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Abstract: Radiation-induced damage is a common occurrence in cancer patients who undergo
radiotherapy. In this setting, radiation-induced damage can be refractory because the regeneration
responses of injured tissues or organs are not well stimulated. Mesenchymal stem cells have become
ideal candidates for managing radiation-induced damage. Moreover, accumulating evidence suggests
that exosomes derived from mesenchymal stem cells have a similar effect on repairing tissue damage
mainly because these exosomes carry various bioactive substances, such as miRNAs, proteins
and lipids, which can affect immunomodulation, angiogenesis, and cell survival and proliferation.
Although the mechanisms by which mesenchymal stem cell-derived exosomes repair radiation
damage have not been fully elucidated, we intend to translate their biological features into a radiation
damage model and aim to provide new insight into the management of radiation damage.

Keywords: mesenchymal stem cell; exosome; radiation damage

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from
human tissues or organs, such as the bone marrow, adipose tissue, umbilical cord, lung,
spleen, liver or kidney [1]. Despite being derived from multiple sources, MSCs display
similar biological phenotypes and functions [2,3]. Because of their autocrine and paracrine
actions, MSCs have been shown to possess potency in repairing tissue damage [4]. Critically,
delivery of only a small population of MSCs can result in accelerated damage repair
in the host [5–7]. In addition, exosomes are crucial components that account for the
paracrine action of MSCs [8–10]. For example, they exchange genetic material across
cells by transferring bioactive molecules [11]. Similar to other cellular exosomes, MSC-
exosomes are extracellular vesicles with a lipid bilayer structure and an average diameter
of 100 nm [1,12]. They carry bioactive molecules, including miRNAs, lncRNAs, lipids
and cytokines [1], thus providing a context for researching the biological functions of
MSC-exosomes.

Treating diseases with MSC-exosomes has shown promise in the field of regenerative
medicine, and numerous studies exploring the therapeutic effects of MSC-exosomes on
neurological, immunological and cardiovascular diseases have been published [13]. In
summary, the benefits of delivering MSC-exosomes in disease models mainly include the
attenuation of inflammation, promotion of angiogenesis and improvement in the survival
and proliferation of stem or progenitor cells within injured tissues or organs [14]. In
fact, such benefits can be achieved with MSCs as well. Although it has also been shown
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that MSCs can exert therapeutic effects on radiation damage, the therapeutic potential of
MSC-exosomes has not been widely explored in this field. Nevertheless, in a previous
study, irradiated cells exhibited enhanced uptake of exosomes because of an increase in the
formation of the integrin and tetraspanin complex CD29/CD81 on the cell surface [15], thus
indicating the specific role of exosomes in mediating biological processes in injured cells.
Moreover, MSC-exosomes were found to protect against acute or chronic radiation damage
via their miRNA cargo, suggesting that irradiated cells might utilize MSC-exosomes to
increase their resistance to ionizing irradiation [16–18]. For example, a study showed
that exosomal miRNA-210 could elicit efficient DNA damage repair by controlling the
transcriptional activity of HIF-1, thus enhancing cellular radio-resistance [17,19]. In this
review, we explore the pro-regenerative properties of MSC-exosomes in the field of radia-
tion damage and aim to provide new insight into the management of radiation damage by
using MSC-exosomes.

2. Biological Features of MSC-Exosomes

MSCs are crucial sources of exosomes in humans. Consistent with other cell-derived
exosomes, MSC-exosomes are generated through a sequential process including the in-
vagination of lysosomal microparticles and fusion and excretion from parental cells [20].
Lysosomal microparticles first invaginate their membranes to generate endosomes, which
then fuse with each other to form multivesicular bodies that contain intraluminal vesi-
cles. Next, the outer membrane of the mature multivesicular body fuses with the plasma
membrane of a cell and is ultimately transported out, constituting an exosome [20].

Exosomes consist of lipid bilayer membrane structures with diameters ranging from
40 nm to 160 nm (an average of 100 nm) [12]. They express various markers, includ-
ing CD9, CD81, CD63, TSG101, flotillin, ceramide, and Alix [12], and have a density of
1.15–1.19 g/mL in sucrose gradients [21]. MSC-exosomes contain at least 170 different
miRNAs [22] and 304 proteins [23], along with an indefinite number of DNAs, mRNAs
and metabolites [12]. Because they contain a large number of bioactive molecules, MSC-
exosomes have attracted great interest in the field of regenerative medicine. Accordingly,
numerous studies have attempted to assess whether the infusion of MSC-exosomes can
serve as an alternative strategy to repair tissue damage, and emerging results have mostly
revealed that MSC-exosomes have therapeutic effects similar to those of their parental
MSCs [24]. Moreover, MSC-exosomes have several advantages over MSCs. (i) MSC-
exosomes are long-lasting and can be stored at −80 ◦C without affecting their biological
functions [17], whereas cryopreserved MSCs exhibit impaired immunoregulatory and
pro-regenerative properties compared with fresh MSCs [25]. (ii) The membranes of MSC-
exosomes are enriched in sphingomyelin, cholesterol, ceramide and lipid raft proteins,
enabling MSC-exosomes to spread in vivo regardless of biological barriers, such as the
blood-brain barrier [26], for example, even when they are delivered via an intravenous
injection, MSC-exosomes can be detected in injured neurons in the brain [27]. (iii) Infusion
of MSC-exosomes elicits minimal immune rejection due to their complete lack of expression
of major histocompatibility complex (MHC) molecules [28,29], which prevents their rapid
clearance by host immune cells. For instance, MSC-exosomes were found to remain in a
recipient for a significantly longer time than MSCs after infusion [28,30], indicating that
they can perform their biological functions in vivo for a relatively long time. (iv) Infusion
of MSC-exosomes can avoid several stem cell-associated challenges, such as the risk of
spontaneous tumorigenesis induced by MSCs [31,32]. (v) The potential secretion of ex-
osomes by MSCs can be impacted by various factors. For example, maintaining MSCs
in a physiological state in an in vitro culture system can impact their production of exo-
somes with a specific phenotype in terms of biological activity [33]. Notably, although
incubating MSCs with an IFN-γ plus TNF-α mixture in vitro reduced their proliferation,
the production of exosomes was not adversely affected [28,34]. Moreover, this process
improved the immunosuppressive function of the MSC-exosomes. This prompts specula-
tion that exosomes with high bioactivity can be purposefully obtained by preconditioning
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MSCs in vitro prior to injection to treat inflammatory diseases. Therefore, determining
the components of MSC-exosomes that are able to produce high therapeutic efficacy is
particularly critical.

The miRNA and protein cargo contained in MSC-exosomes are effective in promoting
damage repair. Moreover, they jointly regulate the regenerative process in damaged
tissue. In a colitis model, MSC-exosomes were revealed to reduce macrophage-induced
inflammation by transporting metallothionein-2, an upstream protein that blocks activation
of the NF-κB pathway [28]. However, this anti-inflammatory effect of MSC-exosomes
was not completely lost even when blocking metallothionein-2 in vivo and in vitro [28],
demonstrating that other components in MSC-exosomes also exert bioactive effects in this
process. Therefore, exosomal miRNA-146a in MSCs might alleviate experimental colitis by
targeting the TRAF6 and IRAK1 genes [35], preventing NF-κB activation along with the
subsequent production of TNF-α and IL-6 [35]. Consistently, several other MSC-exosomal
miRNAs such as miRNA-30b-3p [36], miRNA-223-3p [37], and miRNA-126 [38,39] were
found to be responsible for suppressing pro-inflammatory responses. They also exhibit
potent effects in promoting tissue regeneration and angiogenesis. Overall, we need to
understand the mechanisms by which MSC-exosomes repair tissue damage.

3. Therapeutic Functions of MSC-Exosomes
3.1. Immunomodulation

To our knowledge, commoditized MSCs have been approved for treating some au-
toimmune diseases in a clinical setting; however, the incidence of infection secondary to
infusion of allogenic MSCs has been reported to be 29.5% [40]. This has prompted us
to find an alternative approach. Exosomes are thought to be superior over MSCs with
regard to treatment-related safety [41]. A previous work suggested that MSC-exosomes
improved the in vitro survival and function of neutrophils from patients with severe con-
genital neutropenia, thus increasing the potential efficacy of MSC-exosomes against acute
infection [42]. Moreover, studies have suggested that MSC-exosomes exhibit effects in
managing autoimmune or inflammatory diseases [37,43] (Table 1).
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Table 1. Mesenchymal Stem Cell (MSC) Exosomes Perform Immunoregulation Effects.

Models In Vivo/Vitro Exosome Source Immunoregulation Effects Ref.

In Vivo Models

Inflammatory bowel disease mice Human bone marrow MSCs
Increased levels of anti-inflammatory cytokines IL-10;
Decreased levels of pro-inflammatory IL-1β, IL-6, IFN-γ and TNF-α;
Promotion of the M2b macrophage polarization.

[28]

Inflammatory bowel disease mice Human Umbilical Cord MSCs
Increased levels of IL-10;
Decreased levels of IL-1β, IL-6, TNF-α, iNOS, and IL-7;
Inhibition of macrophages infiltration into the colon tissues.

[43]

Inflammatory bowel disease mice Human Umbilical Cord MSCs Increased levels of IL-10 and IP-10;
Decreased levels of TNF-α, IL-1β, IL-6. [44]

Myocardial ischemia/reperfusion mice Human Umbilical Cord MSCs
Increased levels of anti-inflammatory cytokine IL-10 and decreased levels of proinflammatory cytokines
TNF-α and IL-6 via exosomal miRNA-181a;
Promotion of Treg cell development.

[45]

Autoimmune encephalomyelitis rats Rat bone marrow MSCs
Increased M2-related anti-inflammatory cytokines of IL-10 and TGF-β;
Decreased M1-related proinflammatory TNF-α and IL-12 levels;
Promotion of the M2 phenotype microglia polarization.

[46]

Autoimmune encephalomyelitis mice Mice adipose MSCs Decreased Tbx21 and Gata3 expression, as the crucial regulator for Th1 and Th2 cell responses;
Decreased Rorc and Elf4 expression, as the activator and inhibitor for Th17 differentiation. [47]

Acute lung injury mice Rat bone marrow MSCs Decreased expression of pulmonary TNF-α, IL-1β and IL-6 via inhibiting TLR4-NF-κB signaling pathway. [48]

Neuroinflammation rats Rat bone marrow MSCs
Reduced oxidative stress responses;
Decreased levels of IL-1β, IL-6 and TNF-α;
Inhibition of neuronal degeneration and apoptosis.

[49]

Autoimmune Hepatitis mice Mice bone marrow MSCs
Attenuation of liver inflammation via carrying miRNA-223-3p;
Increased Treg/Th17 ratio;
Decreased levels of IL-1β and IL-6.

[37]

Inflammatory arthritis mice Mice bone marrow MSCs
Decreased CD8+T cell frequency and CD8+/CD4+ T cell ratio in vivo;
No reduction in CD8+T cell and CD8+/CD4+ T cell ratio in vitro;
Promotion of Treg populations.

[50]
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Table 1. Cont.

Models In Vivo/Vitro Exosome Source Immunoregulation Effects Ref.

In Vitro Co-Culture Models of Immunocytes with Exosomes

Bone marrow-derived dendritic cells (BMDCs) Mice adipose MSCs Inhibition of the BMDCs proliferation;
Transformation of immature and mature DCs into tolerogenic DCs [51]

Macrophages Human adipose MSCs Shift of macrophages from M1 to M2 phenotype polarization via shuttling functional miRNA-146. [34]
Peripheral blood mononuclear cells (PBMCs) Human bone marrow MSCs Increased secretion of IL-10 and TGF-β1 from PBMCs; Promotion of the Treg cells differentiation. [52]

PBMCs Human bone marrow MSCs Inhibition of the B lymphocytes proliferation and differentiation;
Decreased levels of immunoglobulin secretion. [47]

Neutrophils Human adipose MSCs Augment ROS production of neutrophils;
Promotion of lifespan and function of neutrophils. [42]
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In vitro, MSC-exosomes exert an immunomodulatory function, mainly by regulating
the commitment of immune cells or altering their inflammatory cytokine secretion pro-
files [28]. For example, in the presence of IFN-γ and TNF-α, MSCs generate exosomes
that induce macrophages to switch from an M1- to an M2-like phenotype, and exosomal
miRNAs, including miRNA-146 and miRNA-34, greatly contribute to this process [34].
Mechanistically, miRNA-146 upregulate expression of M2-associated genes such as TRAF6
and IRAK1 by targeting NF-κB signaling [53], and miRNA-34 targets Notch1 to suppress
transcription of genes encoding M1-related pro-inflammatory cytokines, such as IL-6 and
TNF-α [54]. The MSC-exosomal miRNA-181a has been consistently found to enhance
the production of M2-related cytokines, including IL-10 and TGF-β while reducing pro-
duction of the M1-related cytokines TNF-α, IL-6 and IL-12 by macrophages [46,55]. In
addition to altering the secretion profile of macrophages, miRNA-181a induces Treg cell
generation by suppressing expression of the c-Fos gene, which functionally counteracts the
Foxp3-dominant transcriptional program associated with Treg cell development [45]. Nev-
ertheless, a coculture experiment revealed that Treg cell induction by MSC-exosomes was
less efficient than that by MSCs, indicating that some other factors contribute to this process.
In fact, soluble factors from MSCs, including IDO, PGE2 and IL-10 strongly induce Treg cell
generation [56]; however, except for IL-10, they are not present in MSC-exosomes [28,50].

In vivo, MSC-exosomes control immunomodulatory processes in an antigen-presenting
cell (APC)-mediated manner [52]. For example, dendritic cells (DCs) serve as critical medi-
ators of the effects of MSC-exosomes on Treg induction. Mechanistically, MSC-exosomes
induce mature DCs to acquire immune tolerogenic phenotypes [51]. A critical function of
tolerogenic DCs is inducing Treg cell generation in vivo [57]. Tolerogenic DCs secrete high
levels of anti-inflammatory cytokines, such as IL-10 and TGF-β, and express low levels of
costimulatory molecules, thus inducing naïve CD4+ T cells to commit to differentiation
into Tregs [51]. In addition to DCs, MSC-exosomes are able to restrict B cell maturation,
which decreases the production of immunoglobulin-G (IgG) [50,58]. To a certain extent,
the above effects of MSC-exosomes will assist in attenuating the immune responses driven
by other T subsets, such as Th1, Th2, Th17 cells or CD8+ T cells [33,59–61] (Figure 1).
Indeed, studies have shown that incubating mouse adipose tissue-derived MSC-exosomes
with mouse splenic immunocytes in vitro significantly downregulates expression of genes
encoding Tbx21, Gata3 and Rorc, which centrally control the commitment of Th1, Th2 and
Th17 cells, respectively [47]. CD8+ T cells that delivered human umbilical cord-derived
MSC-exosomes to GVDH mice significantly decreased the number of CD8+ T cells along
with the ratio of CD8+ T cells to CD4+ T cells in the peripheral blood [59]. However,
intriguingly, reduced numbers of CD4+ or CD8+ T cells did not occur when conditioned
by MSC-exosomes in vitro, which suggests, at least, that MSC-exosomes modulate host
immune responses independently of their direct effect on impairing the survival of CD4+

or CD8+ T cells [50] (Figure 1). In other words, the mechanisms by which MSC-exosomes
induce immunomodulation in vivo are more complicated than those observed in vitro, and
the details need to be further elucidated.
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Figure 1. MSC-exosomes exert anti-inflammatory and immunomodulatory effects, which aid in attenuating tissue cell
damage. MSC-exosomes perform these functions mainly through interaction of exosomal miRNAs and APCs. They can
induce immature and mature DCs to differentiate into tolerogenic DCs, mediating naïve CD4+ T cell differentiation into
Tregs. In addition, MSC-exosomes are able to induce macrophages to transform from the M1 to the M2 phenotype while
enhancing secretion of M2-related cytokines such as IL-10 and TGF-β and decreasing M1-related cytokine TNF-α, IL-6
and IL-12 levels. With regard to B cells, MSC-exosomes inhibit the maturation and function of B lymphocytes and cause a
decrease in IgG secretion. MSC-exosomes also decrease the CD8+ T cell number and the CD8+/CD4+ T cell ratio in the
peripheral blood of in vivo mouse models.

3.2. Angiogenesis

Angiogenesis has a crucial role in tissue regeneration after damage. In this process,
endothelial cells invade injured tissues to form buds and ultimately establish a capillary
network. It is well accepted that MSCs exert therapeutic effects on ischemic diseases by
directly producing or stimulating endogenous factors, such as vascular endothelial growth
factor (VEGF), hepatocyte growth factor (HGF) and stromal-derived factor-1 (SDF-1) [62,63].
These factors facilitate angiogenesis in damaged tissues [64]. Recent evidence has revealed
that MSC-exosomes also have pro-angiogenic properties [60,65] (Table 2).
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Table 2. MSC Exosomes Facilitate Angiogenesis in Various Disorders.

Models Exosome Source MSCs Disposure Carry Angiogenic Mechanisms Ref.

In Vivo Models
Severe combined
immunodeficiency mice Human adipose MSCs PDGF-stimulated c-kit with its ligand SCF Increasing matrix metalloproteinases content and enhancing

the angiogenic potential via c-kit/SCF. [55]

Hind limb ischemia mice Human placental MSCs NO-stimulated miR-126 Promoting angiogenesis by increasing VEGF and miR-126
levels. [39]

Cutaneous burn mice Human umbilical cord MSCs Blue light-stimulated miR-135b-5p; miR-499a-3p Promoting angiogenic activity via the upregulation of
functional miR-135b-5p; miR-499a-3p. [66]

Athymic-nude mice Human dental pulp MSCs HIF-1-overexpressed Jagged 1 Enhancing Jagged 1-mediated angiogenesis through Notch
signaling pathway [67]

Bone fracture mice Human umbilical cord MSCs Hypoxia- treated miR-126 Promoting angiogenesis and bone fracture healing through
HIF-1α/miR-126 and SPRED1/Ras/Erk signaling pathways. [38]

Nude mice Human adipose MSCs Hypoxia- treated - Promoting angiogenesis by increasing the expression of
VEGF and activating the PKA signaling pathway. [68]

Nude mice Human adipose MSCs Hypoxia- treated - Promoting angiogenesis at least partially through
upregulating VEGF/VEGF-R signaling pathway. [69]

Calvarial defect rats Human bone marrow MSCs DMOG-stimulated - Promoting angiogenesis by activation of the AKT/mTOR
signaling pathway [70]

Acute myocardial infarction rats Human umbilical cord MSCs Akt-transfected - Accelerating angiogenesis via upregulating PDGF-D
expression. [71]

Immunodeficient mice Human adipose MSCs - miRNA-125a
Promoting angiogenesis by transferring miR-125a to
endothelial cells and repressing angiogenic inhibitor
delta-like 4.

[65]

Femoral head osteonecrosis mice Human bone marrow MSCs - miRNA-224-3p Promoting angiogenesis by downregulating exosomal
microRNA-224-3p. [72]

Femora fracture rats Human bone marrow MSCs - -
Promoting angiogenesis and osteogenesis via activation of
the HIF-1α/VEGF and the BMP-2/Smad1/RUNX2
signaling pathways.

[73]

Femoral fracture rats Human umbilical cord MSCs - - Promoting angiogenesis and fracture healing through
increasing the expression of VEGF and HIF-1α. [74]

Cutaneous wound rats Human umbilical cord MSCs - - Promoting angiogenesis via activating the Wnt4/β-catenin
signaling pathway in a dose-dependent manner. [75]

Auricle ischemic injury mice Human placental MSCs - -
Stimulating angiogenic activity in endothelial cells via
upregulating their responsiveness to proangiogenic growth
factors.

[60]

Acute myocardial infarction rats Rat bone marrow MSCs - -

Enhancing the density of new functional capillary and
promoting blood flow recovery;
Inhibiting proliferation and function of T cells;
Reducing infarct size and preserving cardiac systolic and
diastolic performance

[64]
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Table 2. Cont.

Models Exosome Source MSCs Disposure Carry Angiogenic Mechanisms Ref.

In Vitro Co-Culture of Human Cells with Exosomes

Human umbilical vein
endothelial cells and
fibroblasts

Human bone marrow MSCs - Transcriptionfactor STAT3

Inducing proliferation and migration of fibroblasts;
Promoting the expression of growth factors, like HGF,
IGF1, NGF and SDF1;
Activating Akt, Erk, and STAT3 signaling pathways,
which are both involved in angiogenesis.

[63]

Human umbilical vein
endothelial cells and
fibroblasts

Human bone marrow MSCs - Wnt3a protein
Enhancing fibroblast proliferation, migration;
Promoting angiogenesis via carrying Wnt3a protein
in vitro.

[76]
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Based on proteomic analysis, MSC-exosomes contain various factors that are involved
in angiogenesis, such as platelet-derived growth factor (PDGF), fibroblast growth factor
(FGF), epidermal growth factor (EGF) and proteins associated with NF-κB activation [61].
PDGF, FGF and EGF function as common factors in mediating angiogenesis [77], and the
role of proteins associated with NF-κB activation in mediating angiogenesis should be
addressed. To our knowledge, NF-κB activation is conventionally associated with induc-
ing pro-inflammatory responses. Nonetheless, intriguingly, blocking NF-κB activation
abrogated tube formation by endothelial cells in vitro [61]. Consistent with this finding,
exosomes from bone marrow MSCs were found to activate STAT3 signaling cascades in
target cells, thus upregulating expression of genes encoding HGF, insulin-like growth
factor-1 (IGF1), nerve growth factor (NGF) and SDF-1 [63]. Similarly, several other studies
have revealed the mechanisms by which MSC-exosomes induce angiogenesis. For exam-
ple, exosomes from umbilical cord MSCs reportedly activate Wnt/β-catenin to increase
angiogenesis [75], but those from bone marrow MSCs promote angiogenesis by activating
the HIF-1α/VEGF axis in target cells [73]. Furthermore, bone marrow MSCs increase the
survival of pulmonary endothelial cells via exosomal miRNA-21-5p, which targets the an-
tioncogenes PDCD4 and PTEN in a mouse model of ischemia/reperfusion [78]. In addition,
placental MSC-exosomes are capable of upregulating expression of genes encoding Ang2
and Tie2 by endothelial cells [60]. The details of the angiogenic features of MSC-exosomes
are provided in Table 2 and Figure 2.

Similar to their immunomodulatory features, the pro-angiogenic potency of MSC-
exosomes can be impacted by foreign stimuli [55,69]. For example, it was found that
MSCs conditioned with PDGF showed increased production of exosomes containing
angiogenic molecules, such as c-kit and stem cell factor [55]. However, preconditioning
MSCs with pro-inflammatory cytokines, such as TNF-α and IL-6, increased the exosomal
cargo content of miRNA-196a-5p and miRNA-17-5p, inactivating the PI3K-AKT, MAPK
and VEGF-related pathways and impairing angiogenesis [79]. In addition to such bioactive
substances, environmental factors impact the proangiogenic properties of MSC-exosomes.
In fact, exposure of MSCs to blue light resulted in the increased content of miRNA-135b-
5p and miRNA-499a-3p as exosomal cargo, which promoted angiogenesis in vitro by
repressing myocyte enhancer factor 2C (MEF2C) [66]. Consistent with this finding, hypoxia
enhanced the cargo content of miRNA-126 in MSC-exosomes. In this context, miRNA-
126 was able to stimulate SPRED1/Ras/Erk/HIF-1α, thus increasing angiogenesis in
injured tissues [38]. More intriguingly, HIF-1α was found to upregulate expression of the
gene encoding RAB22A, which participates in vesicle formation in cells [80]. This event
partially illustrates why HIF-1α-overexpressing MSCs can increase their production of
exosomes [38]. Functionally, exosomes from cells such MSCs promote angiogenesis by
activating the Jagged-1/Notch signaling pathway [55]. As the pro-angiogenic potency of
MSC-exosomes can be improved by using the above methods, we can purposely generate
them and utilize them to treat ischemic diseases (Table 2).
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Figure 2. MSC-exosomes are capable of protecting against radiation-induced damage to hematopoietic and nonhematopoi-
etic systems. In hematopoietic reconstruction post irradiation, MSC-exosomes enhance hematopoietic cell survival and
proliferation by carrying functional molecules, such as the pro-regeneration miRNAs miRNA221, miRNA451 and miRNA654,
the anti-apoptosis-related miRNAs miRNA210, miRNA106b and miRNA155, the hematopoiesis-related cytokines G-CSF
and IL-8, and the hematopoiesis-related growth factor VEGF. In addition, MSC-exosomes can protect irradiated bone
marrow MSCs from radiation-induced DNA and oxidative stress damage by activating the Wnt/β-catenin signaling
pathway. With regard to the non-hematopoietic system, MSC-exosomes reduce apoptosis of skin epidermal, lung alveolar
epithelium and intestinal epithelium cells, as MSC-exosomal miRNAs likely mediate repair of DNA double-strand breaks
in damaged cells. Oxidative stress reaction and DNA damage are the major processes in radiation damage. MSC-exosomes
can overcome these crucial events effectively, and have potential to suppress the development of acute and chronic radiation
damage from several aspects. MSC-exosomes also facilitate vascular endothelium proliferation owing to their bioactive
cargo molecules, such as PDGF, FGF and EGF.

3.3. Epithelial Recovery

Apart from their effects on immunomodulation and angiogenesis, a growing body of
evidence has revealed the therapeutic effects of MSC-exosomes on epithelial injuries. In
summary, MSC-exosomes increase the proliferation and survival of epithelial cells.

MSC-exosomes accelerate epithelial recovery in wounded tissues via their miRNA
cargo. By using different disease models, recent studies have reported some specific roles
of MSC-exosomal miRNAs in mediating epithelial recovery, such as that of miRNA-135a in
increasing epithelial cell migration by suppressing expression of the gene encoding LATS2
during cutaneous wound healing [81] and that of miRNA-126 in activating the PI3K-AKT
and MAPK pathways during cutaneous healing in a rat model of diabetes [82]. Moreover,
exosomes may carry specific cargo such as foreign miRNA products. For example, in
a study of MSCs genetically modified to overexpress a variety of miRNAs, including
miRNA-100, miRNA-146a, miRNA-21, miRNA221 and miRNA-143, it was found that these
exosomes enhance DNA synthesis, thus promoting the proliferation of vaginal epithelial
cells [83]. In an acute lung injury model, exosomes from miRNA-30b-3p-overexpressing
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MSCs protected type II alveolar epithelial cells against apoptosis by downregulating serum
amyloid A3 (SAA3) [36].

In fact, increasing cell proliferation and survival by activating PI3K/Akt and MAPK
are typical effects of both MSCs and their exosomes. Other effects of MSC-exosomes during
epithelial recovery should be mentioned, including antioxidation. To our knowledge,
oxidation is a harmful occurrence that impairs cell survival. In a renal injury model, MSC-
exosomes inhibited apoptosis in tubular epithelial cells by reducing the level of reactive
oxygen species (ROS) [84]. As documented, mitochondrial dysfunction is an important
biological event that is closely associated with lung disease pathogenesis and/or progres-
sion [85]. Mechanistically, MSC-exosomes improve the mitochondrial function of lung
epithelial cells by targeting division/fusion-related genes such as rhot1, mfn1 and opa1 [86].
Simultaneously, exosomes have been shown to carry functional mitochondria and promote
mitochondrial transfer events [87], further demonstrating that MSC-exosomes have the
potential to alleviate mitochondrial damage and control the progression of tissue damage.

MSC-exosomes also inhibit the epithelial-mesenchymal transition (EMT) [88–90],
which is critical in inducing tissue fibrosis, resulting in pathological rather than functional
restoration of damaged tissue. Although the underlying mechanisms by which MSC-
exosomes restrict fibrotic development are not clear, MSC-exosomes inhibit activation of
the TGF-β1/Smad pathway [91] while enhancing expression of zona occludens protein-
1 in epithelial cells, which is related to cellular tight junctions [92]. Therefore, MSC-
exosomes at least reduce epithelial depletion due to transformation, thereby maintaining
the integrity of the epithelium and suppressing tissue fibrosis. Collectively, MSC-exosomes
promote epithelial recovery by facilitating regeneration, inhibiting apoptosis and reducing
EMT depletion.

4. Role of MSC-Exosomes in Repairing Radiation Damage

Despite the use of advanced treatment techniques, radiation damage is common and
often unavoidable in cancer patients during or after receiving radiotherapy. The actions of
ionizing radiation on biological molecules can be segmented into direct and indirect effects.
DNA damage in cells can be induced by the direct effects of ionizing radiation, and it can
also be caused by the oxidative stress reaction mediated by reactive oxygen species (ROS)
generated by indirect effects. Ionizing irradiation-induced DNA double-strand breaks,
oxidative stress, vascular damage, and subsequent inflammation are typical events in the
acute phase of the pathogenesis of radiation damage, and if these events are not well
managed, fibrosis occurs as a pathogenic feature in the chronic phase [55].The potential
use of MSCs in repairing radiation-induced acute damage in the hematopoietic system,
liver, lung, gastrointestinal tract, or skin has been explored [88,93–95], and the results
indicate that MSCs have several therapeutic features including increased proliferation and
survival of tissue/organ-specific stem/progenitor cells, the promotion of angiogenesis,
anti-inflammation and oxidation, and the reduction of fibrotic pathogenesis [96]. The above
findings indicate that MSC-exosomes have similar potencies to those of MSCs in repairing
tissue or organ damage due to disease. Moreover, recent advances have demonstrated the
repair of radiation damage by MSC-exosomes. In the following sections, we elaborate on
the therapeutic effects of MSC-exosomes on radiation damage in the hematopoietic system
and nonhematopoietic system (Figure 2).

Hematopoietic cells are sensitive to radiation exposure, which can lead to bone marrow
failure. Several studies have shown that MSC-exosomes are capable of repairing radiation-
induced hematopoietic system injury, but the exact mechanism is unclear. A few studies
have suggested that the following processes may contribute to the relevant mechanism.
(i) MSC-exosomes can transfer miRNAs with pro-regenerative or anti-apoptotic effects
to irradiated hematopoietic cells. For example, intravenous delivery of human bone
marrow MSC-derived extracellular vesicles (MSC-EVs, mainly comprising exosomes and
microvesicles) swiftly normalized the counts of peripheral blood cells in mice that received
whole-body irradiation because their cargo content, including miRNA-221, miRNA-451
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and miRNA-654-3p, promoted the proliferation of irradiated marrow cells and miRNA210-
5p, miRNA106b-3p and miRNA155-5p prevented radiation-induced hematopoietic cell
apoptosis [17]. (ii) MSC-exosomes can restore hematopoiesis by stimulating secretion of
hematopoiesis-related cytokines. A previous study has suggested that human placental
MSCs rescue radiation-induced hematopoiesis in mice by secreting human hematopoiesis-
related cytokines, including G-CSF, MCP-1, IL-6 and IL-8 [16], and this effect can be
observed with MSC-exosomes as well [18]. In fact, the data from a recent study show that
MSC-exosomes are capable of inducing production of high levels of hematopoiesis-related
cytokines such as G-CSF, IL-6, IL-8 and VEGF by macrophages in vitro [18]. (iii) MSC-
exosomes have several other features that cause the remodeling of hematopoietic cells. For
example, incubation with MSC-exosomes enhances the activity of macrophages, which are
regarded as the key regulators of demand-adapted hematopoiesis [89]. MSC-exosomes
are also able to directly restore irradiated bone marrow MSCs, which are considered to be
potent contributors to hematopoiesis. One critical mechanisms involves the alleviation of
DNA damage and oxidative stress via Wnt/β-catenin signaling pathway activation [90].

In addition to remodeling the hematopoietic system, MSC-exosomes are capable of
protecting the skin, gastrointestinal system, respiratory system and other systems against
radiation damage. At the micro level, radiation damage is essentially attributed to the
large number of oxygen free radicals generated by ionizing radiation, which subsequently
result in DNA double-strand breaks. Previous studies have reported that MSCs play a
key role in alleviating DNA damage and oxidative stress damage [97]. MSC-exosomes,
the functional role of which depend on their cargo derived from cells of origin, exert
similar remodeling effects [98–100]. For example, in an oxidative stress-induced skin in-
jury model, MSC-exosome treatment decreased ROS generation and subsequent DNA
damage and improved the antioxidant capacities of damaged cells through NRF2 signal-
ing [100]. Other studies have found that after MSC-exosome treatment in an ischemic
renal disease model, damaged renal cells showed reduced oxidative stress marker (MDA)
levels, increased anti-oxidant marker (SOD and CAT) levels, and significantly reduced
DNA damage parameters [98]. However, the underlying molecular mechanism is poorly
understood. Notably, studies have shown that some miRNAs that are contained in MSC-
exosomes such as miRNA210 are able to repair DNA double-strand breaks [17,19], which
suggests that exosomes may exert remodeling functions in a noncoding RNA-mediated
epigenetic manner. This may explain the decrease in the apoptosis of skin epidermal cells,
lung alveolar epithelium, intestinal epithelium and various parenchymal cells after MSC-
exosome exposure [60,101–103]. Such noncoding RNA cargo may affect nonhomologous
end-joining (NHEJ), which is common and essential in mammalian cell DSB repair [104].
Current evidence suggests that MSC-exosomes treatment is beneficial for the repair of
oxidative stress-induced damage [22,105,106], although the exact functional components
remain to be revealed. In addition, it has been found that intravenously injected MSC-EVs
(including exosomes) are highly distributed in parenchymal organs such as the liver and
spleen in a whole-body irradiation mouse model [105]. This may provide the context
for the development of cures for radiation-induced parenchymal organ injury. Microvas-
cular endothelial apoptosis has been recognized as the primary process that initiates
radiation-induced injury [106]. Studies have found that local MSC-exosome treatment can
facilitate the proliferation of vascular endothelial cells by activating the Wnt4/β-catenin
pathway [75,103]. MSC-exosomes also have the potential to cure radiation-induced injury
partly due to their potent pro-angiogenic factor cargo such as PDGF, FGF and EGF [61],
which induce endothelial proliferation and differentiation in vitro and neovascularization
in vivo [107,108].

On the other hand, exosomal targeting of cells is mediated by members of the integrin
and tetraspanin families or other associated molecules based on their expression [109,110].
An experimental study demonstrated that radiation contributes to increased formation
of the integrin and tetraspanin complex CD29/CD81 on the cell surface, thus enhancing
uptake of exosomes by irradiated cells [15]. This further illustrates the potential use of
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MSC-exosomes in the treatment of radiation damage. In general, the repair effect of MSC-
exosomes on radiation damage in multiple systems is partly attributed to their bioactive
cargo, which predominately consists of noncoding RNAs and functional proteins. These
molecules influence the expression of target genes associated with radiation-induced
damage or tissue regeneration due to epigenetic regulation. Overall, more experimental
studies are required to further explore the molecular mechanisms involved.

5. MSC-Exosomes in Repairing Radiation Damage: Perspective and Challenges

With regard to radiation-induced damage, it has been revealed that MSCs play a
crucial role in tissue damage treatment and prevention. Moreover, the superior prop-
erties and improved safety of MSC-exosomes make them novel candidates for curing
radiation-induced damage. They exert therapeutic effects mainly by facilitating angio-
genesis, promoting cellular regeneration, and probably by enhancing the repair function
through immunomodulatory effects. More importantly, there are several methods that can
be used to enhance the efficacy of remodeling damaged tissue. On the one hand, exosomes
secreted by MSCs with genetic modifications are a promising alternative treatment, such as
exosomes derived from SDF1-overexpressing MSCs for microvascular regeneration [111].
On the other hand, MSCs can be pretreated in vitro before exosomes are collected, such
as with hypoxia-treated MSC-exosomes in ischemia-related disease [55]. Last, but equally
important, the tropism of exosomes can be improved by increasing expression of spe-
cific receptors on the surface of the original MSCs. Current studies on the treatment of
radiation-induced damage by MSC-exosomes are mostly based on the acute phase, whereas
little work has been performed on the treatment of chronic radiation-induced damage
by MSC-exosomes. Notably, evidence suggests that MSC-exosomes reverse EMT of en-
dometrial epithelial cells via the TGF-β1/Smad pathway [91] and of tubular epithelial cells
via enhanced tight junctions [92]. In general, sustained EMT is a critical mechanism that
underlies the fibrotic pathology of tissue [112]. Thus, it can be reasonably inferred that
MSC-exosome treatment has potential for preventing tissue fibrosis in the chronic phase of
tissue damage. Therefore, despite limited evidence of the repair role of MSC-exosomes in
chronic radiation-induced damage, it is important that researchers make further efforts to
explore their therapeutic and underlying potential in chronic radiation-induced damage.
This will provide a new context for the future application of MSC-exosomes to treating
chronic radiation damage (Figure 2).

In fact, there are several deficiencies with regard to managing diseases by using
MSC-exosomes. (i) One concern is the challenges due to the instability of contents of
exosomes. For example, studies have shown that the amount of exosomal miRNA cargo
is influenced by the irradiation dose and pH value of the culture medium [113,114]. The
precise experimental conditions for exosomes are more difficult to control compared to
MSCs. (ii) Another concern is the lack of a uniform standard for the purification and
quantification of exosomes from conditioned media. Overall, it is difficult to determine the
equivalent dose of exosomes in dose-dependent experimental studies, which may lead to
different conclusions as results can be affected by exosome content and impurities. There-
fore, it is appropriate to find an ideal method for constructing a precise equivalent dose
of exosomes for experimental purpose. Although the effects of MSC-exosomes in various
disease models have been clearly shown, the exact components and mechanisms of therapy
are not entirely clear. miRNAs and functional proteins may play major roles, yet the role of
MSC-exosomes in tumor growth and metastasis remains controversial. Previous studies
have shown that MSC-exosomes can promote tumor growth in vivo [115], but a recent
study revealed that MSC-exosomes enhance radiotherapy-induced tumor cell death in
primary and metastatic tumor foci through synergistic and bystander effects [116]. Urgent
issues for cancer patients receiving radiotherapy include the adjuvant antitumor effect and
resistance to radiation damage. There is a great need for researchers to elaborate on the
role of MSC-exosomes in regenerative medicine for the treatment of radiation damage.
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6. Conclusions

MSC-exosomes show potential for repairing radiation damage. Current data reveal
that MSC-exosomes have therapeutic potential due to their anti-inflammatory effects and
promotion of angiogenesis and epithelial survival, which are crucial biological processes
in the remodeling of radiation damage. In addition, the immunomodulatory effects of
MSC-exosomes probably enhance their tissue repair function. Overall, MSC-exosomes
have good prospects for the treatment of radiation injury and this may inspire future
research in this field.
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