no reports in the literature

regarding expression of nestin on adult retinal microglial cells.

Furthermore, the role of this ‘‘ectopic’’ nestin expression only in

subpopulations of microglia in the adult central nervous system

(CNS), especially after injury, has not been completely clarified.

The purpose of the present study was to evaluate the expression

of nestin and other ‘‘ectopic’’ neural proteins, including markers of

immature and mature glial and neuronal cells, in resting resident

and activated retinal microglia after a distal ON injury. We further

addressed the question of whether nestin expression by microglial

cells is associated with cell division and phagocytosis as well as

possible transdifferentiation processes.

Materials and Methods

Animals
Adult female Sprague Dawley rats (230–280 g) obtained from

Charles River Laboratories, Sulzfeld, Germany were maintained

in standard cages under a 12 h light/12 h dark cycle with free

access to food and drinking water. Rats were kept in accordance

with the European Convention for Animal Care and Use of

Laboratory Animals. All experiments were approved by the local

Animal Care Committee (Thueringer Landesamt, Weimar,

Germany, permit number 02-11/04).

ON transection
Surgery on the animals was performed as described in detail

elsewhere [34]. Briefly, following anaesthesia by means of an i.p.

injection of chloral hydrate (7% in PBS, 420 mg/kg Sigma-Aldrich,

Taufkirchen, Germany), skin and connective tissue were incised,

and the optic nerve was exposed and transected intradurally

approximately 2 mm distal to the eye bulb (Fig. 1A). For retrograde

RGC labeling, a small piece of gel foam soaked in a 5% aqueous

solution of the fluorescent dye Fluorogold (FG; Fluorochrome Inc.,

Denver, CO, USA) was placed on the ON stump immediately after

axotomy (axo) [34]. Since apoptotic RGCs are phagocytosed by

microglia, the cells are also selectively labeled with the dye [35,36].

Unoperated animals were used as controls.

Bromodeoxyuridine (BrdU) administration
Both lesion and control rats were anesthetized by being subjected

to inhaling 2.0% isoflurane in an oxygen/nitrous oxide (1:2)

mixture. Thereafter, 5,2-bromodeoxyuridine (BrdU, 50 mg/kg,

dissolved in sterile saline, Sigma-Aldrich, Taufkirchen, Germany)

was injected i.p. as previously described [25]. BrdU was given twice

daily starting after surgery for up to 3 or 7 days (Fig. 1B).

Tissue preparation
A total of seven animals for each time period were sacrificed by

an overdose of chloral hydrate at days 3, 7 and 14 days, or 8 weeks

after ON transection. For immunostaining, eyes were enucleated,

fixed by immersion for 20 min in 4% paraformaldehyde (PFA),

and eye cups incubated overnight in 30% sucrose (solution in

phosphate buffered saline [PBS]; Sigma, Germany). Eye cups,

including the neural retina, frozen in embedding medium (Tissue

Tek, Sakura, Germany) were cryosectioned into 240 sections

(25 mm thickness). Every 25th section was placed on consecutive

slides (24 slides in sum, 10 sections per slide) to attain a

representative coverage of the retina on one slide (Fig. 1C). All

slides were air-dried.

For immunopanning, eyes were enucleated, retinae were explanted

and prepared in Hank’s basal salt solution (HBSS, Sigma-Aldrich,

Taufkirchen, Germany) containing 25 mL HBSS, 3 mg/mL

bovine serum albumin (BSA) and 15 mM HEPES (4-[2-hydro-

xyethyl]-1-piperazineethanesulfonic acid, Invitrogen, Darmstadt,

Germany). Tissue was enzymatically dissociated using papain

(18 U/mL, Sigma-Aldrich, Germany) for 20 min at 37uC.

Ovomucoid solution (Sigma-Aldrich, Germany) was added and

the tissue mechanically dissociated. Dissociated cells were

centrifuged (8 min, 3506g), resuspended in PBS and transferred

to pre-coated Petri dishes, as previously described [37]. Briefly,

two 30 mm Petri dishes were incubated with affinity-purified

horseradish peroxidase (HRP) coupled goat anti-mouse IgG

(10 mg/ml, Dianova, Germany) overnight at 4uC. Primary

antibody mouse anti-rat-CD11b (1:20; with 0.2% BSA in PBS)

was added and dishes incubated for 1.5 h at room temperature

(RT). Cell suspensions were added to Petri dishes and incubated

for 30 min at RT. Dishes were gently washed with PBS and cells

fixed with 2% PFA.

Immunofluorescence
To identify retinal microglia, antibodies against the following

three different proteins were used: calcium binding protein Iba1

[38,39], surface receptor protein CD11b (OX-42, clone MCR)

[40], and the glycoprotein macrosialin (the murine equivalent of

human CD68, clone ED1) [2,41]. Since CD68 only labels a minor

fraction of retinal microglia, this marker was not appropriate for

our purposes. We also used Lycopersicon esculentum (tomato) Lectin

that binds N-acetylglucosamine oligomers and is an effective

marker of microglial cells in rodents [39,42]. Phagocytising

microglia were identified using an antibody against TREM2, a

receptor responsible for recognising, binding and uptake of

apoptotic cells [43,44]. Microglial nestin expression was analysed

using the monoclonal mouse anti-rat antibody clone 401 [45,46]

that has been reported in a variety of studies regarding

neurogenesis in brain, and also in studies of cerebral microglia

[24,29]. For vimentin and NG2 labeling, we used antibodies

already described elsewhere for microglial assays in CNS

[18,21,29,47,48].

Retinal sections. retinal slices were fixed with 4% PFA.

BrdU and Ki67 staining was performed as previously described

using 2 N HCl for 20 min at 37uC, followed by incubation with

0.1 M borate buffer (pH 8.5) for 10 min at RT, and/or heat

induced antigen retrieval (HIAR) with EDTA buffer at pH 8.0.

For tissue labeling, a standard staining protocol was used as

previously described [10]. Briefly, retinal slices were incubated

with primary antibodies dissolved in 2% normal donkey serum

(NDS) solution overnight at 4uC. Antibodies used for the various

combinations of double and triple staining are shown in Table 1.

Washing was followed by incubation with secondary antibodies in

10% NDS solution for 1 h at RT. Secondary antibodies

constituted Rhodamine conjugated donkey anti-rat IgG,

Rhodamine conjugated donkey anti-rabbit IgG, Rhodamine

conjugated donkey anti mouse IgG (each 1:1000, Dianova,

Nestin+NG2+ Retinal Microglia
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Germany), Cy5 conjugated donkey anti-mouse IgG, Cy5

conjugated donkey anti-goat IgG, Cy5 conjugated donkey anti-

rabbit IgG (each 1:500 Dianova, Germany), Alexa Fluor 488

conjugated donkey anti-goat, Alexa Fluor 488 conjugated donkey

anti-mouse, and Alexa Fluor 488 conjugated donkey anti-rabbit

(each 1:250, Molecular Probes, Germany). When two primary

antibodies from the same species were used, incubation with Fab-

fragments (Rhodamine conjugated donkey anti-mouse or -donkey

anti-rabbit, each 1:50, Dianova, Germany) was undertaken. Cell

nuclei were counter-stained with DAPI (4,6-diamino-2-

phenylindole). For the time course analysis of apoptotic neural

cell death and confirmation of vital BrdU labeling, terminal

deoxynucleotidyl transferase-mediated dUTP nick-end labeling

(TUNEL) was performed using a cell-detection kit (Fluorescein In

Situ Cell Detection Kit; Roche Applied Science, Germany) as

described previously [10,49].

Isolated microglia. Primary antibodies (Table 1) were

dissolved in 5% NDS-solution supplemented with 3% BSA in

PBS, 0.2% Triton X-100, and incubated for 1 h at RT. After

washing with PBS for 10 min, the dishes were incubated for

30 min at RT with the secondary antibodies (see above).

Subsequently, DAPI was added for 5 min. Dishes were then

washed for 10 min in PBS and embedded with Moviol

(Calbiochem, Germany).

To determine the specificity of primary antibody-binding, sections

and isolated cells were incubated only with secondary antibodies.

Figure 1. Experimental design. A: preparation of distal optic nerve (ON) lesion; retinal ganglion cell (RGC) axons were intradurally transected
approx. 2 mm behind the eyeball. B: immediately after surgery, rats received intraperitoneal injections of BrdU twice daily up to 3 or 7 days. Animals
were sacrificed at days 3, 7, and 14 or 8 weeks after ON axotomy (indicated by an X in the time axis; for details, see Materials and Methods). Cell fate
analyses were performed 14 days and 8 weeks after injury. Each group consisted of 7 rats. C: Every 25th horizontal cross section of the eye cup
including the neural retina was placed on consecutive slides (24 slides in sum, 10 sections per slide) resulting in a representative coverage of the
whole retina on one slide.
doi:10.1371/journal.pone.0022408.g001

Nestin+NG2+ Retinal Microglia
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3-dimensional cell analyses
Microglial marker co-localization in sections as well as after cell

isolation was exclusively and extensively analysed via z-dimension

stacked micrographs using a confocal laser-scanning microscope

(LSM 510 Meta and 710 Meta, Zeiss, Jena, Germany). The

‘‘Ortho-’’, ‘‘Gallery-’’ or ‘‘3D-function’’ from ZEN software (Zeiss,

Germany) was employed for cell analysis. To illustrate 3-

dimensionality and to show whole cellular structures, especially

with regard to branched microglial processes that are difficult to

ascertain in a single optical slice, the presented figures are mainly

shown as merged images of all optical slices of a cell z-stack.

Cell counts
Total numbers of Iba1+, BrdU+, and Ki67+ cells were assessed

for every 5th retinal section. The numbers of microglia co-

localizing for nestin, BrdU, and Ki67 were determined for every

10th section. For all other markers, co-expression was analyzed for

every 25th section. Analysis of differential expression from specific

markers over time was used to identify several microglial

phenotypes in naı̈ve and lesioned retinas. Absolute numbers of

particular microglial phenotypes were evaluated per section, as

already described for retinal studies [50] and results were related

to previous studies [10,25]. To confirm in vivo observations and to

exclude the possibility that adjacent structures, e.g. macroglial

processes lead to false interpretations, co-localization and numbers

of nestin+ microglia were also estimated after immunopanning.

Four naı̈ve or lesioned retinae were pooled for every approach that

was repeated for every condition. Ten 400 mm6400 mm areas in

the Petri dish were precisely scanned and numbers of microglia as

well as numbers of nestin+ microglia were evaluated. Relative

numbers of stained cells are given as percentage of the total cell

count. All values are given as mean 6 standard error of the mean

(S.E.M.). Since BrdU labeling is cumulative, corresponding

controls for every time point were evaluated. Total numbers of

microglia as well as the nestin+ fraction were not different over

time, and therefore control values were averaged.

Statistical analysis
Each group consisted of at least 7 animals. Significant

differences between the means from lesion and corresponding

control groups and between the different time points after lesion

were assessed using the Mann-Whitney test (U-test, p,0.05).

Differences between cell fractions within a group were determined

using the Wilcoxon test (p,0.05). In addition, the a adjustment

required for multiple testing was performed using the Holm-

Bonferroni Method.

Results

Resting retinal microglia express nestin
In the adult rat retina, considerable numbers of ramified Iba1+

microglia were located in the plexiform layers and the ganglion

cell layer (GCL) of the neural retina (Fig. 2A,B arrowheads). All

retinal microglia were also positive for CD11b and tomato lectin.

In the naı̈ve retina, nestin was sparsely expressed (Figs. 2A,B).

Interestingly, short, horizontally oriented nestin filaments were

observed in processes belonging to most resting microglia,

especially in the retinal plexiform layers (Fig. 2B boxes 1 and 2,

higher magnification in C-C0,D-D0, box 3 is shown as a gallery

view of the z-stack in E,E9a–f arrowheads, Video S1). Nestin

filaments were also observed in blood vessels (Figs. 2A,E, arrows)

and in few processes of retinal astrocytes and Müller glia spanning

radially through the retinal layers (Fig. 2A, asterisks). Under

physiological conditions, about 150 microglia/section were found

in the retina proper and, of these, approximately 60% expressed

nestin.

Table 1. Primary antibodies employed.

MARKER (SPECIES, IgG TYPE) DETECTION OF/CELLULAR PHENOTYPE DILUTION DISTRIBUTOR/SOURCE (CATALOG NUMBER)

Iba1 rabbit IgG microglia, macrophages 1:500 Wako, Neuss, Germany, (019-19741)

CD11b mouse IgG2a microglia, macrophages 1:100 AbD Serotec, Düsseldorf, Germany (MCA275R)

CD68 mouse IgG1 microglia, macrophages 1:100 AbD Serotec, Düsseldorf, Germany (MCA341R)

mTREM2 sheep IgG phagocytosing microglia/macrophages 1:100 R&D Systems, Minneapolis, USA (AF-1729)

nestin mouse IgG astrocytes, Müller glia, NSC/PCs, microglia 1:100 BD Bioscience, Heidelberg, Germany (5563909)

vimentin mouse IgG or goat IgG astrocytes, Müller glia, NSC/PCs, microglia 1:100 Sigma-Aldrich, Taufkirchen, Germany (V6389); Santa
Cruz, Heidelberg, Germany (sc-7557)

GFAP mouse IgG or rabbit IgG astrocytes, Müller glia 1:750/1:500 Millipore, Germany (MAP360) DAKO, Glostrup,
Denmark (Z0334)

NG2 rabbit IgG OPCs, NG2 glia, microglia 1:100 Millipore, Germany (AB5320)

BrdU rat IgG2a proliferating cells, S-phase of cell cycle 1:250 AbD Serotec, Düsseldorf, Germany (OBT0030CX)

Ki67 rabbit IgG 7 proliferating cells, all phases of cell cycle 1:100 Novocastra, Newcastle, UK (NCL-Ki67p)

NeuN mouse IgG neurons 1:200 Millipore, Germany (MAB377)

Doublecortin (Dcx) goat IgG neuronal precursor cells 1:250 Santa Cruz, Heidelberg, Germany (sc-8066)

b III Tubulin (TUJ1) mouse IgG2a neurons 1:500 Covance (Hiss) Freiburg, Germany (MMS-435P)

Brn3a goat IgG retinal ganglion cells 1:250 Santa Cruz, Heidelberg, Germany (sc-31984)

glutamine synthetase mouse IgG Müller glia, astrocytes 1:250 Millipore, Germany (MAB 302)

von Willebrandt factor rabbit IgG endothelial cells of blood vessels 1:100 Dako, Glostrup, Denmark (IR527)

Fluorescein labeled Lycophyllum
(tomato) lectin

microglia, endothelial cells of blood vessels 1:100 Vector labs, Burlingame, USA (FL-1171)

doi:10.1371/journal.pone.0022408.t001
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Retinal microglia activation and nestin up-regulation
after ON axotomy

Three days after ON transection, a fraction of retinal microglia

underwent a morphological change to become hypertrophic

though there was no marked increase in numbers (Figs. 3A,J).

Some of the activated microglia were found in the GCL adjacent

to the lesioned RGCs and expressed nestin in the soma (Fig. 3A,

the arrowhead-marked cell in the box is shown in B). After 7 days,

there was an apparent increase in nestin immunoreactivity in the

retinal astrocytes in the GCL, and in radial Müller glia (Fig. 3C,

asterisks) indicating an injury-induced macroglial response. At this

time point, the number of retinal microglia and also those

expressing nestin were significantly increased as compared to

controls and also to the 3-day post injury group (Figs. 3C,

arrowheads; 3J). Although nestin was not expressed in every single

microglial cell (Fig. 3D box 1 is shown in E as ortho view, and

higher magnification in G-G0), nestin+ retinal microglia displayed

either a rather ameboid (Fig. 3D box 2, shown in F, and higher

Figure 2. Nestin+ microglia in the naı̈ve retina. Immunofluorescent labeling with Iba1 (red) and nestin antisera (green) as well as DAPI nuclear
staining (blue). Resting microglia, mainly found in the GCL and IPL, had fine branched processes which expressed nestin in some, but not all
processes (A,B arrowheads; boxes 1 to 3 in B, higher magnification in C-C0, D-D0 and E-E9, respectively). Ea–f and E9a–f represent the gallery of 1 mm
optical sections of this z-stack. Nestin was also found in retinal blood vessels (arrows) and in few radial macroglial processes (asterisks). The
micrographs in A–D are merged z-stacked images of 1 mm optical sections to illustrate the entire cell dimension. GCL: ganglion cell layer, IPL: inner
plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer. Scale bar (A,B) 50 mm, (C-C0,D-D0, E,E9) 20 mm.
doi:10.1371/journal.pone.0022408.g002

Nestin+NG2+ Retinal Microglia
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magnification in H-H0) or a highly ramified morphology (Fig. 3D

box 3, higher magnification in I-I0, Video S2). In ameboid

microglia, nestin was predominantly found around the nucleus

and in some truncated processes (Figs. 3E, higher magnification in

H-H0). In ramified microglia, nestin filaments were mainly located

in the processes (Fig. 3D box 3, higher magnification in I-I0).

Quantification of absolute numbers of microglia (Fig. 3J) revealed

a maximum 60% increase in the number of retinal microglia 7 to

14 days after ON transection. After 8 weeks, the number of

microglia declined to baseline levels. However, the number of

nestin+ microglia had significantly increased as early as 3 days post

ON transection compared to naı̈ve tissue. Maximum numbers

were reached between 7 and 14 days, representing an increase of

14% (up to 74%) compared to those obtained after 3 days. After 8

weeks, the number of nestin+ microglia declined to control levels.

In addition, ameboid Iba1+ cells in the photoreceptor layer

(Fig. 3C, arrows) and ramified Iba1+ cells in the ciliary epithelium

(Fig. 4A) also expressed nestin (Figs. 3C, circle; 4A box 2, higher

magnification in C,C9 arrows). Large Iba1+ macrophages in the

ciliary stroma (Fig. 4A box 1, higher magnification in B) and

choroid (Figs. 4D,E,E9, arrows) were embedded in nestin filament

bundles, but these cells per se were nestin2 in both naı̈ve and

lesioned tissue.

Numbers of nestin+BrdU+microglia increase after ON
transection

Proliferation potential of resident microglia over time was

analysed using BrdU labeling (Fig. 5). As early as 3 days after ON

axotomy, numbers of BrdU+ microglia were significantly increased

compared to the corresponding control (Figs. 5A,F). However, 7

days after ON lesion, the quantity of BrdU+ microglia showed a

five-fold increase than on day 3 and, moreover, remained high up

to day 14 (Figs. 5C,F). Microglia that proliferated in response to

injury were defined here as activated microglia. In unlesioned

controls, an increase in proliferating microglia due to continued

BrdU injections up to day 7 (8 further injections, see Fig. 1) was

observed from days 3 to 7, and there was a decrease in cell

numbers from day 14 up to 8 weeks as a probable consequence of

microglial death over time.

The numbers of BrdU+nestin+ microglia 3 days after ON injury,

(Fig. 5A, the asterisk-marked cell in the box is shown in B,B9) were

four times higher than in naı̈ve tissue representing about 80% of

all BrdU+ microglia. Thus, approximately 20% of all BrdU+

microglia were nestin2 (Fig. 5F). Seven days after ON axotomy,

the number of BrdU+nestin+ microglia (Fig. 5C, box 1 is shown in

D-D9, box 2 is displayed as ortho view in E) reached a maximum

and, moreover, over half of all nestin+ microglia were now BrdU+

(Fig. 5F). After 14 days, BrdU+ nestin+ microglia significantly

decreased compared to the numbers at day 7 and further

decreased over time. However, after 8 weeks, BrdU+nestin+

microglia were still significantly increased in comparison to

corresponding controls and also significantly increased compared

to 3 days post ON lesion, indicating that most of the newly

generated cells persisted for several weeks and retained their nestin

filaments. On the other hand, the fraction of BrdU+nestin2

microglia also increased over time, suggesting that two different

microglia populations may proliferate in the acute phase after ON

axotomy, namely nestin+ and nestin2 cells. Moreover, it appears

that nestin+ microglia represent the population with an early

response, while nestin2 microglia show a delayed response.

Nestin+ microglia proliferate in situ after ON transection
Cumulative BrdU labeling allowed for evaluation of additive

cell proliferation over time. Therefore, Ki67 labeling was

additionally used to evaluate in situ proliferation of retinal

microglia at the four time points to further support the

interpretation of the time course of cell division after ON lesion.

In Figs. 6A–C, BrdU+ (arrowheads), Ki67+ (arrows) and

BrdU+Ki67+ microglia (asterisks) are shown in the acute phase

after ON transection. Unexpectedly, all in situ proliferating Ki67+

microglia co-expressed nestin in naı̈ve controls (Fig. 6D) as well as

after ON axotomy (Fig. 6E). Contrary to the previous interpre-

tation regarding BrdU+ fractions, this finding suggests that the

fraction of BrdU+nestin2 microglia represent the progeny of the

nestin+ population that down-regulated or degraded nestin

filaments after mitosis, and does not signify a delayed proliferating

microglial population. Moreover, microglial nestin filaments

appear to account for local microglial proliferation, in particular

after ON axotomy. The number of Ki67+ (nestin+) microglia 3

days after ON lesion was 6 fold higher than in corresponding

controls (Fig. 6F). The highest number of in situ dividing microglia

was found 7 days after axotomy. After 14 days, only 5 Ki67+

microglia per section were seen and after 8 weeks, in situ

proliferation was sparsely observed (one cell per 3–4 analysed

sections). Very few Ki67+ cells were found in the naı̈ve retina (1–2

cells/sections) independent of the analyzed time point, indicating a

physiological microglial renewal.

The number of Ki67+ (nestin+)BrdU+ microglia representing

true in situ proliferating cells at the different time points are shown

in Fig. 6F. Three days after ON axotomy, about 6 BrdU+Ki67+

cells/section were found (controls: 1 cell/section), which represents

approximately 17% of all BrdU+ microglia, signifying that 83%

BrdU+Ki672 had previously divided. In addition, 3 days after ON

axotomy, roughly 45% of all Ki67+ cells were BrdU+. Thus, the

majority of in situ proliferating microglia were BrdU2 (55%),

indicating a short time window for BrdU labeling. Hence, most of

the cells reside in one of the remaining 3 phases of the cell cycle

and do not (yet) acquire the BrdU label during the S-phase.

However, although the maximum number of BrdU+Ki67+

microglia were found 7 days after axotomy (representing approx.

80% of all in situ proliferating microglia) this fraction only

represents about 10% of all BrdU+ microglia estimated at this time

point. Thus, 90% of all BrdU+ microglia found 7 days after ON

axotomy had previously divided. No relevant in situ proliferation

was found at 14 days and at 8 weeks following axotomy. We

conclude that in the adult rat retina, microglial cell division

predominantly occurred within one week after surgery.

Microglial phenotypes in the naı̈ve and lesioned adult rat
retina

In the present study, six microglial phenotypes in varying

proportions were determined after ON axotomy over the 4

different time points analyzed (Fig. 7). Phenotype I represents the

nestin+ non-proliferating (BrdU2, Ki672) microglia capable of

proliferating in situ and are the responding population after ON

axotomy, resulting in phenotype II (nestin+Ki67+ microglia) which is

BrdU2 and has not yet passed the S-phase. Microglia passing the

S-phase are classified as phenotype III (nestin+Ki67+BrdU+ microg-

lia). Both phenotype II and III were only found at notable levels on

days 3 and 7 after injury, indicating that local microglial division

occurs predominantly within one week after ON axotomy.

Nevertheless, Ki67+ microglia were also observed 8 weeks after

lesion with cell numbers similar to naı̈ve controls (for both

fractions representing less than 1% of total microglia; 1–2 cells/

sections, Figs. 6F,7) indicating physiological self renewal. On

leaving the cell cycle (Ki672), microglia acquire the phenotype IV

(nestin+BrdU+ microglia). As early as 3 days after ON axotomy,

phenotype IV was significantly increased compared to the

Nestin+NG2+ Retinal Microglia

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e22408



Nestin+NG2+ Retinal Microglia

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e22408



corresponding control. After 7 days, there was a three-fold

increase compared to the fraction obtained at 3 days (p = 0.004)

that remained unchanged till day 14. After 8 weeks, 20% of the

total microglia consisted of BrdU+nestin+. This fraction was

significantly higher than in corresponding controls and in

comparison to the fraction obtained after 3 days, denoting a

long-lasting phenotype. Interestingly, this persisting microglial

nestin expression is not only associated with cell proliferation as

evidenced by Ki67 expression in a few cells even after 8 weeks.

Hence, it appears that microglial nestin expression is also required

for different cellular processes. Phenotype V constitutes microglia

that have divided (BrdU+) and either degraded, or replaced their

Figure 4. Nestin expression in the ciliary body and choroid. Immunofluorescent labeling with Iba1 (red), nestin (green), and DAPI (blue). A–C:
In the ciliary stroma, the area below the dotted white line, Iba1+nestin2 macrophages were found (A, box 1, higher magnification in B, arrowheads).
However, in the ciliary epithelium, branched Iba1+ cells had nestin filaments in some of their processes (A, box 2, higher magnification in C,C9 arrows).
Ameboid cells in the epithelium were nestin2 (C,C9 asterisk). In the choroid, many ameboid Iba1+ macrophages (D,E arrowheads) were found within
numerous nestin filament bundles (E,E9), however these cells per se were nestin2. The micrographs in the figures are merged z-stacked images of
1 mm optical sections to illustrate the entire cell dimension. ONL: outer nuclear layer, CB: ciliary body. Scale bar in (A,D-E9) 100 mm, (C-C9) 50 mm.
doi:10.1371/journal.pone.0022408.g004

Figure 3. Retinal nestin+ microglia after ON axotomy. A–I: Immunofluorescent labeling with Iba1 (red), nestin (green) and DAPI (blue). 3 days
after ON axotomy, rather rounded nestin+ microglia were found in the GCL and IPL (A, arrowhead-marked cell in B). C–I: 7 days after ON lesion, a
significant increase in nestin immunoreactivity was observed predominantly in the processes of astrocytes and Müller glia (C, examples are illustrated
with asterisks). Increased numbers of Iba1+ microglia were mainly found in the inner retinal layers and the OPL, where the majority express nestin
(arrowheads). A few ameboid Iba1+ cells observed in the photoreceptor layer (arrows) were also nestin+ (o). Some retinal microglia lacked nestin
filaments (D, box 1, as ortho view in E, higher magnification in G-G0), however, the majority expressed nestin either perinuclearly (D, box 2, as ortho
view in F, higher magnification in H-H0) or in their long processes (D, box 3, higher magnification in I-I0). J: Absolute numbers of total and nestin+

microglia 3, 7, 14 days, and 8 weeks after ON transection and in the naı̈ve retina. 7 to 14 days after ON axotomy, the number of Iba1+ microglia was
significantly increased compared to naı̈ve controls, while the number of nestin+ microglia was already significantly increased 3 days after injury,
reaching a maximum on day 7. Mean 6 S.E.M., significant differences between lesion and corresponding control groups (* p,0.05, ** p,0.01), and
between the lesion or control groups over time (+ p,0.05, ++ p,0.01) are indicated: grey and black symbols are used for the white and green
diagrams, respectively. The micrographs in A,C,D,G–I are merged z-stacked images of 1 mm optical sections. GCL: ganglion cell layer, IPL: inner
plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, axo: axotomy. Scale bar (A,C,D) 50 mm, (B,E,F,G-G0,H-H0,
I-I0) 20 mm.
doi:10.1371/journal.pone.0022408.g003
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nestin. Following ON axotomy, the fraction of phenotype V at day

3 was not different from controls, however, there was a significant

increase after 7 days which then remained unchanged over time.

In fact, even 8 weeks after ON lesion, phenotype V was

significantly higher than the fraction found in controls specifying

a long-lasting phenotype. Moreover, in naı̈ve controls as well as 14

Figure 5. Numbers of retinal BrdU+ microglia increase after ON axotomy. A–E: Immunofluorescent labeling with Iba1 (blue), BrdU (red), and
nestin antisera (green). Three days after ON axotomy, some microglia observed in inner retinal layers were BrdU+ (A, arrowhead) and some also
nestin+ (the asterisk-marked cell in the box is shown in B,B9). After 7 days, BrdU+Iba1+ microglia (C, arrowheads) increased in number, especially in the
GCL/IPL, and most of them co-expressed nestin (asterisk-marked cell in box 1 is shown D,D9; that of box 2 as ortho view in E). F: Absolute numbers of
BrdU+ and nestin+BrdU+ microglia 3, 7, 14 days, and 8 weeks after ON transection and in the naı̈ve retina. At all time points analyzed, numbers of
BrdU+ and nestin+BrdU+ microglia were increased after ON axotomy compared to corresponding controls, reaching maximum numbers 7–14 days
after injury. Mean 6 S.E.M., significant differences between lesion and corresponding control groups (* p,0.05, ** p,0.01), and between the lesion
or control groups over time (+ p,0.05, ++ p,0.01) are indicated: grey and black symbols are used for the white and red diagrams, respectively. The
micrographs in A-D9 are merged z-stacked images of 1 mm optical sections to illustrate the entire cell dimension. GCL: ganglion cell layer, IPL: inner
plexiform layer, INL: inner nuclear layer, OPL: outer nuclear layer, axo: axotomy. Scale bar (A,C) 50 mm, (B,B9,D,D9) 20 mm, (E) 10 mm.
doi:10.1371/journal.pone.0022408.g005
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Figure 6. Retinal nestin+ microglia proliferated in situ in response to ON axotomy. A–E: Immunofluorescent labeling with Ki67 (red),
tomato lectin (A–C green; D,E blue), BrdU (A–C blue), and nestin (D,E green). A–C: within the first 2 weeks, significant numbers of Ki67+ microglia
(arrows) were observed in the inner retinal layers, and Ki67 was partly co-localized with BrdU (arrowheads, co-localization is shown by asterisks). In
unlesioned (D) and lesioned tissue (E), Ki67 was exclusively found in nestin+ microglia which were mainly located in the IPL. F: Absolute numbers of
Ki67+ and Ki67+BrdU+ microglia 3, 7, 14 days, and 8 weeks after ON transection and in the naı̈ve retina. Numbers of Ki67+ microglia were increased 3–
14 days after ON axotomy compared to corresponding controls, reaching a maximum after 7 days. Maximum of Ki67+BrdU+ cells was also found 7
days after lesion. Mean 6 S.E.M., significant differences between lesion and corresponding control groups (* p,0.05, ** p,0.01), and between the
lesion or control groups over time (+ p,0.05, ++ p,0.01) are indicated: grey and black symbols are used for the white and purple diagrams,
respectively. GCL: ganglion cell layer, IPL: inner plexiform layer, axo: axotomy. Scale bar in (A–C) 50 mm, (D,E) 20 mm.
doi:10.1371/journal.pone.0022408.g006

Figure 7. Percentages of the six determined microglial phenotypes after ON transection and in the naı̈ve retina. The nestin+ fractions
are indicated by a green and nestin2 fractions by a dark background. The fractions of BrdU+ microglia are illustrated as red-shaded columns. The in
situ proliferating Ki67+ (always nestin+) fractions are shown as blue columns. The six resulting phenotypes were defined as follows: I) non-proliferative
nestin+ microglia; II) in situ proliferating nestin+ microglia not in the S-phase of the cell cycle (BrdU2); III) in situ proliferating nestin+BrdU+; IV)
nestin+BrdU+ microglia previously labeled in the S-phase (had already left the cell cycle); V) nestin2BrdU+ microglia which were degraded or had
replaced their nestin filaments after cell division, and, VI) nestin2BrdU2 microglia. Significant differences for a particular phenotype between the
lesion and control group at a specific time point are indicated by * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0022408.g007
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Figure 8. Retinal microglia express vimentin and NG2 but not GFAP. Immunofluorescent labeling with Iba1 (A,B, A0,B0 red), vimentin (A9,A0
green), GFAP (B9,B0 green), fluorescein labeled tomato lectin (C,C0 red), NG2 (C9,C0green, D,D0, E-G,G0red), nestin (D9,D0 green), CD11b
(E,F,G9,G0green), and DAPI (A-G, blue) on retinal slices. A–D: ramified retinal microglia contained vimentin filaments in their processes and within the
soma, but no GFAP. Resting retinal microglia also expressed NG2 on their surface and were nestin+. E-G0: after injury, NG2+CD11b+ microglia
(arrowhead), that can be clearly distinguished from NG2+CD11b2 pericytes (arrows) displayed an increased NG2 immunoreactivity on their surface.
The micrographs in A–E,G-G0 are merged z-stacked images of 1 mm optical sections to illustrate the entire cell dimension. GCL: ganglion cell layer, IPL:
inner plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, axo: axotomy. Scale bar in (A-D0,F9-G0) 20 mm, (E)
50 mm.
doi:10.1371/journal.pone.0022408.g008
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days and 8 weeks after lesion, phenotype IV and V seemed to be in

equilibrium, indicating an intrinsic mechanism of regulation.

Finally, phenotype VI comprises undivided, nestin2 microglia.

Nestin+ microglia co-express NG2 and vimentin but not
GFAP

Ramified Iba1+ microglia in the retinal parenchyma also

expressed the intermediate filament protein vimentin in some

processes (Figs. 8A-A0), whilst GFAP was not determined (Figs. 8B-

B0, Table 2). Resting retinal microglia in naı̈ve tissue displaying a

weak immunoreactivity for the chondroitin sulfate proteoglycan

NG2 was indeed a novel finding here (Figs. 8C-C0). Moreover,

parenchymal NG2+ microglia belong to the nestin+ population of

retinal microglia (Figs. 8D-D0), and no NG2+nestin2 microglia

were observed in this study.

Three days after ON axotomy, retinal microglia, found mainly

in the inner plexiform layer (IPL), displayed weak NG2

immunoreactivity with a dotted labeling pattern similar to the

one seen for microglia in unlesioned retinae. Seven days after

injury, NG2+CD11b+ microglia (Fig. 8E, the arrowhead-marked

cell is shown in F,G-G0) that were clearly distinguishable from

NG2+CD11b2 pericytes (Fig. 8E-G0, arrows, Table 2) displayed a

stronger NG2 immunoreactivity compared to unlesioned tissue.

This process was accompanied with an increase in the cell

number, especially in the IPL and the GCL. A number of NG2+

microglia were BrdU+, but all co-expressed nestin. However, in

activated microglia, no increase in immunoreactivity for vimentin

was apparent. In addition, after ON axotomy, no microglial GFAP

expression was found. GFAP was restricted to glutamine

synthetase+ Müller glia and astrocytes that also express nestin

and vimentin, but no microglial markers (Table 2). Finally, within

8 weeks after injury, we did not detect neuronal markers such as

Doublecortin (Dcx), TUJ1, NeuN, or Brn3a in BrdU+ microglia

suggesting a transdifferentiation of this retinal microglial popula-

tion.

Nestin+NG2+ microglia phagocytose apoptotic RGCs
Transected Brn3a+ RGCs of the GCL can be retrogradely

labeled by the fluorescent dye Fluorogold (FG) (Fig. 9A arrow-

heads, the asterisk-marked cell in the box is shown in B). Fourteen

days after ON transection, FG was incorporated by Iba1+

microglia that had phagocytosed FG+ apoptotic RGCs (Fig. 9C,

box 1 and 2 are shown in D–G and H–K, respectively, Video S3).

Interestingly, these phagocytosing microglia displayed a ramified

morphology (Figs. 9D,H) and expressed nestin (Figs. 9E,I) and

NG2 (Figs. 9F,J, merged in G,K). Phagocytosing microglia also

expressed the TREM2 receptor (Figs. 9L,M, the asterisk marked

cell in the box is shown as ortho view in N) that is responsible for

binding and uptake of apoptotic neurons on their surface. All

TREM2 microglia were FG+ and vice versa (Figs. 9L,M arrow-

heads). This suggests that both nestin and NG2 are not only

associated with mitosis, but also seem to play a role in

morphological changes associated with migration (move to RGCs

in the GCL) and phagocytosis.

Isolation of retinal microglia expressing nestin, NG2 and
vimentin by immunopanning

Microglia isolation by immunopanning was used to confirm

specific nestin, NG2, and vimentin expression (Fig. 10). Isolated

Iba1+ retinal microglia specifically expressed the intermediate

filament proteins nestin (Figs. 10A-B0) and vimentin (Fig. 10C).

Both filament proteins were arranged in compact filament bundles

around the microglial nuclei. Moreover, isolated round microglia

of naı̈ve retinae immunolabeled for Iba1 and tomato lectin

(Fig. 10D-D0) displayed a strong immunoreactivity for the

chondroitin sulfate proteoglycan NG2 (Fig. 10E), possibly due to

the reduced cell surface leading to a high density of the surface

molecule and, therefore, to a more intense labeling compared to

that in the retinal sections. Thus, immunopanning confirmed that

NG2 is expressed in resting retinal microglia and that NG2+

microglia indeed belong to the nestin+ subset of retinal microglia

(every scanned cell was positive for both markers).

Iba1+ retinal microglia isolated by immunopanning having

maximum cell numbers 7 days after ON axotomy also expressed

nestin (Fig. 10F, arrowhead) mainly around the nucleus (Fig. 10G).

Moreover, the ratio of nestin+ microglia to the total number of

Iba1+ microglia was similar to the numbers of microglia found in

the retinal sections (approx. 75%, controls: approx. 60%). After

ON axotomy, Iba1+ microglia expressed vimentin (Fig. 10H) and

displayed a similar pattern as already observed for microglia

isolated from naı̈ve retinae. Moreover, NG2+ tomato lectin+

microglia (Figs. 10I,J,J9) co-expressed nestin (Fig. 10J0). Further-

more, microglial GFAP expression or that of neuronal markers

was not found in isolated cells. Finally, labeling specificity of

Table 2. Marker expression in retinal glia and blood vessel cells of naı̈ve and lesioned tissue.

MARKER MICROGLIA ASTROCYTES MÜLLER GLIA PERICYTES ENDOTHELIAL CELLS

naı̈ve lesion naı̈ve lesion naı̈ve lesion naı̈ve lesion naı̈ve lesion

nestin + +++ + +++ + +++ ++ ++ ++ ++

vimentin + +++ + +++ + +++ x x x x

NG2 + +++ 2 2 2 2 ++ ++ 2 2

GFAP 2 2 + +++ + +++ 2 2 2 2

glutamine synthetase 2 2 + + + + 2 2 2 2

Iba1 + +++ 2 2 2 2 2 2 2 2

CD11b + +++ 2 2 2 2 2 2 2 2

tomato lectin + +++ 2 2 2 2 2 2 ++ ++

BrdU + +++ 2 + 2 2 2 2 2 2

Ki67 + ++ 2 2 2 2 2 2 2 2

(+): positive cells; (+++): increase in cell number; (2): not found; ( ): increase in immunoreactivity; (x) not analysed.
doi:10.1371/journal.pone.0022408.t002
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isolated microglia was confirmed by using negative controls

without primary antibodies (not shown).

Thus, in the adult rat retina, a subpopulation of microglia

express nestin, NG2, and vimentin.

Discussion

The majority of resting retinal microglia express nestin
In the present study, the majority of parenchymal microglia in

the naı̈ve adult rat retina expressed nestin. Interestingly, retinal

microglia displayed a similar subcellular distribution of nestin

filaments as reported in a recent study in the brain [29]. However,

the fraction of resting retinal microglia expressing nestin (60%)

that we found was higher than previously reported for various

brain regions e.g., the cerebral cortex (24%), or the dentate gyrus

(38%), probably because the retina differs from other brain regions

in its function as a sensory organ.

Nestin, an intermediate filament, serves as a marker of

proliferating and migrating precursor cells in various tissues,

including muscle, testis, skin, kidney, vasculature, and the

developing CNS (see reviews [51,52]). Nestin, in the CNS

including the neural retina, is down-regulated upon differentiation

[53,54] and replaced by other intermediate filaments, i.e. GFAP in

glia and neurofilament/a-internexin in neurons [51]. Notably, in

the present study, nestin+Iba1+ cells were also found in the ciliary

epithelium, which, like the neural retina, is also of neuroectoder-

mal origin [53,55]. However, in the choroid or the ciliary stroma,

both tissues of mesodermal origin, all Iba1+ cells, described as

macrophages [56,57] were nestin2. In addition, circulating

monocytes have also been shown to be nestin2 [58] suggesting

an environmentally-dependent effect on microglial nestin expres-

sion.

We additionally viewed horizontally oriented nestin+ structures

within the retina that were identified as blood vessel cells, an

observation in accordance with other reports [26,50,59]. Howev-

er, a recent study showed that nestin is only expressed in

proliferating endothelial cells, and not in the mature vasculature,

further indicating that nestin+ cells constitute rather immature cells

[60].

Interestingly, in the naı̈ve retina, we observed a few microglia

dividing in situ which is consistent with our previous work in mice

[10]. Notably, all of the cells described in the present study were

nestin+. Thus, we conclude that microglial nestin expression may

play a role in microglial proliferation pointing to a physiological

self-renewal of the population.

Nestin+ microglia are the responding in situ proliferating
population after ON transection

After ON axotomy, retinal microglia increased, and cell

numbers as well as distribution patterns were consistent with

previous reports in rats [61,62]. The increase was primarily due to

local microglial cell division as shown by Ki67 labeling and was in

accordance with our previous report in mice showing that distal

ON transection, which does not affect integrity of the BRB, is an

appropriate model for analysis of the proliferative potential of local

microglia [10]. Herein, we show for the first time that ON

transection leads to an expansion of the nestin+ microglial

subpopulation reaching maximum cell numbers within 2 weeks

after injury. In contrast to brain microglia [16,17], nestin

expression was not only observed in ameboid, but also in ramified

microglia. However, the most interesting finding was that every

single Ki67+ in situ dividing cell was nestin+ and led us to the

conclusion that only nestin+ microglia divide in response to injury

and, therefore, every BrdU+ microglia was nestin+ at cell division.

Thus, nestin2BrdU+ microglia are progeny of nestin+ microglia

and not an independent subpopulation that may proliferate later,

as we previously assumed. Microglial nestin expression in

association with cell cycle re-entry has not yet been reported,

although nestin expression is correlated with proliferating NPCs

[32,33,63], cultured neurogenic astrocytes [64], reactive astrocytes

[25,65], ependymal cells in the spinal cord [66], mesangial cells of

the kidney [30], and intestinal [31] and brain [60] epithelial cells.

A recent study demonstrated that reduction in nestin expression

resulted in a G1 cell cycle arrest as well as in a lowering of cortical

neurogenesis [63]. Furthermore, blocking nestin expression by

using nestin-morpholino showed nestin as being essential for brain

and eye development in Zebrafish since loss of nestin lead to

apoptosis of NSC/PCs [67]. Interestingly, nestin is thought to be

responsible for NSC/PC proliferation via promoting the activation

of PI3K in response to mitogenic growth factors [63]. However,

nestin expression did not exclusively correlate with in situ

proliferation because 8 weeks after axotomy there was still an

increased fraction of nestin+BrdU+ microglia which was higher

than that obtained 3 days after injury. Since there was no

detectable in situ proliferation after 2 and 8 weeks, we suggest that

two different phenotypes persist for several weeks after injury, one

with transient cell cycle- dependent, and one with prolonged cell

cycle-independent nestin expression, which both arise from a

common nestin+ phenotype. Moreover, nestin+ and nestin2

phenotypes appear to maintain a physiological equilibrium. This

equilibrium is re-established several weeks after ON injury

signifying an intrinsic mechanism of regulation.

Nestin+ microglia additionally co-expressed the intermediate

filament protein vimentin, a further component of the cytoskel-

eton. Vimentin has been observed in brain microglia after facial

nerve axotomy [47]. More recently, vimentin was also found

overlapping with nestin expression in resting brain microglia and

appears to maintain structural integrity and cell shape [29].

However, vimentin is also expressed in undifferentiated/immature

neural cells [68,69,70,71]. This is not surprising since vimentin is

co-expressed and acts in concert with nestin [33,72]. Nestin is

unable to polymerize by itself, but rather constitutes heterodimers

with vimentin [73] allowing for and retaining the flexibility of the

intermediate filament network that is a requirement for cell

proliferation and migration of, e.g. neural progenitor cells (NPCs)

[32,73]. Hence, we conclude that both intermediate filaments,

nestin as well as vimentin are required for microglial cell

proliferation and migration and are consequently expressed in

numerous microglia during acute phase after ON lesion. GFAP

was not expressed in resting or activated microglia, a fact

Figure 9. Nestin+ and NG2+ microglia phagocytose RGCs. Immunofluorescent labeling with Fluorogold dye (FG, A–D,H,L–N gold) as well as
Brn3a (A,B magenta), Iba1 (A–F,H–J,L,N blue), nestin (E,G,I,K,N green), NG2 (F,G,J,K red), and TREM2 antisera (L–N red). 7 days after ON lesion, most of
the Brn3a+ RGCs are retrogradely labeled with FG (A, arrowheads; the asterisk-marked cell in the box is shown in B as ortho view). 14 days after injury,
retinal Iba1+ microglia have phagocytosed FG+ retinal ganglion cells and have incorporated the golden dye (C, box 1 is shown in higher magnification
D–G, box 2 in H–K). Phagocytosing microglia were nestin+ (E,I) as well NG2+ (F,J), merged in (G,K) and expressed the TREM2 receptor on their surface
(L,M, the asterisk marked cell in L,M is shown as ortho view in N). Every FG+ microglial cell was also TREM2+ (arrowheads).The micrographs in A,C,L,M
are merged z-stacked images of 1 mm optical sections to illustrate entire cell dimension. GCL: ganglion cell layer, IPL: inner plexiform layer, axo:
axotomy. Scale bar in (A,B,N) 20 mm, (C,L,M) 50 mm, (D–K) 10 mm.
doi:10.1371/journal.pone.0022408.g009
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Figure 10. Isolated retinal microglia express nestin, vimentin and NG2. Immunofluorescent labeling with Iba1 (A–D,D0,F-H red), nestin
(A,B9,E–G,J9 green), vimentin (C,H green), tomato lectin (D9,D0,I green), NG2 (E,I,J,J9 red), and DAPI (A–D,F,G,J blue) on isolated cells after
immunopanning. A–E: isolated Iba1+ microglia of naı̈ve retinas co-expressed the intermediate filaments nestin (A,B-B0) and vimentin (C), that were
observed in the processes (B,B9) as well as around the nucleus (A,C). Isolated microglia were co-labeled with tomato lectin, further confirming the
microglia identity (D-D0). Immunopanning also corroborated that some of the resting retinal microglia were NG2+ and that these cells belonged to
the nestin expressing microglial fraction (E). F-J9: 7 days after ON axotomy some Iba1+ microglia were nestin+ (F, arrowhead). Nestin (F,G) and
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consistent with previous studies in developing [24], adult naı̈ve

[29], or lesioned adult brain [21]. In addition, this nestin+vimen-

tin+ subset of retinal cells proliferating in situ in response to ON

axotomy was also negativ for glutamine sythetase, and therefore,

does not belong to the macroglial cell lineage.

Microglial nestin-NG2 co-expression in the naı̈ve rat
retina

Here, we show for the first time that resting nestin+ microglia of

the naı̈ve retina displayed weak NG2 expression, an observation

not yet made for other brain regions [18,74]. This novel finding

was further confirmed by the labeling of isolated retinal microglia

after immunopanning and may suggest heterogeneity of retinal

and cerebral microglia. NG2 is a marker for oligodendrocyte

precursor cells (OPCs) [22,75] belonging to a glial cell class

referred to as polydendrocytes [76] or synantocytes [77].

However, polydendrocytes are found only in the optic nerve

[78,79] and not within the retina [80,81,82], and, further, do not

express nestin [19]. In summary, NG2 glia are morphologically,

antigenically, and functionally distinct from microglia [76,83].

NG2 expression in the naı̈ve adult rat retina has been reported in

mural blood vessel cells, i.e. smooth muscle cells and pericytes

[84,85,86]. The latter display distinctive NG2 labeling predom-

inantly restricted to the soma [86], co-express nestin [26], but no

microglial markers, and are also morphologically distinct from

parenchymal microglia, as shown herein.

Increased number of NG2+ microglia in the lesioned rat
retina

ON transection induced up-regulation of microglial NG2

immunoreactivity as already reported for the brain [19,21,87]

and spinal cord [18,20]. In the brain, a number of activated

microglia that up-regulate NG2+ after lesion were also nestin+

[18,20]. However, there are controversial opinions regarding the

origin of these transient NG2+ immunological cells. After

lipopolysacccharide (LPS) stimulation or neurotoxic injury, there

resulted a blood brain barrier (BBB) breakdown, and NG2 was

observed on the invading blood-borne cells [74,88]. Moreover, the

transiently induced NG2 expression on these microglia appears to

have a role in inflammatory function, in particular, in iNOS

induction and cytokine expression [88]. In contrast, after facial

nerve axotomy, the BBB is preserved, and NG2+ cells arise from

endogenous resident microglia through cell proliferation [18], in

accordance with our results after ON transection. However, we

can not completely exclude the possibility that few invading blood

cells also express NG2. Consequently, the appearance and cell

number of the different NG2+ immunologic phenotypes may be

dependent on lesion type and severity. However, as for nestin

expression, NG2 expression is restricted to immunological cells

that have either entered or reside in the CNS, since blood

monocytes are NG22 [20,87]. Thus, NG2 expression appears to

be induced by environmental cues.

We provide evidence that these NG2+nestin+ microglia already

reside in naı̈ve tissue and increase through local cell division after

injury. Other studies have recently reported that NG2 plays an

important role in cell division and migration processes, particularly

for NSC/PCs [83,89,90], but also for endothelial cells [91,92].

NG2 is a transmembrane protein that functions in cell signalling

via growth factor or receptor binding and is responsible for the

immature cell state of NG2 glia [23]. Interestingly, brain

Iba1+NG2+ cells, also termed BINCs, express a 300 kDa NG2,

while polydendrocytes express a post-translationally modified form

constituting 290 kDa. Therefore, as already revealed for nestin,

microglial NG2 differs from that of neural cells.

Nestin+NG2+ microglia phagocytose apoptotic neurons
Using retrograde labeling for retinal neurons, we demonstrate

herein that phagocytosing microglia that have incorporated the

fluorescent dye were nestin+ and NG2+ and, moreover, expressed

TREM2, a receptor expressed on phagocytosing microglia/

macrophages [43,44]. This suggests that both nestin and NG2

seem to effect changes in cellular shape responsible for

phagocytosis and possibly for motility. Two previous brain study

reported that NG2+ microglia phagocytose neuronal debris, but

there no direct evidence for this observation was demonstrated

[87,88].

Are microglia immature progenitors?
Recently, microglia were suggested to represent a separate

population different from specialized macrophages of the CNS

[93] and to possess a more immature state [21,94,95]. Microglia of

the adult CNS appear to be progeny of the neonate microglial

population that have to divide for self-renewal. In support of this

hypothesis, the adult subpopulation of retinal microglia in the

present study displayed evidence for physiological self-renewal, as

indicated by BrdU incorporation and Ki67 expression found in

naı̈ve tissue. Interestingly, several studies found expression of

neural markers on activated microglial cell populations [96,97]

that give rise to neurons in vitro [21,24]. Moreover, these microglia-

derived neurons are functional and can generate action potentials

[98]. Since there is increasing evidence that CNS injury can

induce neural progenitor characteristics in activated microglia of

non-neurogenic regions in vivo [21,97,99], it is conceivable that this

retinal microglial subpopulation may represent an ‘‘intermediate’’

cell type, already functional, but not completely committed and,

therefore, inducible for transdifferentiation, which may act as an

endogenous neural progenitor-like cell after a lesion. In the current

in vivo study, we were not able to detect neuronal markers in

microglia cells indicating transdifferentiation of these cells as

reported under culture conditions. Hence, further research is

required to elucidate this aspect.

Taken together, we demonstrate that more than 50% of all

retinal resting microglia in the naı̈ve adult rat retina express nestin,

representing a greater fraction than reported for any other region

of the brain. After ON axotomy, the number of these cells

increased due mainly to in situ cell proliferation, reaching

maximum numbers 7 days after injury. The most important

finding, however, is that all in situ dividing microglia were nestin+,

indicating that nestin expression is correlated with cell cycle re-

entry. Moreover, these findings support the notion that nes-

tin2BrdU+ cells arise from the nestin+ phenotype. We also

demonstrate that resting and activated retinal microglia co-express

two further neural proteins, vimentin, and NG2. Though the

present study revealed that in particular the expression of nestin

vimentin filaments (H) were found around the nucleus as well as in some processes of Iba1+ retinal microglia. In addition, isolated microglia expressed
NG2 after injury (I,J,J9) and these cells were also nestin+ (J9). The micrographs in B-B0,D–F,H,I are merged z-stacked images of 1 mm optical sections to
illustrate entire cell dimension. In J-J9, a single micrograph from the middle of the z-stack is shown in higher magnification. Scale bar in (A,C,G) 10 mm,
(B-B9,D-D0,E,F,H-J9) 20 mm.
doi:10.1371/journal.pone.0022408.g010
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appears to be affected by the surrounding environment, it is

nonetheless required for local microglial cell division and

migration after distal ON transection. Further, we revealed that

nestin+NG2+ microglia phagocytose apoptotic RGCs in the acute

phase after ON axotomy indicating that nestin and NG2 play a

role in changing cell shape and affect cell motility. In addition, we

showed that following ON injury, this endogenous population

transiently increases in number and is associated with a clean-up

function. Finally, we did not observe any transdifferentiation of

these cells toward neuronal phenotypes over the 8 week study

period. In conclusion, the ON lesion alone is not sufficient to

induce the putative multipotent progenitor features of retinal

microglia in vivo.
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