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Abstract

Background: The three-dimensional structure of a protein is an essential aspect of
its functionality. Despite the large diversity in protein structures and functionality, it is
known that there are common patterns and preferences in the contacts between
amino acid residues, or between residues and other biomolecules, such as DNA. The
discovery and characterization of these patterns is an important research topic within
structural biology as it can give fundamental insight into protein structures and can
aid in the prediction of unknown structures.

Results: Here we apply an efficient spatial pattern miner to search for sets of amino
acids that occur frequently in close spatial proximity in the protein structures of the
Protein DataBank. This allowed us to mine for a new class of amino acid patterns,
that we term FreSCOs (Frequent Spatially Cohesive Component sets), which feature
synergetic combinations. To demonstrate the relevance of these FreSCOs, they were
compared in relation to the thermostability of the protein structure and the
interaction preferences of DNA-protein complexes. In both cases, the results matched
well with prior investigations using more complex methods on smaller data sets.

Conclusions: The currently characterized protein structures feature a diverse set of
frequent amino acid patterns that can be related to the stability of the protein
molecular structure and that are independent from protein function or specific
conserved domains.

Keywords: Protein structure, Frequent pattern mining, Thermostability, Protein-DNA
complexes
Background
Proteins are primarily composed of a long chain of amino acids that is folded into a

complex three-dimensional structure. This spatial structure of a protein is an essential

component in its functionality and is thus subjected to evolutionary pressures to

optimize the inter-residue contacts that support it. For example, the proteins of

thermophilic organisms are known to contain specific adaptations in their amino acid

configurations and content to stabilize the molecular protein structure in the high

temperature living environment in which these species live [1,2]. Despite the large di-

versity in protein structures and functionality, it is known that there are common pat-

terns and contact preferences between residues, or even between residues and other

biomolecules, such as DNA.
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Different methods have been described to explore the amino acid content of a protein

and their interactions for a variety of goals. Within the scope of molecular modelling, fre-

quent representations of common inter-residue contacts involve protein contact maps

(PCM) or adjacency matrices [3,4]. These types of representations transform the three-

dimensional organisation of protein residues into a two-dimensional interaction map.

These maps can then be mined to identify common patterns of residues in contact that

occur in multiple different protein structures [5]. A variety of techniques have been applied

to this problem, such as support vector machines [6], hidden markov models [7,8] and

neural networks [9]. These patterns are then commonly used for protein fold prediction,

often by first predicting the PCM from the amino acid sequence [10,11]. A second type of

mining applied to protein structures involves the discovery of specific re-occurring local

structures or amino acid motifs that can be related to a given protein function or family

[12]. A common approach to finding such patterns involves the transformation of the pro-

tein structure into a residue graph where edges represent interactions or close proximity.

Common patterns can then be identified through subgraph mining techniques, which can

then be used for the functional characterization of other protein structures [13-16].

The RSCB Protein DataBank (PDB) is the primary collection of protein molecular

structures [17]. It contains the full atomic molecular structures for more than 90 000

proteins and protein complexes at the time of writing. This represents the largest col-

lection of protein molecular structures that is nowadays available and has been the sub-

ject of many data mining initiatives. However most data mining approaches are only

applied to a small subset of the PDB database, typically no more than a few hundred

structures. The main hurdle with scaling these approaches up to larger data sets, is that

the computation time and memory usage scale up too, in most cases in a more than

linear fashion due to the complexity of three-dimensional molecular structures data.

Frequent pattern mining is a data mining technique that was developed to identify el-

ements that often co-occur within a data set. The archetypical usage case is the ‘market

basket’ problem, where the goal is to identify which items are often bought together

based on the transactions made at a supermarket. Despite the simplicity of this prob-

lem, creating an algorithm that can solve it in an accurate and rapid manner is not triv-

ial. A significant amount of research has therefore gone into solving this problem as

efficiently as possible and many algorithms now exist that address it. Many common

biological challenges can be readily translated into the ‘market basket’ problem, and

therefore frequent pattern mining has seen significant use in bioinformatics applica-

tions [18]. Relevant to the field of structural biology, frequent pattern mining has been

applied to discover the common patterns that are present in PCMs [8] and for second-

ary structure prediction [19]. A recent extension of the frequent pattern mining field is

the concept of pattern cohesion. This metric scores an item set based on the physical

distance of the typical items within the set; i.e. items that are far apart can be said to

have a low cohesion, while items that are proximal have a high cohesion [20]. While

originally proposed for sequence data, this definition of cohesion can be readily ex-

tended to three dimensions. This has recently been implemented in a frequent item set

miner that can rapidly find patterns of amino acids that often co-occur within a set of pro-

tein structures, without the need to convert the protein structure into a contact map or a

graph [21]. We use the term FreSCOs (Frequent Spatially Cohesive Component sets) to

refer to this type of pattern class.
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We have shown that the patterns retrieved on such a protein data set mostly involve

combinations of three or four amino acids that frequently occur in close proximity

[21]. Thus these FreSCOs are more complex than the pairwise interaction between two

residues, but not so extensive that they are unique to a specific protein or protein fam-

ily. In this paper, we investigate what amino acid patterns are common in a large collec-

tion of protein structures and compare the discovered patterns to those that have been

described previously using other classes of methods on smaller data sets. Further we

explore the possibility to find FreSCOs that can be linked to the optimal growth

temperature of the organism or to preferred protein-DNA interactions.
Methods
Data set

Two large collections of three-dimensional structures are used in this study. The first is

the collection of all structures contained within the RCSB PDB database, obtained on

the 3rd of May, 2013 [17]. Only non-redundant protein sequences were retained as an-

notated by the Vector Alignment Search Tool in the non-redundant PDB chain set at

different sequence similarity cut-offs [22]. The largest set of proteins that was consid-

ered in this manner, where structures with a BLAST p-value lower than 10−80 were

considered redundant, contains 32 142 protein molecules from a large variety of organ-

isms. As using more stringent redundancy cut-offs had little effect on the resulting pat-

terns [see Additional file 1], we chose to use the largest set for increased statistical

power. The second three-dimensional structure data set is a collection of 2 901 DNA-

protein complex molecular structures (less than 90% protein sequence identity) as

obtained from the RCSB PDB database on the 15th of October, 2013. The data set pre-

sented to the pattern mining algorithm used the Cα atom for protein residues and the

N1 atom for DNA bases to determine the coordinates for the given label, i.e. the type

of amino acid or base.

Pattern mining algorithm

The algorithm used in this paper is based on the principles of frequent pattern mining

and the data mining concept of cohesion. In brief, the algorithm considers all possible

amino acid combinations and identifies those combinations that are both frequent in

the set of protein structures and that consist of amino acids in close average proximity.

Hereafter these patterns of frequent spatially cohesive amino acids will be referred to

as ‘FreSCOs’. This method can be sped up by pruning the possible search space with

little to no loss in accuracy [23]. The next section introduces the definitions and algo-

rithmic framework behind the pattern miner.

The three-dimensional structure of a protein can be considered as a list of points

where each point v is a pair (a,c) consisting of an item a ∈ I, where I is the set of all

possible amino acids and a coordinate c ∈ R3. We can then represent a protein as a

data object d = {v1, …, vl}, where l is the number of amino acids in the protein se-

quence. The set of all proteins within a given data set is denoted by D. We assume that

two points can never occur at the same position, i.e. with the same coordinate. On the

other hand, an amino acid ai may occur many times at different positions in a protein

dg with Vgi denoting the set of these points.
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A subset X = {a1, …, ak}⊆ I is termed a pattern of length k. Within the scope of this

paper, we are interested in patterns with both a high support, i.e. those that occur often,

and with a high cohesion, i.e. where the items are, on average, in close spatial proximity.

For a given pattern X, we denote the set of all data objects that contain all items of X as N

(X) = {d ∈ D|∀a ∈ X, ∃(a, c) ∈ d}. The support of X in a data set D is then defined as

S Xð Þ ¼ N Xð Þj j
Dj j

The concept of cohesion within the scope of data mining can be readily extended to
three-dimensional space. Given a set of points V = {v1, …, vk}, let MB(V) denote the ball

with the smallest radius that contains V, i.e. the smallest enclosing ball. It has been

shown that MB(V) always exists and is unique [24]. Intuitively, we consider the points

V to be in close spatial proximity if the radius of MB(V) is small enough. Given a pat-

tern X = {a1, …, ak}, assume that each amino acid ai occurs ni times in a protein dg ∈ N

(X). Within a single protein dg that contains X, Rg is then defined as the radius of the

smallest enclosing ball for a combination of V = {v1, …, vk} that matches X = {a1, …, ak}.

We then define the cohesive radius of X in D as

R Xð Þ ¼

X

de∈N Xð Þ
Rg Xð Þ

N Xð Þj j

The pattern miner theoretically enumerates every possible amino acid combination

for their support and cohesion radius value, and will return those patterns that exceed

the given cut-off for both. The utilized Apriori-like algorithm [25] speeds up this pat-

tern search by using several properties of the support and cohesion metrics [23]. As

the most efficient version of this algorithm is used for this study, there is no longer a

necessity of explicitly including secondary structure information in the miner. In this

manner the data set is not limited by any additional annotation being available and al-

lows inclusions of a much larger set of protein structures. The mining procedure is

able to return results after about 6 000 s (1 h40) when run on a local server (one 2.67

Ghz core, 24 Gb RAM) for the largest non-redundant PDB data set (almost 25 Gb of

PDB files).

Significance of the discovered patterns

The pattern miner reveals all FreSCOs that are both frequent and in close proximity.

Intuitively, one realizes that patterns matching very common amino acids will have on

average a smaller enclosing ball by chance than those that are less common. To com-

pensate for this phenomenon, a background distribution is computed for each de-

scribed pattern based on a permuted set of protein structures. In this background set,

the amino acid labels have been randomized for each protein while keeping the overall

structure (i.e. the coordinates) identical. The pattern miner is then applied to this per-

muted set to compute a new cohesion value. Due to the nature of the permutation, the

frequency of the amino acids and the patterns will remain the same, as the protein

amino acid content does not change. This permutation is repeated ten times and the

resulting cohesion values are used to estimate a background distribution for the cohe-

sion value of each pattern. As these background scores seem to follow a normal
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distribution [see Additional file 2 for an example], the probability that the true cohesion

value follows the same background distribution can be computed. The p-value cut-off

used is 0.01 with a Bonferroni correction for multiple testing.
Domain enrichment

To identify the known conserved domains present in the studied protein set, the se-

quence of the non-redundant protein structures extracted from PDB were run through

the Pfam sequence search web tool [26]. Domains were identified in 28 665 protein se-

quences, with a total of 58 459 domain-to-protein assignments. These assignments

were compared to the FreSCOs by matching the sequence position of the residues that

make up the smallest enclosing ball and the residues that define the conserved do-

mains. In other words, for each FreSCO it was evaluated if the residues that match it

are more or less likely to occur in any conserved protein domains. The significance of

the overlap between the pattern residues and the domain residues was evaluated using

a hypergeometric distribution at a P-value of 0.01 with a Bonferonni correction for

multiple testing.
Gene ontology enrichment

The gene ontology assignments to each protein chain that exist within the PDB data-

base can be used to assess the overlap between specific protein functional characteris-

tics and FreSCOs. To this end, each GO term associated that is annotated to at least 10

protein structures in the non-redundant PDB data set was checked for enrichment of

FreSCOs. Gene ontology terms from the molecular function, cellular component and

biological process trees were considered. However as most FreSCOs have a frequency

of more than 90%, only the most cohesive matches within a protein structure were

regarded as a match in this analysis. To this end, only matches where the residues oc-

curred within a minimal enclosing ball with a radius less than 3 Å were included. The

P-value for enrichment was calculated based on a hypergeometric distribution against

specific FreSCOs occurring in a set of protein structures with a given gene ontology

by chance.
Optimal growth temperature

The optimal growth temperature (OGT) for different prokaryotic species was retrieved

from the BacDive database on the 17th of December, 2013 [27]. Organisms with an

OGT of 37°C were filtered out as these mainly concern pathogenic species whose pro-

tein content might bias the analysis [28,29]. Using the species annotation available

through PDB, each molecular structure was linked to the species of origin. In this man-

ner 4 952 protein structures from the non-redundant data set could be matched with

an OGT. The FreSCOs extracted from the PDB data set can then be related to the

OGT by calculating the Spearman correlation between the cohesive radius of the pat-

tern match in a protein structure and the corresponding OGT. As a lower cohesive ra-

dius implies a tighter pattern, positive correlation is an indication for patterns with a

higher relevance in lower temperatures, and negative correlation for higher tempera-

tures. The p-value cut-off used is 0.01 with a Bonferroni correction for multiple testing.
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Results and discussion
Triplet patterns feature synergetic combinations

The entire non-redundant PDB data set can be mined for FreSCOs, i.e. patterns of

amino acids that frequently occur in close proximity. Amino acids in close proximity

are defined by a maximum cohesive radius of 4.5 Å for the purposes of this analysis,

which corresponds to the distance between the Cα atoms of two residues that are typic-

ally considered as interacting [9]. The support of the patterns is set to 0.60, much lower

than the frequency of the individual amino acids [see Additional file 1] and further re-

duction of this parameter does not reveal any additional patterns. In the set of 32 142

non-redundant protein structures, 185 and 260 combinations of respectively two

(doublet) and three (triplet) amino acids matched these criteria. However, one immedi-

ate observation is that the most cohesive FreSCOs are those composed of the most fre-

quent amino acids. This makes sense because frequent amino acids will occur closer

together even if it is simply by chance. We can correct for this bias by comparing these

results to the cohesive radius of randomized proteins with similar amino acid frequen-

cies. When we removed those FreSCOs whose cohesive radius did not significantly dif-

fer from random, 48 doublet and 104 triplet patterns remained [see Additional file 3].

These FreSCOs therefore represent amino acids that are significantly more often in

close proximity than one would expect. Given the underlying relationship where triplet

patterns can be considered built up out of two doublet patterns, one would expect

similar patterns to emerge; however this is clearly not the case. As can be seen in

Figure 1, the significant triplet patterns differ greatly from the doublet patterns. For ex-

ample, the triplet patterns display several strong links between acidic (ASP, GLU) and

basic (ARG, LYS) amino acids. These patterns are not present in the doublet list, yet
Figure 1 Graph overview of the significant FreSCOs found in the non-redundant PDB data set.
Doublet (left) and triplet (right) patterns extracted from the non-redundant protein structure data set that
had a cohesive radius significantly less than expected at random. Each node in the graph represents an
amino acid and each edge represents a pattern that includes the two connecting amino acids where the
edge width is scaled to the number of patterns. The nodes are colored based on the properties of the
amino acid: aliphatic (orange), aromatic (red), polar (blue), acidic (purple), basic (green) and glycine (yellow).
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are highly relevant, as previous studies have found that interactions between these resi-

dues form the bulk of the ionic bonds in protein structures [30,31]. In addition, there is

a tight clustering of the aliphatic amino acids in the triplet patterns, as can be expected

given that these amino acids typically form the hydrophobic protein core [32,33]. This

is in contrast to the doublet patterns, where the aliphatic amino acids do cluster together

but have few connections. We can postulate several reasons for the difference between

the doublet and triplet patterns. Due to the correction step, many triplet patterns featuring

only frequent amino acids might have been filtered out. However the triplet patterns still

retain several combinations of frequent amino acids, such as all possible combinations

with the four aliphatic amino acids: ALA-VAL-LEU, ALA-LEU-ILE, ALA-VAL-ILE and

VAL-LEU-ILE. Another possible reason is the difference between the doublet and triplet

patterns in terms of information content with regards to the positioning and the function-

ality of the pattern. A combination of two aliphatic amino acids may easily occur simply

by chance, while an aliphatic triplet is more indicative of a hydrophobic core. It may be

that the chemical interaction is only present between two of the amino acids, such as the

FreSCOs featuring a basic and an acidic amino acid, and the third amino acid provides

the necessary context for this interaction, for example a hydrophilic or hydrophobic resi-

due. In general, these triplet patterns thus represent a synergetic effect between the three

possible interaction pairs in the protein structures. Given their increased information con-

tent and their intrinsic novelty compared to patterns found with contact map approaches,

the triplet (or larger) patterns will be the main focus of the next analyses.
The discovered patterns seem to represent common building blocks

As can be seen in Figure 2, all triplet FreSCOs contain at least one of the four aliphatic

residues, except for the patterns PHE-GLU-ARG and PHE-GLU-LYS. Note that these

patterns are not limited to any specific type of protein, in contrast to those documented

for more complex spatial residue motifs [13-15]. Most FreSCOs described here have a

support of more than 0.9, thus they occur in more than 90% of all the analyzed pro-

teins. Given their ubiquitous presence, they are therefore more akin to common build-

ing blocks of the protein structure. In addition, the FreSCOs are unrelated to larger

types of protein building blocks, such as the characterized conserved protein domains,

as FreSCOs appear in a larger protein set and are not necessarily limited to the con-

served regions. To demonstrate this fact, the residues that form these patterns can be

matched with the conserved domains present in these proteins. Screening the protein

sequences with the Pfam models [26] reveals that 77.18% of the residues in our protein

set form part of a characterized protein domain. While a large fraction of the FreSCOs

are significantly associated with conserved domains, seven patterns were found to avoid

occurring in any protein domains [see Additional file 4]. These depleted patterns thus

tend to occur outside of the known conserved regions of the protein structures and fea-

ture mostly combinations of glutamate, lysine, glutamine, leucine and isoleucine. How-

ever our analysis also showed that the amino acids themselves are not uniformly

distributed across conserved domains and non-conserved regions. For example, the

conserved domains themselves are highly enriched for cysteine but are highly depleted

for proline and serine [see Additional file 5]. These amino acid preferences can partly

explain the enrichment or depletion of specific FreSCOs in the conserved domains, as



Figure 2 Significant triplet FreSCOs extracted from the non-redundant PDB data set. Plotted in the
heatmaps is the logarithm of the p-value of a randomized protein data set having an average cohesion
radius that is lower or the same for each pattern. The heatmaps were plotted so that every found pattern
occurs exactly once using the smallest amount of heatmaps.
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conserved domains seem to be significantly depleted for glutamate, glutamine and ly-

sine residues. The residues that match the discovered FreSCOs thus do not all cluster

at specific functional regions or a certain type of secondary structure, as shown for an

example protein structure in Figure 3. A gene ontology analysis reveals that certain

gene ontology terms are highly enriched for specific FreSCOs with a clear functional

role [see Additional file 6]. For example, protein structures annotated as membrane

proteins are highly enriched for FreSCOs consisting of mainly hydrophobic amino

acids, such as PHE-VAL-LEU. The majority of significant FreSCO associations arises

from the molecular function ontology tree. A large amount of FreSCOs are enriched in

proteins that bind nucleotides, or have a transferase or oxidoreductase activity. An ex-

haustive review of all enriched FreSCOs in these gene ontology terms would exceed the

scope of this paper. However for the nucleotide-binding proteins many FreSCOs in-

clude arginine, which is known to mediate a large number of nucleotide interactions

[34,35]. Furthermore many FreSCOs match residues that are in close spatial proximity

but at a great distance on the protein sequence (i.e. long-range interactions [32]), even



Figure 3 Illustration of the pattern distribution in a mined protein structure. Protein structure of the
HIV-1 protease homodimer [PDB:1DAZ] [36]. Only one of the homodimer chains was mined for FreSCOs
(represented in cartoon and stick format), the other is represented in light grey (stick format only).
Significant triplet FreSCOs in the mined protein structure are visualized by colorization of the best
matching residues, i.e. those with the smallest enclosing ball within this protein structure. Each pattern
is assigned a unique color based on amino acid content. Residues that do not match any significant
patterns are colored in dark grey.
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though the pattern miner does not impose such a constraint. The average distance between

residues matching FreSCOs is around 20 amino acids along the protein sequence chain for

each rule. The distribution of these distances is distinctly bimodal [see Additional file 7],

with a separation between short-range (less than 6 residues) and long-range (more than 10

residues) interactions. Most FreSCOs have an equal amount of short-range and long-range

matches, which is to be expected, as the mined patterns do not consider the distance along

the protein chain when evaluating best matches.

Specific patterns correlate with optimal growth temperature

Many of the FreSCOs can be linked to interactions that contribute to the stability of

the protein structure. This corresponds to previous studies on smaller data sets where

similar observations have been made [21]. As mentioned before, thermophilic organ-

isms are known to contain specific adaptations in their protein structures to stabilize

them at higher temperatures. Common adaptations for thermophilic proteins include

more compact proteins with a larger number of stabilizing contacts [37-39] and in-

creased preferences for specific amino acids. If the FreSCOs are indeed critical building

blocks to the overall stability of the protein structure, some should play an important

role at higher temperature. To this end, the relation of the average cohesion radius of

the FreSCOs to the OGT of the organism of origin was studied.

Starting from the 260 triplet FreSCOs described previously, we find that 49 were signifi-

cantly correlated with lower temperatures and 95 with higher temperatures [see Additional

file 8]. The most striking observation about these patterns, as can be seen in Figure 4, is that

those associated with low or high OGT have similar amino acid content. For example, in



Figure 4 Overview of patterns found to be associated with higher or lower OGT. Triplet FreSCOs
found to be related to proteins present in organisms with a lower (left) or higher (right) OGT. At the top of the
figure is a graph where each node represents an amino acid and each edge represents patterns that include the
two connecting amino acids where the edge width is scaled to the number of patterns. The nodes are colored
based on the properties of the amino acid: aliphatic (orange), aromatic (red), polar (blue), acidic (purple), basic
(green) and glycine/proline (yellow). At the bottom of the figure are heatmaps featuring the amino acid
combinations that are either enriched in lower (left) or higher (right) OGT. The color of the heatmaps corresponds
to the logarithm of the correlation p-value. The heatmaps are plotted so that each pattern occurs exactly once.
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both cases there are several FreSCOs that include glycine, leucine and alanine. It is already

well known that IVYWREL amino acid content of the proteome increases with the OGT

[28,29,40,41] and this remains true for the protein structures studied here [see Additional

file 9]. It is therefore interesting that we still find many FreSCOs featuring these amino acids

correlated with lower temperature. This indicates that the FreSCOs correlated with high

OGTare not only determined by an increase in the frequency of these amino acids, but also

due to a deliberate grouping of these residues. There are however still some differences in

FreSCO residue content. For example, there are no patterns with proline or lysine corre-

lated with low OGT and no patterns with cysteine or glutamine with high OGT. Further

there are more patterns with polar residues for low OGT, and more with hydrophobic,

acidic and basic residues for high OGT. This matches previous observations that as the

OGT increases, the number of polar residues decreases and the number of charged and

hydrophobic residues increases [42-45]. These charged residues can then form ionic

bonds that stabilize the protein at higher temperatures, typically on the protein surface ra-

ther than the protein core [46-48]. The FreSCOs support this locational preference as can

be seen in the strong correlation of several patterns featuring glutamate, lysine and a

hydrophilic residue with high OGT. Glutamate and lysine are known to frequently occur

on the protein surface as their long side chains reduce the chance of charge burial
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[42,43,46]. A hydrophilic amino acid (e.g. SER, ASN or THR) in the patterns thus provides

the necessary context for these interactions as occurring on the protein surface.
Mined patterns can represent preferential DNA-protein contacts

Many of the described FreSCOs were significantly enriched in nucleotide-binding proteins

[see Additional file 1]. In previous analyses, the pattern miner ignored any DNA molecules

that were present in the PDB molecular structures. However, patterns that combine amino

acids and DNA bases can be uncovered using the spatial miner by inclusion of these mole-

cules. FreSCOs found through such an analysis thus detail the significantly frequent and

cohesive interactions between DNA-binding proteins and their ligands. These interactions

are typically mediated by contacts made between amino acids and the DNA bases or back-

bone. It is well established that there is no clear deterministic recognition code between

amino acids and bases that exists over all DNA-binding proteins [49]. However it is known

that certain amino acid – base patterns exist that, while they have no predictive power, are

enriched in DNA-protein complexes [50,51]. These preferential contacts between amino

acids and DNA bases can be complex, featuring several bases or amino acids [52]. There-

fore we will search for FreSCOs in a set of protein-DNA complexes from the PDB database

in a similar manner to the patterns with only amino acids described previously. The max-

imum cohesive radius is increased to 7 Å, as the FreSCOs now need to bridge two macro-

molecules, and the support is set at 0.70. As we are interested in the contact between the

protein and the DNA molecule, the FreSCOs are filtered so that only those that feature at

least one base and at least one amino acid are retained. This results in 221 FreSCOs, which

are combinations of one to three bases and one to two amino acids. Based on a back-

ground distribution, 94 of these patterns were found to be significant [see Additional file 10].

As can be seen in Figure 5, thymine is the base that is featured in the most FreSCOs (62 out

of the 94). One possible explanation for this fact is that thymine has been found to have the

largest contribution to the area surface in DNA-protein interfaces [53]. The most common

amino acid in the FreSCOs is arginine (23 out of the 94). This matches previous findings
Figure 5 Significant FreSCOs found in the protein-DNA complex molecular structures. Only the
associations between the bases and amino acids are shown, edges between bases or between amino acids
were removed. Nodes and edges are colored by base (A: green, C: blue, G: yellow and T: red). Edge width
corresponds to the number of patterns shared between the connected nodes.
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where arginine is one of the primary amino acids to support interactions with DNA

bases (ACGT) and the DNA backbone [34,35]. This is due to the positive charge that

the arginine can carry, which allows favorable interactions with the typically negatively

charged DNA molecule. Indeed, it has been observed that the DNA-protein interface

is strongly enriched for the acidic amino acids arginine and lysine [53]. Other amino

acids that are known to form a significant amount of the hydrogen bonds between the

protein and the DNA molecule are serine, threonine, and glycine [34]. These amino

acids (SER, THR, GLY, ARG, LYS) are the most represented residues among the mined

FreSCOs. Amino acids that have been previously described as uncommon in protein-

DNA interactions [52], such as cysteine, methionine and tryptophan, are not featured in

any of the FreSCOs. The most significant FreSCO, i.e. the pattern that is most independ-

ent from the frequency of its residues or bases, was T-GLY-ARG with a p-value of 2.97 ·

10−283. The interesting aspect of this FreSCO is the presence of glycine, which only has a

small uncharged side chain, yet has been previously described as forming a significant

number of hydrogen bridges in protein-DNA complexes [34]. One can easily envision an

interaction where both amino acids cooperate by either forming hydrogen bridges with a

thymine base, or where one amino acid stabilizes the interaction by e.g. associating with

the DNA backbone. An example can be found in Figure 6 for the DNA-protein complex

of the Bacillus caldolyticus cold shock protein (PDB: 2HAX). Here the glycine residue is

in a position to directly interact with the thymine base, while the typically positively

charged guanidine group of the arginine residue can interact with the negatively charged

phosphate DNA backbone of the nucleotide.
Conclusions
In this paper, we describe the mining of an interesting and relevant new pattern class, which

we term ‘FreSCOs’, in the largest data set of protein molecular structures that is currently

available. The found FreSCOs consist of combinations of two or three amino acids and

seem to represent common building blocks aiding in the stability of the protein structure.

These patterns are not directly related to any specific type of protein function as they oc-

curred in over 90% of the analyzed structures, nor are they limited to the conserved
Figure 6 Example of a T-GLY-ARG pattern match. Residues matching the FreSCO T-GLY-ARG in the
molecular structure of the DNA-binding cold shock protein from Bacillus caldolyticus [PDB:2HAX] [54].
Different subunits of the pattern have been coloured: thymine nucleotide (red), glycine (yellow) and arginine
(green). Remainder of the protein and DNA-molecule have been coloured grey. The left part of the figure
features the pattern in stick form, right features the labels of the non-hydrogen atoms in the pattern.
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domains of the proteins. Many of the discovered FreSCOs feature combinations of glutam-

ate and lysine. These FreSCOS are only significant in the triplet combinations and not in

the doublet patterns, suggesting an essential synergetic relationship with a third amino acid,

which was often an aliphatic residue. FreSCOs featuring glutamate and lysine are found to

occur mostly outside of known conserved protein domains yet are a frequent feature in

protein structures. Lastly they are highly enriched in organisms that live at higher

temperatures, indicating an important role in the thermostability of proteins. In gen-

eral, comparison to growth temperatures reveal that hydrophilic residues were mostly

found to be related with low temperatures, and hydrophobic, acidic and basic resi-

dues to high temperatures. Studying these temperature relationships with FreSCOs

allows description of their synergistic tendencies among different amino acids and

provides some indication of positional context, as was seen for FreSCOs containing

glutamate and lysine in combination with hydrophobic residues. Further the enrich-

ment of specific FreSCOs at higher temperature supports earlier conclusions that the

mined patterns play a critical role in protein structure stability. Inclusions of the

DNA molecular structures into the data set allowed description of patterns related to

the contact preferences of protein-DNA complexes. Here the majority of the found

patterns involve a thymine base or an arginine residue, which matches known prefer-

ences. Many of the FreSCOs described in this case indicate complex interactions in-

volving several bases or amino acids and thus go beyond a simple one amino acid to

one base contact preference.

The next step will be to extend the framework to account for the similarity between

amino acids when mining these proximal patterns. The current implementation con-

siders each amino acid type as a discrete entity, however it is well established that

some amino acids are more similar than others. This can be directly integrated into

the mining framework to improve the detection of important amino acid patterns. In

addition, currently around half of all matches for a given FreSCO describe short-range

interactions. The proposed cohesive miner can theoretically be constrained to exclude

residue matches that exist in close proximity on the protein chain, which may result in

more interesting and less evident patterns. Further the function analysis of the found

FreSCOs supports their use in studies targeting a specific subset of proteins to dis-

cover common patterns that may exist beyond the amino acid singleton or duplet.
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