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Metabolomics which deals with the biological metabolite profile produced in the body and its rela­
tion to disease state is a relatively recent research area for drug discovery and biological sciences 
including toxicology and pharmacology. Metabolomics, based on analytical method and multivariate 
analysis, has been considered a promising technology because of its advantage over other toxico­
genomic and toxicoproteomic approaches. The application of metabolomics includes the develop­
ment of biomarkers associated with the pathogenesis of various diseases, alternative toxicity tests, 
high-throughput screening (HTS), and risk assessment, allowing the simultaneous acquisition of mul­
tiple biochemical parameters in biological samples. The metabolic profile of urine, in particular, often 
shows changes in response to exposure to xenobiotics or disease-induced stress, because of the 
biological system's attempt to maintain homeostasis. In this review, we focus on the most recent 
advances and applications of metabolomics in toxicological research. 
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INTRODUCTION 

Metabolomics (or metabonomics), a newly catego­
rized '-omis', is derived from the Greek roots 'meta' 
meaning change and 'nomos' meaning rules or laws, to 
provide insight into the generation of pattern recogni­
tion-based models that are able to classify or predict 
changes in biological metabolism (Nocholson et a/., 
1999; Watkins and German, 2002; Lindon et al., 2004). 
Metabolomics is generally defined as the systemic 
investigation of the unique metabolite network or finger­
print which explains specific biological or etiological sta­
tus with change of metabolome, the collection of all 
metabolites produced in biological systems (Lindon et 
a/., 2003). Metabolomes, relatively small molecular 
weight proteins of 100-1000 and the end products of 
biological organism's gene expression, are generally 
analyzed by mass spectrometry. Nicholson et al. (1999) 
defined 'metabonomics' as the quantitative measurement 
of the dynamic multi-parametric metabolic response of 
living systems to patho-physiological stimuli or genetic 
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modification. There is no significant difference between 
the terms metabolomics and metabonomics, but the 
term metabolomics rather than metabonomics has been 
used because 'metabolomics' is more commonly used. 
Metabolomic strategies aim to detect changes in the 
distribution and concentration of a broad range of 
endogenous metabolites and can be applied to multiple 
levels of biological system: from single cell to whole 
organism (Celia et a/., 2002). The 'omics' suffix has 
come to signify the determination of a targeted level of 
biological molecules and information (Yang et al., 2009). 
Therefore, genomics measures the entire genetic 
makeup of an organism, while proteomics analyzes all 
the proteins expressed under given conditions (Hrmova 
and Fincher, 2009; Rampitsch et al., 2009). Metabolom­
ics is not exceptional. Its relationship to the other 
'-omics' (toxicogenomics and toxicoproteomics) is repre­
sented in Fig. 1. Metabolism is the biochemical modifi­
cation of chemical compounds by interaction with catalytic 
enzymes in living organisms or cells. This includes the 
biosynthesis of complex organic molecules (anabolism) 
and their breakdown (catabolism) into small ones. 
Metabolism usually consists of sequences of enzymatic 
steps, also called metabolic pathways. The total metab­
olisms are all biochemical processes of an organism, 
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Fig. 1. The "OMICS" technologies involved in toxicological 
research. The integration of "omics" sciences might lead to 
a better comprehensive understanding of toxicological sci­
ences. 

whereas the cellular metabolism includes all chemical 
processes in a cell. Important metabolic pathways are 
composed of general pathways (carbohydrate, fatty acid, 
and citric acid metabolisms), catabolism, anabolism, and 
drug metabolism (Nealson and Conrad, 1999; Raman 
et al., 2005; Testa and Kramer, 2006). A metabolome is 
generally termed as the whole set of metabolic small 
entities in a cell, tissue, organ, organisms, and species 

Table 1. General terminology for metabolite analysis 

General areas Description 

(Alien et al., 2003). It includes small circuits of pathway 
networks. The very large portion of metabolome study 
has been metabolic engineering to produce industrially 
meaningful compounds (Wu et a/., 2005). Metabolom­
ics is the method of studying, profiling and fingerprint­
ing metabolites in various physiologic states (Fiehn et 
al., 2002) (Table 1). Metabolite profiling is a main tool 
for the analysis of a class of metabolites. Metabolomics 
aims to include all classes of endogenous metabolites 
and utilizes metabolic fingerprinting of them to maintain 
a rapid classification of biological samples according to 
their origin and biochemical relevance (Nicholson et al., 
1999; Lindon et al., 204). In order to optimize and uti­
lize metabolomics, a stable and reproducible metabolite 
fingerprint must be established (Bino et al., 2004). 
Metabolomic techniques are looking for a way to ana­
Iyze changes to those endogenous biomolecules caused 
by xenobiotic toxicity or drug efficacy. In toxicological 
research, metabolomics is also viewed as holding 
great promise, including use in specific biomarker dis­
covery for clinical diagnostics and drug discovery. In this 
review, the brief analytical technologies for metabolom­
ics are summarized, the current toxicological applica­
tions of metabolomics are described, and then the 
prospective future of metabolomics for toxicology is dis­
cussed. 

Target compound analysis 
Metabolic profiling 

- The quantification of specific metabolites 

Metabolomics 
Metabolic fingerprinting 

- Quantitative or qualitative determination of a group of related compounds or of members of spe-
cific metabolic pathways 

- Qualitative and quantitative analysis of all metabolites 
- Sample classification by rapid and global analysis without extensive compound identification 

Table 2. Analytical methods used for characterization of metabolites 

Analytical methods Feature 

- Cheap after initial purchase 
- Robust and reliable 

NMR spectroscopy 
- Minimal sample preparation 
- High throughput 
- Significant metabolite overlap 
- Large initial outlay 

- Excellent sensitivity 
- No need to derivatise 
- More global than NMR or GC-MS 
- Either specific or global 

GC-MS 

- LC reproducibility is less than GC 
- Ion suppression can impede some metabolite detection 

- Good sensitity 

LC-MS 
- Cheap to purchase 
- Good identification software 
- Good chromatograms compared to LC-MS 

Ref. 

Reo et al., 2002 
Nicholson et al., 1989 
Raamsdonk et a/., 2001 

Fiehn et al., 2002 
Fiehn et al., 2000 

Wilson et al., 2003 
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ANALYTICAL TECHNOLOGIES 

Metabolomics is a multi-disciplinary technology, requir­
ing cooperation between toxicologists, pharmacologists, 
chemists, biologists and informaticians. Current metabo­
lomics practice has mainly relied on mass spectrometry 
(MS) and nuclear magnetic resonance (NMR) spectros­
copy. The MS requires a preseparational procedure of 
metabolites using gas chromatography (GC) or liquid 
chromatography (LC) (Table 2). It's almost impossible to 
detect the whole population of metabolites in a system 
with single analytical method. Isolation of metabolites 
from biological samples requires the preparation of an 
extract. The choice of solvent used for this initial extrac­
tion process directly affects the chemical classes of 
compounds present in that extract. Furthermore, no 
spectroscopic method is available for the detection of all 
classes of metabolites. 

Therefore, a variety of comprehensive and targeted 
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Fig. 2. Schematic diagram of the procedure for metabolo­
mic approach. 

Table 3. NMR-based metabolomics and potential biomarkers 

Type Sample Biomarkers 

methods need to be applied and the data integrated in 
order to provide a complete profile of metabolic status. 
A schematic representation of the sample preparation 
process for metabolite analysis, from tissue treatment to 
data analysis, is given in Fig. 2. In any case, compre­
hensive quantitative and qualitative determination of 
metabolites in biological samples may require parallel 
implementation of several processing and detection 
methods (Dunn and Ellis, 2005). All metabolomics stud­
ies produce complex multivariate data sets that need to 
be interpreted using chemometric and bioinformatic 
methods (Nicholson et al., 1999). 

NMR. Proton CH) NMR can detect any metabolites 
containing hydrogen (Table 3). Signals can be assigned 
by comparison with libraries of reference compounds, or 
by two-dimensional NMR. The 1H NMR spectra of 
crude biological tissue extracts are inevitably crowded 
with many overlapped signals, not only because there 
is a large number of contributing compounds, but also 
because of the low overall chemical shift dispersion. 1H 
NMR spectra are also complicated by spin-spin cou­
plings which add to signal multiplicity, although they are 
an important source of structural information (Griffin et 
al., 2003). In 13C NMR, the chemical shift dispersion is 
twenty times greater and spin-spin interactions are 
removed by decoupling. Despite these advantages, the 
low sensitivity of 13C NMR prevents its routine use with 
complex extracts (Kenney et al., 2003; Bundy et al., 
2003). 

Gas chromatography. Gas chromatography (GC) 
provides compound separations with high-resolution 
and can be used in conjunction with a flame ionization 
detector (GC/FID) or a mass spectrometer (GC/MS). 
Both detection methods are highly sensitive and able to 
detect almost any organic compound, regardless of its 
class or structure. However, some of the metabolites 
found in biological samples are too involatile to be anal-

Ref. 

Neurochemicals 
Cerebrospinal fluid - Glutamate, isoleucine, valine, alanine, 

TTX(tetrodotoxin): Khandelwal et aI., 2004 
rat frontal cortex. 

(CSF) a- and ~-hydroxybutyrate-J.. 

Myocardial ischemia. Tissues 
- Plasma: lactate, acetate, acetone 

Price et aI., 2005 
- Brain: glycerol, succinate, propionate, lactate 

Dominant-submissive 
Urine 

- Milk sugar consumption, urinary galactose 
Leo et aI., 2005 

relationships: rats normalized to creatinine 

Dietary influence 
(healthy British, Urine - Trimethylamine-N-oxide (TMAO)t taurinet Lenz et al., 2004 
Swedish subjects) 
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ysed directly by GC methods. Therefore, the compounds 
have to be converted to less polar, more volatile deriva­
tives before they are applied to the GC column. 

High performance liquid chromatography (HPLC). 
HPLC, with UV detection, is a common method used 
for targeted analysis of biological samples and for meta­
bolic profiling of individual classes (Fan et al., 2005). 
Oerivatisation is not essential. Selection of compounds 
arises initially from the type of solvent used for extrac­
tion and then from the type of column and detector. For 
example, HPLC/UV will only detect compounds with a 
suitable chromophore; a column selected for its ability 
to separate one class of compounds will not generally 
be useful for other types. HPLC profiling methods all 
rely, to a great extent, on comparisons with reference 
compounds. The full UV spectrum (measured for each 
peak when UV-diode array detectors are used) gives 
some useful information on the nature of compounds in 
complex profiles, but often indicates the class of the 
compound rather than its exact identity (Plumb et a/., 
2002). 

LC/MS, LC/MS/MS and LC/NMR. LC/MS, LC/MS/ 
MS and LC/NMR are powerful solutions to the prob­
lems of detector generality and structure determination. 
LC/MS can be used to detect compounds that are not 
well characterized by other methods (those that are not 
easily derivatised), lie above the available GC/MS mass 
range, or do not contain good chromophores for con­
ventional HPLC (Wilson et al., 2005). The electrospray 
ionization (ESI) technique has made polar molecules 
accessible to direct analysis by MS, as well as being 
compatible with HPLC separations (Buchholz et a/., 
2001). Quantification of multiple compounds in crude 
extracts can, in principle, be achieved the same way as 
GC/MS, with high sensitivity. However, automation of 
the procedure presents greater practical difficulties (Jon­
sson et al., 2004). LC/MS/MS provides additional struc­
tural information that can be a very useful aid in the 
identification of new or unusual metabolites, or in the 
characterization of known metabolites in cases where 
ambiguity exists. LC/NMR combines the superior struc­
ture-determining power of NMR with HPLC in a flow 
system (Exarchou, 2005). 

Direct injection into high-resolution MS. It is pos­
sible to obtain metabolite 'mass profiles' without any 
chromatographic separation. Such profiles are obtained 
by injecting crude extracts into the source of a high-res­
olution mass spectrometer (Ounn and Ellis, 2005). Elec­
trospray ionization (ESI) or atmospheric pressure chemical 

ionization (APCI) generates mainly protonated, deproto­
nated or adduct molecules, such as [M+Hf, [M+cat­
ionf or [M-Hr for each species present in the mixture, 
with little or no fragmentation (Nordstrom et al., 2008). 
Thus, a fingerprint spectrum is obtained with a single or 
a few peaks for each metabolite, which are separated 
from other metabolites according to (accurate) molecu­
lar mass. The fingerprint can be used as a classifica­
tion tool. Some mass analyzers (e.g., fourier transform 
ion cyclotron resonance instruments, FT-ICR-MS) are 
capable of ultra-high resolution and permit the mass to 
be determined to four or five decimal places (Brown et 
al., 2005). This allows empirical formulae to be assigned 
to peaks. Additionally, the coupling of high sensitivity 
with high resolution provides a rapid method of estimat­
ing the number of metabolites present and a valuable 
first indication, from the formulae, of their possible iden­
tities. Its main weakness is the inability to separate iso­
mers of the same molecular mass (Pitt et a/., 2002). 

FT-ICR mass spectrometry. Fourier transform (FT)­
ion cyclotron resonance (lCR) mass spectrometry (MS) 
has traditionally not been widely used. FT-ICR spec­
trum can measure many mass spectra per second, 
making it increasingly attractive in the pharmaceutical 
industry because of its ability to deliver more informa­
tion per measurement (Brown et al., 2005). FT-ICR pro­
vides ultra-high mass resolution and mass accuracy, 
non-destructive detection, high sensitivity and multi­
stage MSn (Brown et al., 2005). It has undergone rapid 
development and is now applied in many fields. High 
mass accuracy ensures rapid protein identification with 
high confidence based on single peptide mass mea­
surements (Brown et a/., 2005). Many metabolites are 
in a mass range where FT-ICR can give immediate ele­
mental composition, enabling direct identification with­
out MS/MS, by comparison with public or locally 
generated databases (Zhang et a/., 2005). 

Multivariate statistical analysis (pattern recogni­
tion methods). Pattern recognition (PR) and related 
multivariate statistical approaches can be used to dis­
cern significant patterns in complex multivariate data 
sets and are particularly appropriate in situations where 
there are more variables than samples in the data set 
(Lindon et a/., 2004). The general aim of PR is to clas­
sify objects or to predict the origin of objects based on 
identification of inherent patterns in a set of measure­
ments (Ounn et al., 2005). PR methods can reduce the 
dimensionality of complex data sets via 2 dimensions 
(20) or 3 dimensions (30) mapping procedures, thereby 
facilitating the visualization of inherent patterns in the 
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data. Methods such as principal components analysis 
(PCA) are termed 'unsupervised' techniques, in that no 
a priori knowledge of the class of the samples is 
required, and they are based on the calculation of latent 
variables (Weckwerth and Morgenthal, 2005). Principal 
components are linear combinations of the original de­
scriptors, such that they are uncorrelated, and describe 
decreasing amounts of data variance (that is, PC1 > 
PC2> PC3 and so on). Use of PCA enables the 'best' 
representation, in terms of biochemical variation in the 
data set, to be shown in 20 or 30. In addition, multi­
parametric data can be modeled, so that the class of a 
sample from an independent data set can be predicted 
on the basis of a series of mathematical models that 
are derived from the original data or 'training' set. These 
methods are known as 'supervised' methods, and use 
class information to maximize the separation between 
classes (Weckwerth and Morgenthal, 2005). Supervised 
methods, such as soft independent modeling of classifi­
cation analogy (SIMCA), partial least squares (PLS) 
analysis and PLS discriminant analysis (PLS-OA), can 
be used to predict objects that are unknown to the sys­
tem on the basis of their NMR spectral properties or 
MS profiles, and are therefore valuable for generating 
models for predicting chemical toxicity, drug efficacy, 
disease status, and so on (Kim et aI., 2008; Quinones 
and Kaddurah-Oaouk, 2009; Um et aI., 2009). 

Artificial neural networks (ANN). Artificial neural 
(or neuronal) networks (ANN) are simplified mathemati­
cal models of a biological neuronal system (Mao et al., 
1995). They 'learn' from existing data sets and are 'opti­
mized' by specific algorithms (Mao et al., 1995). Neu­
rons can 'activate' their neighbors according to certain 
mathematical rules such as those developed by Hopfield 
(1982). They may then recognize familiar patterns, cor­
rect errors and remember sequences of events. An 
ANN takes the input data (e.g., gene expression data) 

Table 4. Application of metabolomics 

Application 

and builds a network to predict either the categorical or 
continuous responses (Ripley et al., 1996). They are 
'robust' to a moderate amount of 'noise' in the data, but 
if the number of input variables (genes) > 1000, then 
the technique requires intensive computer-aid. 

Linear discriminant analysis (LDA). LOA is a sta­
tistical technique that can be used for the classification 
of individuals into mutually exclusive and exhaustive 
groups based on a set of independent variables. The 
LOA involves finding a linear combination of the inde­
pendent variables that minimizes the probability of mis­
classifying the individuals into their respective groups 
(Goodacre, 2005). 

TOXICOLOGICAL APPLICATIONS 

Using metabolomic technology, researchers are able 
to systematically determine metabolite concentration in 
a sample. This new technology has the potential for 
application in the areas of drug discovery/development 
and preventive screening/diagnostics (Table 4). Research 
continues to refine this technology in an effort to put 
these applications to use as quickly as possible (Lin­
don et aI., 2004). Metabolic profiling (of biological sam­
ples such as urine or blood plasma) can be generally 
used to determine the physiological changes induced 
by toxic effect of a chemical (or mixture of chemicals) 
(Kim et al., 2008, 2009). The observed metabolic changes 
can be closely related to specific toxicity, e.g. specific 
hepatic or renal lesions (Nicholson et al., 1985; Kim et 
al., 2008; Park et al., 2009). This is of particular inter­
est to pharmaceutical companies that want to evaluate 
the toxicity of new drug candidates. If a new compound 
can be screened for adverse toxicity before it reaches 
clinical trials, then companies gain the advantage of 
being able to save the enormous cost of these trials 
(Lindon et al., 2004). Metabolomics is emerging as an 

Ref. 

- The major aim is to increase compound attrition in drug discovery. 

Drug Discovery 

Biomarker 
identification 

- Reduce compound attrition in development and clinical analysis. 
- Help explain reasons for toxicity. 
- Produce expert system to identify toxicity. 

- Markers of drug toxicity. 
- Markers of drug efficacy. 

Human disease diagnosis 
and personalized medicine 

Agriculture - Measurement and identification of unintended effects of genetic modification. 

Nutrition - Naturally functional foods. 

Zhang et al., 2005 
Wang et aI., 2009 

Kim et al., 2008 
Nicholson et al., 1985 
Park et al., 2009 

Yang et al., 2004a, b 
Clayton et al., 2006 

Roessner et al., 2001 

Gidley et al., 2004 
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excellent tool for elucidating the phenotype induced by 
a genetic modification, such as gene insertion or dele­
tion. Metabolomics has the unique ability to relate direct 
phenotypic change with metabolic profile rather than 
genomics or proteomics (Holmes and Antti, 2002). It is 
more exciting to predict the function of unknown genes 
by comparing the metabolic perturbations induced by 
insertion/deletion of known genes. Saccharomyces cer­
evisiae and Arabidopsis thaliana are good model organ­
isms for such advances in metabolomics and functional 
genomics (Alien et aI., 2003; Saito and Matsuda, 2008). 

Biomaker discovery for candidate drugs. One of 
the most interesting goals of pharmaceutical industry is 
to select robust new drug candidates for development 
or screen them for adverse effects in order to save 
money and time. Early preclinical screening of candi­
date drug toxicity is cost-effective and can suggest 
expected harmful side effects in clinical trials in drug 
development (Lindon et al., 2004). Therefore, an impor­
tant issue has been emerging to assess and screen 
toxicity of new molecular entities in early stages of new 
drug development. Biomarker discovery has been one 
of representative applications using metabolomics (Table 
5). Consortium for Metabonomic Toxicology (COMET) 
has recently explored the evaluation of xenobiotic toxic­
ity by biomarkers using metabolomics (Lindon et al., 
2003). COMET was formed between Imperial College 
London, UK and 6 major pharmaceutical companies to 
apply metabolomics data produced using 1H NMR 
spectroscopy of urine and blood serum samples to pre­
clinical toxicological screening of candidate drugs (Ebbels 
et al., 2007). Kim et al. (2008) reported that endoge-

nous metabolites of allantoin, citrate, taurine, 2-oxoglut­
arate, acetate, lactate, phenylacetyl glycine, succinate, 
phenylacetate, 1-methylnicotinamide, hippurate, and 
benzoate were closely related to hepatotoxicity caused 
by CCI4, acetaminophen, and D-galactosamine using 
600 M 1H NMR spectroscopy. These results suggested 
that these endogenous metabolites could be used as 
putative biomarkers for preclinical hepatotoxicity. Recently, 
high throughput toxicity and safety screening methods 
were developed through a combination of metabolite 
profiles (Ebbels et al., 2007). Schoonen et al. (2007) 
reported that the total NMR dataset of rat urine showed 
more sensitivity to liver toxicity caused by bromo ben­
zine and paracetamol than histopathology and clinical 
chemistry. 

In addition, phospholipid metabolic profiles were stud­
ied and potential biomarkers were identified in rat 
plasma using HPLC-MS after y-irradiation exposure (Wang 
et al., 2009). Phosphatidylethanolamine and phosphati­
dylserine were assigned to be biomarkers for exposure 
to gamma-rays. Metabolomic investigation of toxicity 
caused by doxorubicin (adriamycin) was performed in 
rats using NMR spectroscopy (Park et al., 2009). Pres­
ence of trimethylamine N-oxide (TMAO), glucose, lac­
tate, alanine, and valine were related to renal toxicity 
induced by doxorubicin and creatine, phentlacetylgly­
cine, N-methylnicotinic acid, and hippurate levels were 
suggestive of liver injury (Park et al., 2009). Metabolic 
profiling of realgar in rats was recently studied for toxi­
cological effects using NMR spectroscopy (Wei et al., 
2009). Various endogenous metabolites were sug­
gested as biomarkers correlated to liver and kidney 
toxicity caused by realgar. Metabolomic studies for 

Table 5. Metabolomic biomarkers associated with target organ toxicity 

Target organ Toxicants Biomarkers Ref. 

Allyl alcohol 
t creatinine, lactate, phenylacetyl glycine, 

Beckwith-Hall et al., 1998 
,j, N-methyl nicotinamide, taurine 

Bromobenzene 
t 5-oxoproline, glucose, acetate, lactate 

Waters et al., 2006 
,j, citrate, a-ketoglutarate, succinate 

Liver toxicity a-Naphthylisocyanate 
t taurine, creatine, glucose 

Waters et al., 2001 
,j, citrate, a-ketoglutarate, succinate 

Methapyrilene 
t succinate, triglyceride, dimethylglycine, trimethylamine-N-oxide 

Craig et al., 2006 
,j, glucose, glycogen 

Hydrazine 
t ~-alanine, 3-D-hydroxybutyrate, citrulline, N-acetyl-citrulline 

Bollard et aI., 2005 
,j, trimethylamine-N-oxide 

Gentamicin 
t glucose 

Lenz et al., 2005 
,j, trimethylamine-N-oxide 

Renal toxicity Cisplatin 
t alanine, leucine, glucose, 2-oxoglutarate, pyruvate, valine 

Garrod et al., 2001 
,j, trimethylamine 

Mercuric chloride 
t acetate, amino acids, glucose, organic acids 

Nicholson et al., 1985 
,j, citate, creatinine, hippurate, a-ketoglutarate, succinate. 
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investigation of biomarker discovery have been carried 
out and several endogenous metabolites were useful for 
prediction or screening of specific toxic effects caused 
by chemicals. 

Connections to genomics and proteomics. Metab­
olomics can be very useful for functional genomics and 
proteomics. Many companies that invested in genomic 
and proteomic approaches have augmented their work 
with metabolomic technologies (Nicholson et al., 1999). 
For example, if a company is interested in a specific 
gene, but it is not sure what the gene product does, it 
can create a gene knock-out and compare its meta­
bolic profile against that of the wild-type. This will give 
direct information as to the function of a protein and its 
coding gene. There is a linear progression of biological 
events, from genomics to metabolomics, which opens a 
new post-genomic era and a new approach to eluci­
date mechanisms of toxicities in toxicological research: 
e.g. the analysis of genetic variation (toxicogenomics), 
gene expression (transcriptomics), gene products (toxi­
coproteomics) and their metabolic effects (metabolom­
ics) (Kell, 2004). The genetic approach to unravel the 
complexity inherent within human biology is very lim­
ited. But, it provides only one layer of complexity. To 
understand common human disease traits, the integra­
tion of multiple 'omics' datasets is required (Zhu et aI., 
2007). As seen in recent literature, there have been 
attempts to combine two datasets related to clinical 
phenotype, such as pharmacogenomics, toxicogenom­
ics, epigenetics, and metagenomics. Recently, combining 
genetics and metabolomics has been applied. Choles­
terol-associated susceptible genes for Alzheimer's dis­
ease were identified by combining genetics with sterol 
metabolic profiling (Papassotiropoulos et aI., 2005). The 
ratio of metabolites was used to identify the function of 
putative genes (Gieger et aI., 2008). Stylianou and col­
leagues (2008) linked proteomics to quantitative trait loci 
(QTL) to identify changes in function rather than the 
protein quantification. To elucidate complex biological 
phenomenon, combining multiple types of technologies, 
including genetics, transcriptomics, proteomics and 
metabolomics, should be performed. 

Disease diagnosis. Recently, metabolomics stud­
ies have been used to screen the patients for general 
metabolic disorders using NMR analysis (van Doom et 
al., 2007). There has been a report that analysis of 
serum lipid profiles using NMR could discriminate tumors 
(83%) and non-tumors (8%) from 52 patients diag­
nosed as coronary heart disease (Brindle et aI., 2002). 
Colon cancer and coronary heart disease could be pre-

cisely diagnosed from healthy volunteers through neu­
ral network analysis and classification of NMR spectra 
of lipoprotein fractions (Bathen et aI., 2000). Moreover, 
testosterone and its metabolites, epitestosterone and 
dihydrotestosterone were measured from human hair 
using GC-MS (Choi et aI., 2001). Hair samples from 
bald men presented separate metabolic profiles from 
healthy volunteers and testosterone/epitestosterone ratio 
was suggested as biochemical biomarker useful for 
diagnosis of early baldness (Choi et al., 2001). Research 
on the correlation between cervical cancer and urinary 
polyamines and endogenous steroids using MS, showed 
that the ratios of 16a-hydroxyestrone/2-hydroxyestrone, 
5~-tetrahydrocortisoI/5a-tetrahydrocortisol, and putresinel 
N-acetylspermidine were very crucial for diagnosis of 
cervical cancer (Lee et al., 2003). After liver fibrosis and 
cirrhosis were progressively induced by thioacetamide 
in rats, liver extracts and serum were analyzed using 
1H NMR to characterize the stage of fibrosis (Constanti­
nou et al., 2007). PCA profiles from lipid liver extract 
and serum showed the progress of fibrosis and cirrho­
sis. Serum leucine, isoleucine, valine, lactate, alanine, 
acetate, acetoacetate, glutamine, trimethylamine, creat­
ine, and glucose were sensitively influenced during liver 
fibrosis and cirrhosis caused by thioacetamide and this 
study could be extended in clinical diagnosis for man­
agement of cirrhotic patients (Constantinou et al., 2007). 
Cerebrospinal fluid (CSF), a clear bodily fluid that occu­
pies the subarachnoid space and the ventricular sys­
tem around and inside the brain, can serve as a 
metabolomic sample for investigating Alzheimer's dis­
ease, meningitis, and so on. CSF samples were used 
to distinguish normal subjects from those with meningi­
tis using NMR spectroscopy (Coen et aI., 2005). Early 
detection of oral cancer using NMR spectroscopy was 
studied in patients' serum (Tiziani et al., 2009). Serum 
metabolite profile completely discriminated cancer patients 
from control group and also between different stages of 
oral cancer (Tiziani et al., 2009). Normal colon tissues 
and colorectal cancer tissues were analyzed with GC­
TOF (time-of-flight)-MS to investigate metabolomic pro­
filing of human colon carcinoma (Denkert et aI., 2008). 
In cancer, intermediates of the TCA cycle and lipids 
were down-regulated, whereas urea cycle metabolites, 
purines, pyrimidines and amino acids were up-regu­
lated compared to normal samples (Denkert et aI., 
2008). 

Risk assessment Metabolomics can be of great 
interest to risk assessment of toxic substances. There 
are two advantages of metabolomics for risk assess­
ment: understanding molecular mechanisms of toxicity 
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and sensitive exposure assessment. Kim et al. (2009) 
studied the exposure assessment of methoxyclor, an 
organochlorine pesticide, to rats using urinary NMR 
spectral data and compared it with traditional exposure 
of methoxyclor, using uterotrophic assay, in ovariecto­
mized female rats for 3 consecutive days. Metabolom­
ics dataset was much more sensitive to methoxyclor 
rather than traditional uterotrophic assay and the endog­
enous metabolites of acetate, alanine, benzoate, lac­
tate and glycine were suggested as putative exposure 
biomarkers for an endocrine disruptor of methoxyclor 
(Kim et aI., 2009). Nonylphenol is an environmental 
contaminant and endocrine disrupting chemical. Lee et 
al. (2007) investigated the metabolomic profiles for 
endocrine toxic effects caused by nonylphenol, using 
GC-MS. Urinary tetrahydrocorticosterone and 5a-tet­
rahydrocorticosterone were suggested as possible bio­
markers of nonylphenol-induced toxicity or exposure. 

Future prospects and concluding remarks. Metab­
olomics has been considered an emerging and promis­
ing technology in toxicological research, although its val­
idation is required. Using metabolomics, the data has 
shown that combinational biomarkers for toxicity or dis­
ease were identified, which were able to monitor the 
toxicity or efficacy of chemicals or drugs in preclinical or 
clinical trials. Also, new biochemical assays for disease 
diagnosis were derived using NMR or MS analysis. As 
one part of multiple 'omics' technologies, metabolomics 
plays an important role in understanding biological phe­
nomenon because it's very close to the phenotype of 
biological effects. Risk assessment is a very promising 
area to explore toxic mechanism or exposure assess­
ment using metabolomics. One thing that needs to be 
pointed out for metabolomics is totally based on analyti­
cal method and multivariate analysis. Therefore, the 
analytical procedures should be stable, robust, and 
highly reproducible. Multivariate analysis can turn com­
plex dataset into readable and interpretable. In contrast 
to other 'omics', metabolomics has the advantage of 
having a good level of biological reproducibility, low cost 
of per sample, minimal invasion of sampling, and direct 
identification of phenotypes with real biological end­
points. However, it requires a further research for valida­
tion, specificity, and sensitivity for the prediction of toxic 
manifestations. In addition, a comparative relationship 
between conventional biomarkers and new biomarkers 
derived from metabolomics should be needed. 
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