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and SLE susceptibility in
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1Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University,
Zhengzhou, China, 2Department of Nephrology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China
Background: Systemic lupus erythematosus (SLE) is a complex, multisystem

autoimmune disease that is characterized by the production of autoantibodies.

Although accumulated evidence suggests that the dysregulation of long non-

coding RNAs (lncRNAs) is involved in the pathogenesis of SLE, the genetic

contributions of lncRNA coding genes to SLE susceptibility remain largely

unknown. Here, we aimed to provide more evidence for the role of lncRNA

coding genes to SLE susceptibility.

Methods: The genetic association analysis was first adopted from the previous

genome-wideassociationstudies (GWAS)andwas thenvalidated inan independent

cohort. PRDX6-AS1 is located at chr1:173204199-173446294. It spans a region of

approximately 240 kb, and 297 single nucleotide polymorphisms (SNPs) were

covered by the previous GWAS. Differential expression at the mRNA level was

analyzed based on the ArrayExpress Archive database.

Results: A total of 33 SNPs were associated with SLE susceptibility, with a

P<1.68×10-4. The strongest association signal was detected at rs844649

(P=2.12×10-6), according to the previous GWAS. Combining the results from

the GWAS Chinese cohort and our replication cohort, we pursued a meta-

analysis approach and found a pronounced genetic association between

PRDX6-AS1 rs844649 and SLE susceptibility (pmeta=1.24×10
-13, OR 1.50, 95%

CI: 1.34–1.67). The mRNA expression of PRDX6 was elevated in peripheral

blood cells, peripheral blood mononuclear cells (PBMCs), and multiple cell

subpopulations, such as B cells, CD4+ T cells, CD3+ cells, and monocytes in

patients with SLE. The PRDX6 protein expression level was also increased in

patients with SLE compared with healthy donors.

Conclusion: Our study provides new evidence that variants located in lncRNA

coding genes are associated with SLE susceptibility.

KEYWORDS

systemic lupus erythematosus, single nucleotide polymorphisms, PRDX6-AS1,
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Introduction

Systemic lupus erythematosus (SLE; OMIM 152700) is a

complex, multisystem autoimmune disease that is characterized

by the production of autoantibodies with immune complex

deposition leading to multiple organ damage (1, 2). The

pathogenesis of SLE is still largely unknown, and it is believed

that a combination of genetic and environmental factors

contributes greatly to the etiology of SLE. Over recent years,

increasing evidence has demonstrated that the dysregulation of

long non-coding RNAs (lncRNAs) is involved in the

pathogenesis of SLE (3, 4).

Long non-coding RNAs (lncRNAs) are a family of non-

coding RNAs (ncRNAs) of more than 200 nucleotides in length

that do not appear to code functional proteins (5). lncRNAs

function both in cis and in trans to regulate gene expression and

are involved in regulating various biological processes, such as

cell proliferation, apoptosis, inflammation, and immune

responses (6). Given the diverse cellular biological processes in

which lncRNAs participate, lncRNAs have been implicated in a

variety of diseases, including autoimmune diseases such as SLE.

The expression of lncRNAs is dysregulated in SLE and is

correlated with clinical manifestations and organ impairments. The

lncRNA expression profile in SLEwas significantly changed, as there

were 3,657 upregulated lncRNAs and5,211 downregulated lncRNAs

in SLE compared with the healthy group (7). Lnc-DC and growth-

arrest-specific transcript 5 (GAS5)weredownregulated in theplasma

of patients with SLE, and their expression levels were negatively

correlated with C3 expression and disease activity, respectively (8).

nuclear paraspeckle assembly transcript 1 (NEAT1) expression was

significantly upregulated in peripheral blood mononuclear cells

(PBMCs) in patients with SLE and was positively correlated with

disease activity (9). The expression of metastasis associated lung

adenocarcinoma transcript 1 (MALAT1) was not only significantly

higher inpatientswithSLEbutwas also revealed tobe associatedwith

interferon (IFN) signatures (10, 11).

In addition to detection results from clinical samples and

experimental animal data, a growing body of evidence suggests

that single nucleotide polymorphisms (SNPs) located in lncRNA

coding regions are associated with SLE susceptibility. Located in

an intronic enhancer, rs13259960 modulates SLEAR expression

by impairing signal transducer and activator of transcription 1

(STAT1) recruitment and confers a predisposition to SLE (12).

Variants rs205764 and rs547311 contributed to SLE

susceptibility by enhancing linc00513 promoter activity,

leading to the increased expression of linc00513 in SLE (13).

A group of signals concentrated at PRDX6-AS1was identified

when we performed an in-depth data analysis of previous
Abbreviations: SLE, systemic lupus erythematosus; GWAS, genome-wide

association study; SNP, single nucleotide polymorphism; lncRNA, long non-

coding RNAs; PRDX6, peroxiredoxin 6; PBMCs, peripheral blood

mononuclear cells.
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genome-wide association studies (GWAS) (Figure 1). Although

these groups of SNPs did not reach statistical significance in the

Chinese population, we consider that the limited sample size (490

patients with SLE and 493 healthy donors) might be one of the

most important reasons for this. Therefore, in our present study,

we replicated the top signal in an independent cohort (1,003

patients with SLE and 815 healthy donors) from the Chinese

population. We aimed to explore whether the genetic association

signals at PRDX6-AS1 were consistent and aimed to identify its

possible function in the pathogenesis of SLE.
Methods

Study subjects

The GWAS Chinese cohort was recruited from Beijing, and it

included 490 SLE patients and 493 healthy donors (14). The

independent replication cohort, which was enrolled in Henan,

consisted of 1,003 patients with SLE (age, 34.5 ± 12.8; female

patients, 92.9%) and 815 geographically and ethnically matched

healthy donors (age, 45.4 ± 15.7; female donors 49.8%). The

individuals diagnosed with SLE fulfilled the revised diagnostic

criteria of the American College of Rheumatology (ACR) (15).

Written informedconsentwasobtained fromall study subjects, and

the study was approved by the Medical Ethics Committee of the

First Affiliated Hospital of Zhengzhou University (2019-KY-247).
SNP selection

PRDX6-AS1 is located at chr1:173204199-173446294. It

spans a region of approximately 240 kb, and 297 SNPs were

covered by previous GWAS (14). Functional annotations were

performed among genetically associated SNPs with P<0.05 to

explore potential regulatory functions. The top signal was selected

for replication.
DNA extraction and genotyping

DNA extraction was performed with a DNA extraction kit

(Qiagen, Hilden, Germany). The genotyping for the replication

cohort was conducted by the Sequenom MassARRAY platform

(Sequenom, Inc., San Diego, CA, USA), and the genotyping yield

was higher than 99.5%.
Differential expression analysis

Differential expression at the mRNA level was analyzed

based on the ArrayExpress Archive database (http://www.ebi.

ac.uk/arrayexpress) (16). It included immune cell subsets (B cells
frontiersin.org
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and CD4+ T cells E-GEOD-4588, CD3+ cells E-GEOD-13887,

monocyte E-GEOD-46907) (17, 18), PBMCs (E-GEOD-50772)

(19), and peripheral blood cells (E-GEOD-20864) (20). The

protein level of PRDX6 in sera was also analyzed using data

derived from E-MTAB-5900.
Statistical analysis

The distribution of the PRDX6-AS1 rs844649 genotypes was

tested for the Hardy–Weinberg equilibrium with the goodness-of-

fit c2 test, which did not violate the Hardy–Weinberg equilibrium

(P=0.711 in healthy control individuals in the replication cohort).

Genetic association was assessed by a two-tailed c2 test, and the

meta-analysis was used to test Cochran−Mantel−Haenszel

statistics. Differential expression analysis was performed with

Student’s t-test for continuous variables. Analyses were

implemented using the SPSS 19.0 (SPSS, Chicago, IL, USA) and

(SAS 9.3; SAS Institute,Cary, NC) software.
Frontiers in Immunology 03
Results

PRDX6-AS1 rs844649 polymorphisms
associated with SLE susceptibility

A total of 43 SNPs were significantly associated with SLE

susceptibility (P<0.05) in the Chinese population (Supplementary

Table1) (14).Toreduce theprobabilityoffalse-positive results caused

by the number of tests, Bonferroni correction was applied for multi-

testing correction. The level of significance was set at 1.68×10-4, as

determined by dividing 0.05 by the number of tests. A total of 33

SNPs were associated with SLE susceptibility with P<1.68×10-4. The

strongest association signal was detected at rs844649 (P=2.12×10-6,

OR 1.55, 95% CI: 1.29–1.85) (Figure 1 and Table 1).

Based on the results obtained from the above analysis, an

independent cohort was enrolled to replicate the association signal

at PRDX6-AS1 rs844649. It was observed that the frequency of the

risk allele C was 47.9% in patients with SLE and 38.5% in healthy

donors, which was similar to the frequency of the GWAS Chinese
TABLE 1 Association of rs844649 PRDX6-AS1 with systemic lupus erythematosus (SLE) susceptibility.

Chr Gene SNP Position

(hg19)

Minor

allele

GWAS Chinese cohort

(490/493)

Replication cohort

(1003/815)

Meta-analysis

MAF

(case/

control %)

P-value OR

(95% CI)

MAF

(case/

control %)

P-value OR

(95% CI)
P-value OR

(95% CI)

1 PRDX6-
AS1

rs844649 173224343 C 47.1/36.6 2.12×10-6 1.55 (1.29–1.85) 47.9/38.5 9.93×10-9 1.47 (1.29–1.68) 1.24×10-13 1.50 (1.34–1.67)
FIGURE 1

Regional association plots around rs844649 PRDX6-AS1.
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cohort. The genotype frequencies of PRDX6-AS1 rs844649 in

patients and control individuals are presented in Table 2. Carriers

of the rs844649 C allele were significantly associated with an

increased risk of SLE after adjusting for age and sex.

Combining results from the GWAS Chinese cohort and our

replication cohort, we pursued a meta-analysis approach and

found a pronounced genetic association between PRDX6-AS1

rs844649 and SLE susceptibility (pmeta=1.24×10
-13, OR 1.50, 95%

CI: 1.34–1.67) (Figure 1 and Table 1).
Functional annotations

To explore the possible function of rs844649, RegulomeDB

and HaploReg were applied to annotate the non-coding genome

with known and predicted regulatory elements (21, 22). The

RegulomeDB rank was 4, and the score was 0.60906 for

rs844649. These findings indicate a potential regulatory

function (Table 3). Data from HaploReg showed that rs844649

was located within the region of enhancer histone marks in six

tissues, DNAse in five tissues, and in CTCF binding and motif

change regions (Arnt, Dlx3, and Myc) (Table 3). Unfortunately,

no expression quantitative trait loci (eQTL) effect was predicted

to be associated with rs844649.

We further expanded our annotation to all 43 genetically

associated SNPs with P<0.05. The rs844648 and rs7526970

variants had a RegulomeDB rank of 2b (ranks 1 to 7 represent

decreasing regulatory evidence), and rs844648 had the highest

RegulomeDB score of 0.66261 (Table 3).
Expression analysis of PRDX6

The expression of PRDX6 was elevated in B cells (Figures 2A,

B) and CD4+ T cells (Figures 2C, D) in patients with SLE

compared with healthy control individuals and approached

marginal statistical significance. In CD3+ cells, the expression

of PRDX6 was significantly increased in patients with SLE

compared with healthy donors (detected by 200844_s_at,

P=0.001) (17) (Figures 2E, F). The expression of PRDX6

demonstrated an increasing trend in monocytes in patients
Frontiers in Immunology 04
with SLE, but this was without statistical significance. This

might be due to the limited sample size (18) (Figure 2G).

For PBMCs, in comparison to that in healthy subjects, the

level of PRDX6 was significantly upregulated in patients with

SLE (P=1.8×10-4) (19) (Figure 2H). A markedly increased level

of PRDX6 expression was also identified in peripheral blood cells

from patients with SLE (P=2.55×10-4) (20) (Figure 2I).

The analysis above was performed at the mRNA level, and

the PRDX6 protein expression level was determined using data

from E-MTAB-5900 hereafter. According to the data from

the protein microarray, the level of PRDX6 was significantly

elevated in patients with SLE compared with healthy donors

(P=0.002) (Figure 2J).
Discussion

Although accumulated evidence suggests that the

dysregulation of lncRNAs is involved in the pathogenesis of

SLE, the genetic contributions of lncRNA coding genes to SLE

susceptibility remain largely unknown. In our present study, we

identified that the rs844649 PRDX6-AS1 variant located on

chromosome 1q25.1 was associated with SLE susceptibility,

reaching genome-wide significance in two independent cohorts

from China. The 1q25.1 region is a hot spot containing potential

SLE susceptibility loci. It is well established that tumor necrosis

factor ligand superfamily member 4 (TNFSF4) gene

polymorphisms are associated with SLE susceptibility in large

sample sizes and diverse multiracial and multiethnic populations

(23–30). A previous study also revealed that rs10798269, located

on 1q25.1, was associated with SLE in women by a genome-wide

association scan (31). Despite our data for rs844649 PRDX6-AS1

being from a Chinese population, genetic association results

from a Korean population (1,710 patients with SLE vs. 3,167

control individuals) showed a more remarkable result

(P=1.67 × 10-12, OR 1.37, 95% CI: 1.25–1.49) (14). However,

additional studies are still needed to validate the signal from

rs844649 PRDX6-AS1 on chromosome 1q25.1 in more centers

with different ethnicities from different centers.

To explore the possible regulatory function of rs844649, we

performed functional annotations using a publicly available
TABLE 2 Genetic association analysis between rs844649 PRDX6-AS1 with systemic lupus erythematosus (SLE) risk in replication cohort.

Genotype Case (n=1003) Control (n=815) Crude OR (95% CI) P-value Adjusted OR (95% CI)* P-value*

TT 272 (27.28) 310 (38.13) 1.000 1.000

CT 495 (49.65) 380 (46.74) 1.489 (1.206–1.837) 2.03×10-4 1.291 (1.001–1.666) 4.96×10-2

CC 230 (23.07) 123 (15.13) 2.137 (1.627–2.807) 4.82×10-8 1.695 (1.220–2.353) 1.62×10-3

Additive 1.463 (1.280–1.673) 2.7×10-8 1.299 (1.106–1.526) 1.46×10-3

Dominant 725 503 1.643 (1.347–2.004) 9.6×10-7 1.391 (1.094–1.770) 7.26×10-3

Recessive 767 690 1.682 (1.321–2.142) 2.49×10-5 1.451 (1.085–1.941) 1.22×10-2
fron
*Adjusted for age and gender.
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TABLE 3 Functional annotations by RegulomeDB and HaploReg.

SNPs RegulomeDB HaploReg

Rank Score Promoter
histone marks

Enhancer
histone marks

DNAse Proteins
bound

Motifs
changed

NHGRI/EBI
GWAS hits

GRASP
QTL hits

Selected
eQTL hits

rs844644 5 0.13454 – – – – Pou5f1,
ZEB1

– 1 –

rs844645 4 0.60906 – – – – 4 altered
motifs

– – –

rs74448919 5 0 – – – – 3 altered
motifs

– – 1

rs12039904 5 0.13454 – – – – Esr2,
THAP1,
YY1

– – –

rs2795288 5 0.13454 – – – – Pou2f2,
Pou3f2

– – 1

rs1012507 5 0.14776 – – – – 6 altered
motifs

– 1 3

rs35086785 5 0.13454 – – – – CEBPB – – –

rs844648 2b 0.66261 – BLD, MUS – – 14 altered
motifs

– 1 1

rs844649 4 0.60906 – 6 tissues 5 tissues CTCF Arnt, Dlx3,
Myc

– – –

rs844651 5 0.13454 – MUS, BLD – – Evi-1,
GATA,
TAL1

– – –

rs12048385 4 0.60906 – HRT, MUS, BLD – – – – – –

rs704840 4 0.60906 – MUS, BLD BLD – Evi-1 1 1 –

rs2840317 5 0.13454 – MUS, BLD MUS – BATF, GR – 1 –

rs2901716 4 0.60906 – 8 tissues MUS – GATA, SP1 – – –

rs844655 7 0.18412 – BLD – – Nkx2,
Rad21

– – –

rs10912573 7 0.18412 – – – – – – – –

rs10489265 7 0.18412 – – – – 4 altered
motifs

– 1 –

rs844659 4 0.60906 – 9 tissues 4 tissues – GATA,
TAL1

– – –

rs844660 4 0.60906 – 9 tissues CRVX,
BRN,
SKIN

– – – – –

rs34313362 4 0.60906 ESDR 9 tissues 14 tissues BCL11A,
EBF1, P300

Maf, RFX5 – – –

rs12046550 5 0.03648 – OVRY, MUS ADRL – HNF4,
PPAR,
RXRA

– – –

rs844663 5 0.30371 – ESDR – – 5 altered
motifs

– – –

rs12403570 4 0.60906 ESDR 6 tissues SKIN – DBP – – –

rs10912577 4 0.60906 – – IPSC – 9 altered
motifs

– – –

rs12049190 6 0.11093 – – – – 7 altered
motifs

– – 3

rs35634597 7 0.18412 – ESC, IPSC – – – – – –

rs67638449 7 0.18412 – ESDR, ESC, IPSC – – – – – –

rs12750070 6 0.39217 – ESDR, ESC – – GCM – – 2

(Continued)
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database. It was observed that rs844649 was located within the

regions of enhancer histone marks, DNAse, CTCF binding, and

motif changes, but no eQTL effect was identified. Thus, future

studies are needed to search for the causal SNP on PRDX6-AS1

from a functional perspective.

Genetic association analysis indicated that the lncRNA

PRDX6-AS1 might be involved in the pathogenesis of SLE.

Given that one of the first critical functions of a certain

lncRNA is to regulate the expression of adjacent protein

coding genes, we further examined the expression level of

PRDX6 based on an array expression database. Importantly,

the mRNA expression of PRDX6 was elevated in peripheral

blood cells, PBMCs, and multiple cell subpopulations, including

B cells, CD4+ T cells, CD3+ cells, and monocytes, in patients with

SLE. The PRDX6 protein expression level was also increased in

patients with SLE compared with healthy donors.

Peroxiredoxin (PRDX) 6 belongs to the PRDX family, and

three enzymatic activities have been identified for it. These

activities are peroxidase, phospholipase A2 (PLA2), and acyl

transferase activities (32). Recent advances have highlighted the

protective role of PRDX6 against the pathogenesis of SLE

adrenal; GI, digestive.
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through studies using cis-eQTL analysis and Prdx6 knockout

(KO) mice (33). SLE risk-associated SNPs downregulate the

expression of PRDX6, and Prdx6 deficiency upregulates antibody

production (33, 34). Our study revealed that the expression of

PRDX6 was upregulated in patients with SLE, as demonstrated

by the integrated analysis of multiple studies in different cell

subtypes. The increased expression of Prdx6 has been

demonstrated in various injury models and patients with

peripheral arterial disease (35–37). Whether Prdx6 has

protective antioxidant functions or participates in redox

imbalance by redox signaling remains controversial.

Considering the dual role of PRDX6 in redox imbalance in

inflammation models, whether the elevated level of PRDX6 was

simply a biomarker of SLE or a driver of disease pathogenesis

warrants further investigation.
Conclusion

In this study, we performed a genetic association analysis

among a Chinese population and confirmed that the rs844649
TABLE 3 Continued

SNPs RegulomeDB HaploReg

Rank Score Promoter
histone marks

Enhancer
histone marks

DNAse Proteins
bound

Motifs
changed

NHGRI/EBI
GWAS hits

GRASP
QTL hits

Selected
eQTL hits

rs12405577 5 0.13454 – ESDR, ESC, MUS – – Hoxa3,
Hoxa4,
Mef2

– – –

rs6697570 5 0.34168 – – – – 5 altered
motifs

– – 3

rs12143114 4 0.60906 – – – MEF2A,
MEF2C

Mef2 – – –

rs35691278 6 0 – – – – 4 altered
motifs

– – –

rs10912580 6 0.59 – – – – 5 altered
motifs

– – –

rs10798266 5 0.58955 – – – FOXA1 Brachyury – – –

rs4916319 4 0.60906 BLD GI – – Nkx3, Pax-
5, SP2

– – –

rs4916213 6 0.4855 – BLD – – SRF – – –

rs1342032 3a 0.42363 – 5 tissues CRVX 4 bound
proteins

– – 2 –

rs73037142 7 0.18412 – – – – Hltf – – –

rs1539261 5 0.005 – 4 tissues SKIN,
ADRL

– Hsf – – –

rs7526970 2b 0.58729 BLD 12 tissues 11 tissues 5 bound
proteins

8 altered
motifs

– – –

rs16845703 5 0.13454 – SKIN SKIN – PU.1 – – –

rs4279882 3a 0.57565 BLD 8 tissues 4 tissues – 9 altered
motifs

– – 1

rs6425230 3a 0.61268 BLD 6 tissues – – Ik-1, RXRA,
ZBTB7A

– – –
f

BLD, blood; MUS, muscle; HRT, heart; OVRY, ovary; ESDR, ES-deriv; ESC, embryonic stem cell; IPSC, induced pluripotent stem cell; CRVX, cervix; BRN, brain; SKIN, skin; ADRL,
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PRDX6-AS1 variant on chromosome 1q25.1 was significantly

associated with SLE susceptibility. Moreover, PRDX6, the closest

gene to PRDX6-AS1, was upregulated in patients with SLE in

multiple cell subpopulations. Our study provides new evidence

that variants located in lncRNA coding genes are associated with

SLE susceptibility.
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FIGURE 2

Differential expression of PRDX6 between patients with systemic lupus erythematosus (SLE) and controls. (A, B) At the mRNA level, the
expression of PRDX6 was elevated in B cells (E-GEOD-4588); (C, D) CD4+ T cells (E-GEOD-4588); (E, F) CD3+ cells (E-GEOD-13887); (G)
monocytes (E-GEOD-46907); (H) Peripheral blood mononuclear cells (PBMCs) (E-GEOD-50772); and (I) peripheral blood cells. (J) The level of
PRDX6 was also significantly elevated in patients with SLE compared with healthy donors at protein level (E-MTAB-5900). The analyses were
performed based on information available in online databases as referenced.
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