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Abstract

Background: Identification of functional non-coding variants and their mechanistic interpretation is a major
challenge of modern genomics, especially for precision medicine. Transcription factor (TF) binding profiles and
epigenomic landscapes in reference samples allow functional annotation of the genome, but do not provide
ready answers regarding the effects of non-coding variants on phenotypes. A promising computational
approach is to build models that predict TF-DNA binding from sequence, and use such models to score a
variant’s impact on TF binding strength. Here, we asked if this mechanistic approach to variant interpretation
can be combined with information on genotype-phenotype associations to discover transcription factors
regulating phenotypic variation among individuals.

Results: We developed a statistical approach that integrates phenotype, genotype, gene expression, TF ChIP-
seq, and Hi-C chromatin interaction data to answer this question. Using drug sensitivity of lymphoblastoid cell
lines as the phenotype of interest, we tested if non-coding variants statistically linked to the phenotype are
enriched for strong predicted impact on DNA binding strength of a TF and thus identified TFs regulating
individual differences in the phenotype. Our approach relies on a new method for predicting variant impact
on TF-DNA binding that uses a combination of biophysical modeling and machine learning. We report
statistical and literature-based support for many of the TFs discovered here as regulators of drug response
variation. We show that the use of mechanistically driven variant impact predictors can identify TF-drug
associations that would otherwise be missed. We examined in depth one reported association—that of the
transcription factor ELF1 with the drug doxorubicin—and identified several genes that may mediate this
regulatory relationship.

Conclusion: Our work represents initial steps in utilizing predictions of variant impact on TF binding sites for
discovery of regulatory mechanisms underlying phenotypic variation. Future advances on this topic will be
greatly beneficial to the reconstruction of phenotype-associated gene regulatory networks.

Background
A major open problem today is how differences in DNA
sequence, e.g., single-nucleotide polymorphisms (SNPs)
and variants (SNVs), lead to health-related and other
phenotypic differences among individuals. A common ap-
proach is to find polymorphisms/variants that are statisti-
cally correlated with phenotypic differences, as in

genome-wide association studies (GWAS) [1], family-
based association tests [2], and expression quantitative
trait loci (eQTLs) [3, 4] for phenotype-related genes.
However, statistically identified variants may not be func-
tionally related to phenotypes [5], due to a variety of fac-
tors including linkage disequilibrium (LD). This problem
is particularly pronounced in the case of non-coding vari-
ants, which represent the vast majority of GWAS findings
[6, 7] and often function by influencing gene regulation.
Accurate contextual information about non-coding vari-
ants can improve our ability to disambiguate variants
causally related to gene expression and phenotype [8, 9]
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from nearby non-functional SNPs. For example, if we have
prior knowledge of a relevant transcription factor (TF),
then the presence of a variant within a TF binding site
(TFBS) may add to our confidence in the variant’s regula-
tory potential; the assumption here is that such a variant
influences the TF’s binding to that site and consequently
the gene regulatory impact of the TF. Advanced tech-
niques for predicting in vivo TF-DNA binding potential
from DNA sequence (gkm-SVM [10, 11], DeepBind [12],
DeepSEA [13], DeFine [14], and Sasquatch [15]) can facili-
tate this approach by providing more accurate estimates
of a variant’s impact on TF binding. In addition to provid-
ing a means for statistically prioritizing those non-coding
variants by their likelihood of functionality, this strategy
also offers a mechanistic explanation about their function,
i.e., their impact on the TF-gene regulatory relationship.
For example, Zhang et al. [5] adopted such a strategy: they
combined a method for predicting changes in TF binding
with multi-omics data to identify a SNP that impacts the
binding strength of a TF called GATA3 to modulate breast
cancer susceptibility.
It must be noted, however, that the above approach to

identify phenotype-related non-coding variants along
with their regulatory mechanism is still in its infancy
and its sensitivity-specificity tradeoff is not well under-
stood. Reliable mechanistic claims of a SNP mediating a
TF’s influence on phenotypic variation often require
multiple lines of “-omic” evidence as well as prior know-
ledge. A related but less-explored opportunity is to
examine a collection of variants associated with a
phenotype (e.g., from a GWAS study) and test the col-
lection for enrichment of variants predicted to impact
TF-DNA binding; such an enrichment can associate the
TF, rather than individual variants, with the phenotype.
This may give us mechanistic insights of a more global
nature, with greater confidence than what the available
data allows at the level of individual SNPs. In recent
work, we adopted this general strategy to identify tran-
scription factors regulating phenotypic variation across
individuals, by combining genotype, gene expression,
and phenotype information with genome-wide profiles
of TF-DNA binding. The underlying principles were
twofold: (1) If a gene’s expression is correlated with
phenotype, and a SNP correlated with that gene’s expres-
sion (eQTL of the gene) is located within a TFBS, we
treated this as (weak) evidence that the TF influences
the phenotype via that gene; (2) if such evidence is ob-
served significantly many times, i.e., across many genes,
we hypothesized that the TF plays an important regula-
tory role in phenotypic variation. The assumption is that
TF binding is affected by the SNP and this effect under-
lies the SNP’s correlation with gene expression, which in
turn contributes to phenotypic variation. We pursued
this line of reasoning in [16, 17] to systematically

identify, through statistical testing and probabilistic
graphical models, major TFs associated with a specific
type of phenotypic variation, viz., differences in cytotoxic
response to a particular drug in a panel of cell lines. Our
goal in the current work is to test if information about
the functional impact of variants on TF binding can im-
prove inferences of TF-phenotype associations.
Two of the three pieces of information considered in

the above scheme—(a) strength of SNP association with
gene expression (eQTL) and (b) gene expression correl-
ation with phenotype (a transcriptome-wide association
study or “TWAS” [18])—are quantified by relatively
established procedures. However, the third axis of infor-
mation crucial to the approach—the evidence that a TF’s
binding, and hence its regulatory influence on a gene, is
affected by a SNP—is harder to assess. In previous stud-
ies, we treated the presence of a SNP inside a ChIP peak
of the TF, located within the 50-kbp upstream region of
the gene, as such evidence. However, this heuristic has
obvious limitations. First, a SNP located within a ChIP
peak may not necessarily impact the TF’s binding. This
may be addressed by borrowing ideas from previous
studies [19, 20] that have used motif and k-mer-based
scans within ChIP peaks to identify regulatory SNPs
likely to affect that TF’s binding. Second, a TF binding
event located further than 50 kbp from the TSS may also
exert regulatory influence on a gene, depending on chro-
matin looping structures [21]; conversely, every TF bind-
ing event located within a modest distance (e.g., 50 kbp)
of the TSS does not necessarily have a regulatory influ-
ence on the gene. Use of chromatin interaction data sets
offers a resolution of this issue [21]. In this work, we ad-
dress the above limitations of ascribing a regulatory
relationship to a (TF, SNP, gene) triplet, through a com-
bination of established and novel methods, with the
express goal of aggregating such evidences and combin-
ing them with gene-phenotype correlations to discover
regulatory mechanisms underlying phenotype variation.
We develop and use a new computational pipeline to

identify TFs associated with drug response variation
across individuals, building on the ideas outlined above,
and performing integrative analysis of genotype, gene ex-
pression, and cytotoxicity data on a panel of ~ 300 cell
lines, along with TF-ChIP data from ENCODE and TF
binding motifs from various databases. We utilize a
state-of-the-art, “k-mer”-based machine learning tech-
nique to predict the impact of a SNP on TF binding
strength. We also develop an alternative method for this
task, which uses one or more motifs known to represent
a TF’s binding preferences, and combines biophysically
inspired modeling and machine learning ideas. Through
systematic benchmarking, we find that this motif-based
method has a similar predictive ability as the “k-mer”-
based technique for predicting allele-specific TF-DNA
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binding, in contrast to recent reports that leading k-
mer-based approaches clearly outperform motif-based ap-
proaches [22]. Ultimately, using both k-mer-based and
motif-based predictors and utilizing chromatin interaction
domains and loops to link variants to genes, we show that
modern tools of SNP impact prediction can lead to the
discovery of novel regulatory mechanisms underlying
phenotypic variation that are missed when not using SNP
impact predictors. By aggregating evidence from many
SNPs with putative effects on TF binding, we systematic-
ally identify TFs that influence individual-level differences
in drug sensitivity, for several cytotoxic drugs. We exam-
ine one such discovered association more closely, viz., the
predicted and experimentally confirmed effect of the TF
“E74-like factor 1” (ELF1) on sensitivity to the drug doxo-
rubicin. Our analysis suggests several genes that may be
under ELF1 regulation and related to the doxorubicin re-
sponse pathway.

Results
Selection of methods for predicting impact of SNPs on
TF-DNA binding
We first sought a method to predict the impact of a SNP
on TF binding (henceforth referred to as the “TFBS-SNP
impact prediction task”), with the ultimate goal of utilizing
such predictions to discover TF-phenotype relationships.
This requires a sensitive method to quantify the strength
of binding, since the effect of a typical SNP on a binding
site is expected to be relatively modest. Several such
methods have been reported in the literature [10, 13, 23],
including some that utilize a variety of data types, such as
chromatin state profiles [24] and high-resolution DNA ac-
cessibility [15, 24], for prediction [10, 13, 23]. To ensure
wide applicability, we were specifically interested in a
method that can predict TF binding strength from DNA
sequence alone, while possibly using ChIP-seq data for the
TF for model-training purposes. Existing tools for this sce-
nario rely either on the k-mer composition of sequences
[10, 13, 23, 25] or use pre-determined motifs for the TF
[26–29]; recent evaluation [22] on allele-specific binding
(ASB) data suggests that the k-mer-based methods have a
clear advantage over motif-based methods. However, the
motif-based methods tested by Wagih et al. [22] use a
relatively rudimentary notion of motif matching, while
past work by us [30] and others [29] has contributed more
sophisticated biophysical models for this purpose. We
compared a representative of leading k-mer-based
methods (gkm-SVM [10, 11]) with an advanced motif-
based method to determine their relative merits in
predicting TF binding strengths and their changes due to
SNPs.
We first used the thermodynamics-based method

called Sequence To Affinity Prediction (STAP) [30] and
trained it on ChIP-seq data for a TF, thereby learning to

predict the strength of TF binding (ChIP signal strength)
at a putative site from its sequence and the TF’s motif.
STAP scores a genomic window, e.g., a few hundred base
pairs long—the typical length of a ChIP peak—for its
estimated occupancy by a TF, using the latter’s pre-
determined motif in a position weight matrix (PWM)
form. We have previously used this approach to accur-
ately model ChIP data in D. melanogaster [30] and in
mouse ESCs [31], as well as in the human cell line data
sets of a recent “DREAM” challenge. However, we recog-
nized that often there are multiple motifs for the same
TF in the literature or databases and it is not clear which
one of them, if any, is the optimal motif to use for the
modeling of binding strengths. We therefore trained
separate STAP models for each available motif for a TF
and then used a support vector machine (SVM) classifier
to combine the binding strength predictions of a TF at a
given genomic window, made by those STAP models,
into a single score (Fig. 1a). We call this the “MOP”
(Motif-based Occupancy Prediction) score. With a
means to score a window for its strength of TF binding,
we were able to estimate the effect of a SNP by consider-
ing a 500-bp window centered on that SNP position,
scoring two versions of the window, with the central
position being set to either allele of the SNP, and com-
puting the difference (Fig. 1b). We refer to this as the
“Delta-MOP” score of the SNP for the TF. Note that this
score is tied to the cell type from which ChIP data used
in training were obtained.
Figure 1b illustrates the Delta-MOP score with an ex-

ample. The SNP rs6717613 (G->A) is assigned a Delta-
MOP score of 0.45 for the TF ATF2, with the MOP scores
of the G and A alleles being 0.29 and 0.74 respectively.
Note that six different motifs were available for this TF;
for three of these ATF2 motifs, the SNP position coincides
with an informative position of the motif and the two al-
leles define motif matches of differing strengths, while for
the remaining three motifs, the two alleles present equally
weak or equally strong sites. Hence, it is not clear a priori
if this SNP should be considered as impacting binding
strength or not, and it is instructive to have the Delta-
MOP score provide an affirmative and quantitative
answer.

Evaluations of SNP impact prediction scores
We first evaluated methods for prediction of TF binding
strength from sequence, since this underlies the predic-
tion of TFBS-SNP impacts. As noted above, the newly
developed MOP score, which underlies Delta-MOP, is a
generalization of the motif-based STAP method [30–32]
for predicting a TF’s binding strength. We therefore
hoped to confirm that this generalization indeed im-
proves the prediction accuracy. We were also interested
in a leading k-mer-based tool for predicting TF binding
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Fig. 1 Process of scoring TFBS-SNP impact and identifying a TF’s “binding change SNPs.” a We build a STAP model to predict TF binding at a
DNA segment, separately for every available motif from ENCODE, FactorBook, and HOCOMOCO that represents the TF. For a given sequence,
each motif-specific STAP model outputs a score indicating the occupancy of the TF on the sequence. An SVM model then combines STAP scores
from all motifs of the TF to compute a combined score of the TF’s binding to the sequence; this is called the “MOP” score. b “Delta-MOP” score
of a SNP is defined as the absolute value of the difference between the MOP scores of the major and minor allele sequences, constructed from
the 501-bp sequence centered on the SNP location. In this example, SNP rs6717613 (G->A) is found to have a Delta-MOP score of 0.45 for the TF
ATF2, which is the difference of MOP scores between the major and minor alleles (0.29 and 0.74 respectively). MOP scores were based on
combining scores for six different ATF2 motifs (logos shown). The Delta-MOP score in this example can be qualitatively understood in terms of
matches of the core binding site (top) to each of the six ATF2 motifs, whose STAP scores are shown separately for the two alleles (bottom). The
core site’s match to motifs ATF2-1, ATF2-2, and ATF-6 changes in strength between the two alleles. For instance, the SNP falls on the 10th
position of motif ATF2-1, which prefers an “A,” and the change from “G” (major allele) to “A” (minor allele) is interpreted as a change in strength
of motif match. On the other hand, the core site does not have a strong match to ATF2-3 or ATF2-4, in either allelic form, while motif ATF2-5
overlaps the core site but not the SNP position. The Delta-MOP score combines these different pieces of information in a principled manner to
compute an overall score of the impact of rs6717613 on ATF2 binding
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from sequence. We therefore considered the “gkm-
SVM” method, which has been demonstrated to be
among the best for this purpose—on par [33] with deep
learning-based methods such as DeepBind [12] and
DeepSEA [13].
We trained the three methods—STAP, MOP, and gkm-

SVM—using the same training data set composed of 800
positive sequences (ChIP peaks of a TF) and 800 nega-
tive sequences (non-peaks), and cross-validated them on
a set of 400 unseen sequences, balanced between the
positive and negative classes. The negative sequences
were randomly selected from the ChIP peaks of any
other TF aside from the one under consideration (test
TF); this is an important distinction from past bench-
marks for the task (e.g., a recent “DREAM challenge”
[34] and was designed to make the evaluation more spe-
cific to the unique binding behavior of the test TF rather
than more general properties of TF binding implicit
within ChIP data, such as DNA accessibility. Our tests
were performed for each of 37 different TFs, selected
based on the availability of ChIP-seq data for a well-
studied lymphoblastoid cell line (LCL), GM12878, and
other relevant criteria (see Additional file 1: Note S1).
We noted that MOP and gkm-SVM produce similar ac-
curacy (Fig. 2a, Additional file 2: Table S2) on average
across the 37 data sets (TFs), while exhibiting some level
of complementarity. MOP shows a clear improvement
over STAP (Fig. 2b, paired T-test p value 0.0038, and
Additional file 2: Table S2), demonstrating the value of
using multiple motifs when available. (Additional file 2:
Table S1 tabulates the number of motifs available for
each TF.)
We next evaluated the above methods for the

TFBS-SNP impact prediction task, by asking if the
SNPs with strongest effects on predicted TF binding,
henceforth called “binding-change SNPs,” are enriched
for allele-specific binding sites (ASB), defined as sites
where ChIP-seq read counts are significantly different
between alleles [22]. The Delta-MOP score of the
previous section is one way to predict binding-change
SNPs, but analogous predictions can be made using
STAP or gkm-SVM in place of MOP to score binding
strengths of the two alleles. We refer to these as
“Delta-STAP” and “Delta-gkm-SVM” [10, 11] scores
respectively. As a baseline, we also evaluated a fourth
method, called “Delta-PWM,” which is a PWM-based
scoring metric included in the evaluations by Wagih
et al. (We used the “delta raw score” provided by
them as this baseline.) We obtained allele-specific
binding (ASB) data for 16 TFs in lymphoblastoid cell
lines from Wagih et al. [22], and tested whether the
four abovementioned methods can accurately discrim-
inate ASB SNPs from non-ASB SNPs (see “Methods”).
Performance was measured using the area under the

receiver operating characteristic curve (AUROC; ROC
curve of RUNX3 is shown in Fig. 2c) and the area
under precision-recall curve (AUPRC), following [35].
In AUROC comparisons (Fig. 2d, Additional file 2:
Table S3), Delta-MOP appears to have better per-
formance than Delta-STAP (average difference of
0.020, paired T-test p value 0.0013) and Delta-PWM
(average difference of 0.025), but not as significantly
different from Delta-gkm-SVM (average difference of
0.0043). The median AUROC using Delta-MOP is
0.60 and that using Delta-gkm-SVM is 0.58. Two of
the 16 TFs—BHLHE40 and EGR1—had their ASB
events predicted with AUROC of ~ 0.7 or greater
when using Delta-MOP. These two methods exhibited
a fair degree of complementarity in their performance
on different TFs (Fig. 2d). In AUPRC comparisons
(Fig. 2e), the performance of Delta-MOP is signifi-
cantly better than that of Delta-PWM (average differ-
ence 0.095, paired T-test p value 0.00072), but similar
to the other two methods, with the medians of Delta-
MOP, Delta-gkm-SVM, and Delta-STAP being 0.39,
0.38, and 0.36 respectively.
To summarize the evaluations reported above, we found

that the motif-based method MOP and the k-mer-based
method gkm-SVM are equally good predictors of binding
strength as well as of allele-specific binding events, with
noticeable degree of complementarity to each other, while
MOP shows clear improvements over the two other
motif-based methods evaluated. We therefore selected
Delta-MOP and Delta-gkm-SVM to predict TFBS-SNP
impact for the next steps of analysis. It was instructive to
find that a motif-based approach (Delta-MOP) is competi-
tive with, and for some TFs better than, the k-mer-based
Delta-gkm-SVM method (see “Discussion”). The same
conclusions are supported by comparisons with a newer
version of Delta-gkm-SVM, called “Delta-ls-gkm” [36],
which yields better performance on the ASB prediction
than Delta-gkm-SVM, but shows statistically insignificant
difference from Delta-MOP (Additional file 1: Note S6).

Discovery of TFs regulating individual variation in
cytotoxic drug response
To discover TFs associated with phenotypic variation,
we adopted a statistical approach illustrated in Fig. 3. At
its heart is a hypergeometric test of the overlap between
two sets of SNPs, outlined below.
TF-phenotype association test:

(a) We consider the collection of all SNPs that are
located within accessible DNA in the cell type of
interest; this is the “universe” set for the test. (Also,
see Discussion about this choice.)

(b) We define a subset of SNPs that are likely to impact
phenotypic variation through a cis-regulatory effect
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on a gene’s expression; we refer to this as the
“phenotype-associated” SNPs. Specifically, we iden-
tify phenotype-associated genes based on significant
association between gene expression and the pheno-
type, and then determine significant eQTL SNPs in
the regulatory regions (explained below and in
“Methods”) of those genes.

(c) We separately define a subset of SNPs that are
likely to affect a particular TF’s binding strength,
i.e., the “binding-change” SNPs. Although
introduced above, these are now redefined as the
SNPs with the greatest Delta-MOP or Delta-gkm-
SVM score for that TF, among those located within

the TF’s ChIP peaks for the cell type (see
“Methods”).

(d) A hypergeometric test is used to test the overlap
between phenotype-associated SNPs and binding-
change SNPs; a significant overlap is considered as
evidence for the TF’s role in regulating phenotypic
variation.

We note that the above test, conducted at the level of
SNPs, is conceptually similar to that in Hanson et al.
[16], with several key differences, the most prominent
being our use of TFBS-SNP impact prediction scores as
an additional criterion for designating binding-change

Fig. 2 a, b Comparison of three TF binding predictors. We compared MOP with STAP and gkm-SVM. The performance of each model is measure
by the Pearson correlation coefficient (CC) between ChIP score and predicted binding score on a test set of 400 sequences that are not used in
model training. Performance evaluation is performed for each of 37 data sets (for different TFs). a MOP performs as well or better than STAP
(using the best motif when multiple motifs are available) for 26 of the 37 data sets, with their average CC being 0.39 and 0.36 respectively. b
MOP performs as well or better than gkm-SVM for 21 of 37 TF data sets examined, with average CC of the two methods being 0.39 and 0.37
respectively. c–e Evaluation of TFBS-SNP impact prediction methods. Four different methods of binding change prediction (Delta-MOP, Delta-
gkm-SVM, Delta-STAP, and Delta-PWM) were evaluated for their ability to predict allele-specific binding (ASB) events from non-ASB events, for
each of 16 data sets based on ChIP-seq data for different TFs. Performance was measured using AUROC as well as AUPRC. ROC curve of RUNX3
using “Delta-MOP” as impact predictor is shown in (c). The last two rows show pairwise comparison of Delta-MOP and each of the other three
methods based on AUROC (d) and AUPRC (e) achieved by the methods on the same data set

Xie et al. BMC Biology           (2019) 17:62 Page 6 of 17



SNPs. Hanson et al., in contrast, considered all SNPs
within the TF’s ChIP peaks as binding-change SNPs.
Other important differences are that Hanson et al. per-
formed the statistical test at the gene level and did not
use DNA accessibility or enhancer-promoter interaction
data.
We used the TF-phenotype association test proced-

ure on a data set of 284 lymphoblastoid cell lines
(LCLs) that have previously been assayed for their
cytotoxic response (EC50) to each of 24 different
treatments, mostly cancer drugs [17]. Gene expres-
sion and genotype data are also available for these
LCLs. We used ENCODE [37–39] ChIP-seq data for
37 TFs in the lymphoblastoid cell line GM12878 (see
“Methods”), along with the abovementioned genotype
data to identify binding-change SNPs, using Delta-
MOP and Delta-gkm-SVM for TFBS-SNP impact
prediction. We also repeated the analysis using only
one or the other of these methods (see Add-
itional file 2: Table S4, Table S5). To identify
phenotype-associated SNPs, we considered genes
whose expression levels correlated significantly with
EC50 values (of a specific drug) across the panel of
LCLs, and used Hi-C data [21] from the GM12878
cell line in step (b) of the above procedure. Here, we
defined the regulatory region of a gene to include
the chromatin interaction domain to which the gene
belongs (see “Methods”), as well as more distal seg-
ments predicted to interact with the gene via chro-
matin “loops” [21].

Assessment of predicted TF-drug associations
A total of 888 TF-drug pairs (24 drugs × 37 TFs) were
evaluated; we report in Table 1 all 38 pairs significant
at false discovery rate (FDR) of 5% (nominal p value
< 0.0021). (The full results are in Additional file 2:
Table S6.) We also performed a variant of the above
enrichment tests where TFBS-SNP impact prediction
was not used; instead, a size-matched set of randomly
selected SNPs within ChIP peaks (of the test TF)
were chosen for consideration as binding-change
SNPs, as was done by Hanson et al. [16]. (We used a
size-matched random subset of within-peak SNPs, ra-
ther than all such SNPs, so that enrichment levels
can be compared.) We repeated this “randomized
control” test 100 times and noted how frequently
each significant pair in the original analysis had a
stronger p value in these randomized controls,
reported in Table 1 (column “Impact predictor utility
p score”). We note that 21 of the 38 reported pairs
have only ≤ 10% chance of being discovered when not
using TFBS-SNP impact prediction scores, thereby
underscoring the value of such predictions in the
procedure. This comparison establishes that impact
prediction scores can indeed help identify novel stat-
istical associations, though a rigorous assessment of
the sensitivity-precision tradeoff due to their use is
not attempted here. In another control experiment,
we assigned to each TF a random set of SNPs (size-
matched with the binding-change SNP sets above)
from the universe of all SNPs within accessible

Fig. 3 Process of identifying TFs regulating phenotypic variation. A hypergeometric test is used to test the overlap between a TF’s “binding
change SNPs,” based on presence within ChIP peaks from ENCODE and high Delta-MOP score, and “phenotype-associated SNPs,” i.e., eQTLs of
genes whose expression correlates with phenotype, located within cis-regulatory regions of the gene identified by Hi-C data. A TF is considered
significant to the phenotype if the FDR q value is below 0.05
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regions and tested all 888 TF-drug pairs. We discov-
ered that, on average, across 100 such randomized
control tests, only 1.27 pairs (about 0.14% of the 888
tested) were significant at a nominal p value of
0.0021, the criterion used above for reporting
(Table 1), providing further statistical evidence for the
low proportion of false positives in our report.
While we showed above that the use of TFBS-SNP im-

pact scores can help predict TF-drug associations that

might otherwise not rise above statistical significance,
we also needed to convince ourselves that the discovered
statistical associations are likely to be biologically true.
In the absence of any systematic benchmarks of causal
relationships between TFs and drug response, we had to
rely on extensive but ad hoc survey of the literature for
supporting evidence, following guidelines established in
[40]. Out of the 38 significant TF-drug pairs of Table 1,
eight were found to have “direct” supporting evidence

Table 1 Significant TF-drug associations. Thirty-eight TF-drug pairs were discovered as significant at false discovery rate (FDR) of 5%
(nominal p value < 0.0021). p value of the hypergeometric tests are shown in the third column. The fourth column (“Impact predictor
utility p score”) shows an empirical p value for each association, computed by repeating the hypergeometric test using a size-matched
random subset of SNPs within ChIP peaks (rather than SNPs with greatest TFBS-SNP impact scores) 100 times and counting how
frequently the test p value in these random controls is smaller than that observed in the original test for that TF-drug pair
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(Table 2). For seven of these 8 cases, knock-down of the
TF has been shown to lead to a significant difference in
sensitivity. In one case—the pair ELF1-CDDP—we found
published evidence that DNA-bound ELF1 increases
CDDP-induced DNA damage at the bound locations,
thereby directly and mechanistically implicating the TF’s
regulatory activity in response to the drug. Notably,
three of the top seven significant pairs (based on p
value) have such direct confirming evidence, and these
three pairs would have not have been discovered if not
using TFBS-SNP impact scores (impact predictor utility
p score ≤ 0.1, Table 1). Among the eight pairs with direct
evidence, only two (ELF1-CDDP and PML-doxorubicin)
would have reasonable chance of being discovered with-
out use of TFBS-SNP impact information (impact pre-
dictor utility p scores of 0.11 and 0.14 respectively).
We found six additional pairs to have strongly suggest-

ive evidence of a biological relationship. This includes
cases where the TF is a demonstrated regulatory mechan-
ism of the drug’s action (evidence code “Regulation of
drug action” in Table 2), is a known regulator of the drug’s
target protein or pathway (“Regulatory target direct” in
Table 2), or plays a role in sensitivity to a closely related
drug (“Sibling drug evidence” in Table 2); see
Additional file 1: Note S3 for details. As an example of
“regulation of drug action,” SP1-mediated trans-activation
of survivin has been shown to reduce doxorubicin sensi-
tivity [41], supporting the pair SP1-doxorubicin. An
instance of “regulatory target direct” evidence is provided
by the pair REST-rapamycin: REST is known to exert

regulatory control over the “mTOR” signaling pathway
[42] and this pathway (mTOR = “mammalian target of
rapamycin”) is the canonical target of the drug rapamycin
[43]. An example of the evidence code “sibling drug evi-
dence” is the pair PML-epirubicin, supported by direct
evidence for the role of TF PML in response to the drug
doxorubicin, which is closely related to epirubicin [44]
and is expected to have very similar mechanisms to the
latter.
In three additional cases, we found direct evidence in

favor of a physical interaction partner of the implicated
TF having an effect on the drug (evidence code “com-
plex partner direct”). For instance, while the reported
pair MAX-CDDP does not have direct evidence, the
“Max Dimerization Protein 1” (MXD1), a member of the
Myc-Max-Mxd family, is a well-known dimerization
partner of MAX [45], and has been shown to induce
CDDP (cisplatin) resistance in hypoxic U 2OS and MG
63 cells [46]. As another example, SIN3A is part of the
SIN3A-HDAC complex that is associated with diseases
including cancer [47], and HDAC inhibitors are known
to potentiate CDDP activity [48–50], thus providing
moderate but indirect evidence in favor of the reported
pair SIN3A-HDAC. An additional example of similar in-
direct evidence was found for the pair MXI1-CDDP:
MXI1, also known as MXD2, is a member of the MXD1
family, and a closely related member of this family—
MXD1—has been shown, via knock-down assays, to
affect CDDP resistance in hypoxic conditions via repres-
sion of PTEN [46].

Table 2 TF-drug pairs with supporting evidence. This table lists the 18 TF-drug pairs (among the 38 pairs shown in Table 1) that
have supporting literature evidence. We defined four different evidence types based on the type of evidence, as explained in text
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Thus, we were able to retrieve direct or indirect evi-
dence in support of 18 of the 38 reported TF-drug pairs
of Table 1. Eleven of these 18 are significant only when
using the TFBS-SNP impact prediction scores (impact
predictor utility p score ≤ 0.1), making the case for the
added value of these scores in cis-regulatory analysis
leading to mechanisms of phenotypic variation. Some
TFs and drug families were clearly overrepresented in
the predictions of Table 1. For instance, ELF1 was pre-
dicted to be associated with five drugs, with direct evi-
dence for three of these associations, and indirect
evidence for a fourth. The TF SP1 was also associated
with five drugs, two of which are supported by direct
evidence and the remaining three by indirect evidence.
The two anthracyclines included in the tests—doxorubi-
cin and epirubicin—accounted for 12 of the 38 predicted
pairs, with four supported by direct and four by indirect
evidence. The platinum therapy drug CDDP (cisplatin)
was found associated with six TFs, and all these associa-
tions were supported by the literature (three by direct
and three by indirect evidence).

Regulatory mechanisms underlying variation in
doxorubicin response in LCLs
Our statistical procedure not only identifies TFs likely to
regulate a drug’s cytotoxic response, it also provides us
the opportunity to probe more deeply into the regula-
tory interactions mediating such a TF’s influence. Each
TF-drug pair is reported based on a statistically signifi-
cant overlap between the drug-response SNPs and the
binding change SNPs. Thus, the SNPs in this “intersec-
tion set” represent the confluence of four pieces of evi-
dence: they are located within ChIP peaks of a TF, have
evidence suggesting impact on TF binding site strength,
and are statistically correlated with the expression of a
cis-linked gene (via chromatin interaction), and the
gene’s expression, in turn, is correlated with drug re-
sponse levels. A fifth important piece of evidence is that
the TF is likely to be a regulator of the phenotype (in
light of the significant p value), especially if the associ-
ation is also supported by prior literature evidence.
Thus, we considered the SNPs in the abovementioned
“intersection set” as especially informative, and exam-
ined the genes linked to them for further evidence of
phenotype relevance.
We report our findings for the pair ELF1-doxorubicin,

a statistically significant association that is also sup-
ported by direct experimental evidence in the literature.
(It was also one of the TF-drug pairs that did not rise to
significance when repeating the TF-phenotype associ-
ation test without using TFBS-SNP impact prediction.)
The SNPs in the intersection set for this pair were linked
to 39 unique genes (Additional file 2: Table S7), which
are putative mediators of ELF1 influence on drug

response. We first reconstructed a skeleton “pathway” of
major known events in doxorubicin-induced cell death
(Fig. 4, rectangles, solid black edges, and ovals placed on
these edges), based on the literature [51]. This mainly in-
volves DNA damage by topoisomerase II (TopII) inhib-
ition and generation of reactive oxygen species (ROS)
through a redox reaction involving the free radical semi-
quinone [52]. Genes known to be important for DNA
damage-induced cell death include TP53, ATM, BCL2,
BCL2L13, BAX, BAK1, and P21 among others [53, 54],
while those involved in transduction of ROS signals in-
clude RAS, RAF, MEK, ERK, and P38, among others
[55]. Both routes of doxorubicin-response involve
CASP3 and CASP9 as an apoptotic mechanism [56].
We sought to relate each of the 39 genes identified

above to this pathway via known regulatory interactions.
We were successful in finding such relationships for 15
of the 39 genes (shown in Fig. 4 as green ovals and
dashed edges). (See Additional file 1: Note S4 for de-
tails). For instance, the genes ATM and BAK1 were
identified as potential mediators in our hypergeometric
test and are in the skeleton pathway constructed above.
ATM is part of the ATM/TP53 pathway and plays an
important role in the activation of TP53 [51], while
BAK1, a member of the BCL2 protein family, is activated
by TP53 and is known to induce apoptosis [51]. The
microRNA miR-6734 is an identified ELF1-doxorubicin
mediator and is known to upregulate the expression of
P21, which is a TP53-inducible apoptosis inhibitor in
our skeleton pathway [57]. Another gene, NEURL4
which is also identified as a mediator, has been shown to
be a regulator of TP53 activity. Another potential medi-
ator, B4GALT2, has been identified as a regulatory target
of TP53 and plays a role in DNA damage-induced apop-
tosis. Interestingly, binding sites of ELF1 have been iden-
tified in the cis-regulatory region of B4GALT2, further
supporting its predicted role as a ELF1 mediator [58]. As
revealed by these and additional examples shown in
Fig. 4 (also Additional file 1: Note S4), our procedure
can identify not only major TFs regulating phenotypic
variation but also several of the genes mediating its in-
fluence, via a subset of SNPs that have multiple lines of
supporting evidence.

Discussion
We have examined the challenging problem of non-
coding variant interpretation, using a motif-based compu-
tational method to predict TF-DNA binding impact,
followed by assessment of putative high-impact variants
for potential links to phenotypic variation among individ-
uals. Our major contribution is in showing that use of
binding impact prediction can help identify regulatory
mechanisms (identities of TFs) relevant to phenotypic
variation that would be missed if relying only on the
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location of variants inside TF binding sites. In doing so,
we have begun to bridge the actively researched field of
TFBS-SNP impact prediction [15] with genotype-
phenotype association studies [1, 59], especially those that
simultaneously examine genotype, gene expression, and
phenotype data from a cohort. It is common for authors
of cis-regulatory impact prediction tools to test if their
predictions are enriched in GWAS and other disease-
related SNPs [19], in efforts to build exactly such a bridge.
Our approach takes the idea a step forward by making it
the goal rather than a means to validate predictions. That
is, rather than stop at predictions of high impact SNPs
and use GWAS enrichments as a sign of significant pre-
dictive performance, we solve a problem—identify TF-
phenotype associations—that crucially depends on the
second step. To be clear, our enrichment tests are not
against GWAS SNPs, rather against eQTLs for

phenotype-correlated genes; this seems more in line with
the expectation that SNPs with high predicted impact on
TF binding should link to phenotype by causing expres-
sion variation. Moreover, since the impact predictor
(Delta-MOP or Delta-gkm-SVM) was trained on LCLs,
and cell line-specific predictors are indeed the norm today
[10], linking them directly to GWAS SNPs for a particular
disease is premature and has to cross the generalization
barrier from cell lines to tissues where disease-related dys-
regulation happens.
The hypothesis testing approach to TF-phenotype asso-

ciations was adapted from our previous work [16], with
the key difference being the use of TFBS-SNP impact pre-
diction as an essential part of the approach; Hanson et al.
assumed that a SNP located inside a ChIP peak is evidence
for the TF’s potential regulatory effect on the nearby gene’s
expression. We add the criterion of high TFBS impact (as

Fig. 4 Predicted mechanisms of ELF1 regulation of doxorubicin-induced apoptosis. Black solid arrows show the skeleton of two major pathways
to doxorubicin-induced apoptosis, viz., those mediated by DNA damage and reactive oxygen species (ROS) respectively. Genes directly involved
in these pathways are shown as ovals placed on the arrows. Green ovals represent drug response-associated genes that are predicted to be
regulated by ELF1 and have been previously shown to have regulatory function on a pathway gene. Such regulatory evidence, presented in
previous literature, is represented by gray dashed arrows connecting ELF1-regulated DRGs to pathway genes
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predicted by Delta-MOP or Delta-gkm-SVM) as a require-
ment for SNPs mediating TF regulatory control, thus
making the evidence more reliable and also opening up a
link to the rapidly maturing field of cis-regulatory impact
prediction. Our direct comparisons between results (TF-
drug associations) obtained with and without use of
Delta-MOP scores (Table 1) are among the first direct
statistical findings of the value of TFBS-SNP impact pre-
diction for mechanistic studies of phenotypic variation, es-
pecially on genome-wide scales. More “localized”
applications, such as prioritization of a small number of
candidate SNPs, are already being reported in the field [5].
We also note that the basic methodology of our work can
serve as a practical way to assess the value of new ap-
proaches to SNP scoring and prioritization, since the re-
sults of this methodology are testable findings at the TF
and gene level (their roles in phenotype, as illustrated in
Table 2 and Fig. 4): there is more literature evidence to
compare against at these levels than there is evidence for
SNP function and mechanism. A technical note related to
the hypothesis testing framework (hypergeometric test) is
that the universe comprises all SNPs within accessible re-
gions of DNA, rather than all SNPs. This choice was
intentional, since both subsets tested for overlap—the
phenotype-associated SNPs and the binding-change
SNPs—are expected to be highly enriched in accessible re-
gions, the former because they are eQTLs and the latter
because they are within TF ChIP peaks. Using accessibility
as a required criterion for all SNPs in the universe thus
factors out the effect of accessibility in the analysis, focus-
ing on the TF’s regulatory role more directly.
We also developed a new computational method,

called MOP, for predicting TF binding strength, which
underlies the Delta-MOP score for TFBS-SNP impact
prediction. There are several tools available today for
predicting TF binding from sequence. We chose to
build MOP, based on a thermodynamics-based
method called STAP [30], partly because we have ex-
tensive experience with the latter. But there were
additional motivations for this choice. For example,
due to its biophysics-inspired formulation and a sin-
gle free parameter (that reflects TF concentrations),
the STAP method offers a more interpretable scoring
compared to highly parameterized k-mer-based
models [10, 11] and deep learning models [12, 13].
For the same reason, it is more amenable to future
incorporation of additional mechanisms specific to a
TF’s binding strength, e.g., frequent cooperative bind-
ing with a secondary TF [60–62]. On a different note,
we have been intrigued by recent reports that k-mer-
based models are clearly superior to motif-based
models, for TFBS impact prediction. However, the
most comprehensive such evaluation in our know-
ledge—that by Wagih et al. [22]—used a fairly basic

motif-based approach to compare against, and we
sought to confirm the claim ourselves. We therefore
performed systematic comparisons, for prediction of
TF binding (Fig. 2a, b) as well as binding impact
(Fig. 2d, e), between MOP—a multi-motif extension
of STAP—and gkm-SVM—a popular, mature and
easy-to-use tool that performed as well as any other
evaluated in [22]. Our tests suggest that the motif-
based MOP and the k-mer-based gkm-SVM have very
similar performance, and thus prompt a re-
examination of the merits and flaws of motif-based
methods. This observation also holds when using a
newer version of gkm-SVM, called ls-gkm [36], for
binding impact prediction (Additional file 1: Note S6).
(We also compared Delta-MOP to the DeepSEA
method [13] that is based on a deep learning algo-
rithm, and found their average performance metrics
to be within statistical error of each other (Add-
itional file 1: Note S7). However, these evaluations
were based on pre-computed DeepSEA scores down-
loaded from Wagih et al. [22] and did not use the
same training sets as all of our other evaluations.) For
our purposes, the observed complementarity between
the Delta-MOP and Delta-gkm-SVM methods (Fig. 2)
was a promising finding that suggested that we use
both of them in our downstream, phenotype-related
analyses (Table 2). Finally, we note that the new cap-
ability of MOP compared to STAP is the automated
handling of multiple motifs of the same TF. This
solves a practical problem with many motif-based
methods, since the same TF often has several motifs
identified through different technologies and algo-
rithms [63–65]. (We also compared MOP and STAP
in artificial scenarios where only two motifs are avail-
able for a TF, and found similar trends, albeit to a
lesser extent; see Additional file 1: Note S5.) We also
extended the STAP method to predict binding using
motifs for other TFs, but did not observe significant
advantages and leave further development of the idea
for future work (data not shown).
A note is in order regarding our overall scheme

for training and testing binding predictors such as
MOP and gkm-SVM: contrary to the more common
practice of discriminating between ChIP peaks of a
TF and random segments of the genome [66], we
train (and test) models using ChIP peaks of the TF
as the positive class and ChIP peaks of other TFs as
the negative class. We believe this approach to test-
ing better reflects the ability of a model to capture
the test TF’s binding features in the sequence, as op-
posed to more general factors such as DNA accessi-
bility that influence TF-DNA binding [67]. Moreover,
for highly parameterized models such as gkm-SVM,
this manner of training likely results in models being
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better trained for prediction of a SNP’s impact on
the test TF’s binding rather than TF binding in gen-
eral. This is important for the downstream applica-
tion (identification of phenotype-related TFs) of
TFBS-SNP impact predictions in our work. Another
methodological direction that we explored but do
not report on is the consideration of gene regulatory
networks reconstructed (using GENIE3 [68]) from
expression data on suitable cell lines (ENCODE pro-
ject) [69] in defining the ChIP peaks for training and
testing binding predictors. This idea, proposed by
Svetlichnyy et al. [26], was discarded as limiting the
peaks to those located near putative gene targets of
a TF led to far too few peaks for successful training.
The evaluation of Delta-MOP and other TFBS-SNP

impact prediction methods using allele-specific binding
(ASB) data is the most direct strategy for such evalu-
ation available today, and more direct than, for example,
enrichment with disease SNPs or eQTLs. The results
leave us with a sense of measured optimism: while
AUROC values ≥ 0.65 for 4 (≥ 0.60 for 8) of the 16 tested
cases are promising, there is clearly much work cut out
for the future. We refer the reader to an excellent review
by Bart et al. [70], who point out several challenges that
need to be overcome in accurately predicting TFBS
binding impact. Furthermore, even if the impact of a
non-coding variant on TF binding is accurately pre-
dicted, it does not equate to a regulatory impact on the
gene, and the gap between TF-DNA binding and TF-
gene regulation remains to be bridged.
In earlier stages of the work, we performed prelimin-

ary evaluations of TFBS-SNP impact predictors with
eQTL data rather than ASB data which was our final
choice (Fig. 2). We used the collection of all eQTL SNPs
located within regulatory regions of their target genes as
an unbiased, albeit noisy, estimate of regulatory SNPs,
and tested their enrichment in predicted binding-change
SNPs. We repeated the enrichment tests using each of
the three methods—Delta-MOP, Delta-STAP and Delta-
gkm-SVM—for prediction of binding-change SNPs. As a
baseline, we also tested their enrichment in a size-
matched random subset of SNPs within ChIP peaks of
that TF. To our initial surprise, we found (Add-
itional file 1: Note S2) that the enrichments on the
whole (i.e., over all 37 TFs evaluated) were similar for
the binding-change SNPs and the randomly selected
(within-peak) SNPs; this was the case regardless of the
method used for predicting binding change. In hindsight
however, we noted that this evaluation was flawed, des-
pite its initial appeal. In particular, we recognized that
the “ground truth” of regulatory SNPs used in the test—
the set of cis-eQTLs—likely reflects the action of mul-
tiple TFs, while the binding-change SNPs predicted by
the three methods are TF-specific.

Conclusion
In conclusion, this work has taken the first steps towards
demonstrating the value of TFBS-SNP impact prediction
in the discovery of regulatory mechanisms underlying
phenotypic variation. At the same time, the performance
of the impact predictors leaves much room for improve-
ment, and future advances in this active area of research
will be greatly beneficial to the reconstruction of
phenotype-associated gene regulatory networks.

Methods
Data collection
Genotype, gene expression, and drug response data
on 95 Han-Chinese, 96 Caucasian, and 93 African-
American lymphoblastoid cell lines (LCL) were from
the Coriell Cell Repository (Camden, NJ, USA), of
which 176 were female and 104 male. 1,344,658
germline SNPs were genotyped, and SNPs with
minor allele frequency < 5% or which deviated from
Hardy-Weinberg equilibrium < 95% were removed.
Strand information was collected from dbSNP. 1,283,
254 SNPs with same identifier and location in both
LCL data and dbSNPs are used. Gene expression
data consisted of 54,613 Affymetrix U133 Plus 2.0
Gene-ChIP (Santa Clara, CA, USA) probes assayed
for the 284 individuals, with raw expression data
being transformed using GC Robust Multi-Array
Averaging (GC-RMA). Genotype and gene expression
data are available at the National Center for
Biotechnology Information (NCBI) Gene Expression
Omnibus [71] under SuperSeries accession no.
GSE24277 [72]. These data were published in a
study by Niu et al. [73]. Gene mappings to the Affy-
metrix arrays were obtained for the Affymetrix Hu-
man Genome U133 Plus 2.0 array. ENSEMBL gene
symbols were used as the gene reference of choice:
we used 55,038 ENSEMBL gene symbols that were
annotated with at least one ENSEMBL exon. Of the
54,613 probes assayed on the HG U133 Plus 2.0
array, 37,677 mapped to at least one of the 55,038
ENSEMBL gene symbols.
Drug response data were derived from dosage–re-

sponse curves of 24 cytotoxic treatments published
in Hanson et al. [17]: 6MP, 6TG, ARAC, arsenic,
carboplatin, CDDP, cladribine, docetaxel, doxorubi-
cin, epirubicin, everolimus, fludarabine, gemcitabine,
hypoxia, metformin, MPA, MTX, NAPQI, oxaliplatin,
paclitaxel, radiation, rapamycin, TCN, and TMZ. The
phenotype, called EC50, represents the concentration
at which the drug reduces the population of LCL
cells to half of the initial population. Cytotoxicity as-
says were performed for every one of these drugs
using the LCL panel. After initial optimization, cells
were treated with a range of concentrations for any
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given drug tested, followed by incubation for 48 to
72 h. MTS cytotoxicity assays were then performed
using Cell Titer 96 AQueous Non-Radioactive Cell
Proliferation Assay kit (Promega Corporation, Madi-
son, WI, USA), followed by absorbance measurement
at 490 nm in a Safire2 microplate reader (Tecan AG,
Switzerland). Cytotoxicity phenotypes were deter-
mined by the best fitting curve using the R package
“drc” (dose–response curve) [74] based on a logistic
model.

Transcription factor binding motifs
Two hundred twenty-five PWMs for 37 TFs were col-
lected from three sources:

1) Twenty-nine PWMs for 27 TFs were collected from
ENCODE factor book motifs from http://
hgdownload.soe.ucsc.edu/goldenPath/hg19/
databasefactorbookMotifPwm.txt.gz [75].

2) One hundred eighty-five PWMs based on ChIP data
for 37 TFs from GM12878 cell line were down-
loaded from the Factorbook website (http://www.
factorbook.org/human/chipseq/tf ) [76].

3) Twenty-five PWMs for 21 TFs were obtained from
HOCOMOCO Human (v10) [77], via the motif
library of the MEME software [78].

All motifs are included in Additional file 3.

ChIP-seq and accessibility data
We used ChIP-seq data from the ENCODE project, as
summarized in the “Txn Factor” track at the UCSC gen-
ome browser (“wgEncodeRegTfbsClusteredWithCellsV3”
bed files). Clustered peaks observed in GM12878 cell
line were used in this study. We also used genome-wide
profiles of ChIP-seq signal values from the ENCODE
project (www.encodeproject.org). Signal values are used
as numeric measurements of the TF binding strength for
training and testing TF-DNA binding prediction. DNaseI
hypersensitivity (DHS) uniform peaks for GM12878 cell
line (ENCODE project) were downloaded from the
UCSC website [37].

Training set generation
MOP, STAP, and gkm-SVM need to be trained on ChIP-
seq data using DNA sequences and corresponding ChIP
scores. For training purposes, we generated balanced
training data sets for each TF, which is composed of
positive sequences and the same number of negative se-
quences. We selected 1000 segments of 500-bp length
from each TF’s ChIP peaks as the positive set. (We limited
the selection to peaks located within 50 kbp upstream of a
protein coding gene and excluded “High Occupancy Tar-
get” or HOT regions, i.e., peaks overlapping 6 or more

TFs with at least 50% overlap.) We defined a large
collection of “negative windows” for a TF to be 500-bp-
long segments in the positive sets of other TFs but not
bound by the test TF. We then randomly selected 1000
windows from this collection as the negative set for the
test TF. DNA sequence and signal value for each window
was extracted from the reference genome (hg19) and
ChIP-seq data from the ENCODE project. Thus a bal-
anced data set with 2000 windows was generated for each
of the 37 TFs. These data sets were further separated into
a balanced training set with 1600 windows and a balanced
test set of 400 windows. (See Additional file 1: Note S1.)

Prediction of TF-DNA binding

1. STAP: A separate STAP model [30] was trained for
each of 225 PWMs (representing 37 distinct TFs)
using the balanced training set. Cross validation
(80% training, 20% testing) within these training
data was used to learn a value for the site energy
threshold (“eT”) hyperparameter.

2. gkm-SVM: For each TF, a separate model was
trained as recommended by authors [10, 11], with
default settings (http://www.beerlab.org/gkmsvm/
gkmsvm-tutorial.htm).

3. MOP: The scores of a window reported by STAP
models using different motifs of the TF were used
as a feature vector representing the window and
provided to a support vector machine (SVM). We
trained an SVM model (package “e1071” in R [79])
to predict ChIP scores from such feature vectors,
using the same training data as above.

To make the binding scores predicted by different
methods fall on a comparable scale, we rescaled every
score by a linear function so that the predicted binding
scores for the 2000 windows in training and testing data
range exactly from 0 to 1.

Prediction of TFBS-SNP impact
We first generated a reference genome specific to our
LCL genotype data set by starting with the “hg19” refer-
ence genome and setting the nucleotide at each SNP lo-
cation (in the LCL data set) to the major allele of that
SNP in the data set. For each SNP, a 501-bp window
centered on that SNP was extracted from this LCL-
specific reference genome, and two versions of its se-
quence—one with the minor allele and another with the
major allele of that SNP—were used as inputs for TF
binding predictors. The absolute value of the difference
between predicted binding scores of these two sequences
was used as the TFBS-SNP impact score (Delta-STAP,
Delta-gkm-SVM or Delta-MOP, depending on the bind-
ing prediction method used). In this step, binding
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predictors trained on all 2000 windows defined above
were used. The fourth method for SNP impact predic-
tion, called Delta-PWM, directly uses the “Delta raw
scores” for “MEME signif PWM” provided by Wagih et
al. [22].

Evaluations on allele-specific binding (ASB) data
ASB SNPs and non-ASB SNPs for lymphoblastoid cell
lines were collected from Wagih et al. [22]. Twenty-two
of the 37 TFs, for which we have binding predictors,
have ASB data for these cell lines. Among these 22 TFs,
MEF2A, NFYB, SRF, and USF1 have fewer than 150 an-
notated (ASB or non-ASB) SNPs, while SP1 and SPI1
did not have associated Delta-PWM data. For these rea-
sons, these six TFs were excluded and we only used the
data for the remaining 16 TFs in the ASB evaluation
(Additional file 2: Table S3). The TFBS-SNP impact of
each ASB and non-ASB SNP was measured by four
methods (Delta-MOP, Delta-gkm-SVM, Delta-STAP, and
Delta-PWM) as explained above. AUROC and AUPRC
values were calculated for each TF-method combination,
indicating how well the corresponding impact score can
be used to label the ASB and non-ASB SNPs.

Identifying eQTLs in a gene’s regulatory region
We used Hi-C data [21] on 3-D chromatin architecture in
the GM12878 cell line to construct the cis-regulatory re-
gion of each gene. First, the local “domain” that the gene
overlaps with was included in such a region. Second, for
each pair of loci connected by a loop, if the gene overlaps
with one of the loci, the other locus was included in its
cis-regulatory region. For each SNP located within the cis-
regulatory region of a gene, the association between geno-
type and gene expression was calculated following [17],
and SNPs with p value < 0.05 were considered as cis-
eQTLs for the gene.

TF-drug association tests
Hypergeometric tests were used to identify TFs whose
“binding-change SNPs” are enriched in drug response-
associated SNPs. We used SNPs in GM12878 DNase-seq
narrow peaks [80, 81] as the universe. For each drug, we
defined genes whose expression correlates with drug re-
sponse (EC50) with a correlation p value of 0.05 or lower as
“drug response genes” and eQTLs assigned to these genes
(see above) as the drug response-associated SNPs. A TF’s
“binding-change SNPs” were defined as those with large
TFBS-SNP impact score using either MOP or gkm-SVM. In
particular, SNPs located within the TF’s ChIP peaks and
ranked among the top 300 by Delta-MOP or among top
300 by Delta-gkm-SVM score were called “binding-change
SNPs.”

Additional files

Additional file 1: Supplementary notes. This file contains seven
supplementary notes, with each accompanied by short descriptions.
(PDF 637 kb)

Additional file 2: The file includes seven supplementary tables. All
supplementary tables are included as sheets in this Excel file. Legends for
these tables are provided here. (1) Table S1. The number of motifs for each
TF. (2) Table S2. Accuracy values (correlation coefficient) of binding strength
predictions for each TF. (3) Table S3. The AUROCs and AUPRCs of TFs in the
ASB enrichment using four different TF binding predictors. (4) Table S4. TFs
discovered regulating drug response using Delta-MOP alone to predict
binding-change SNPs. (5) Table S5. TFs discovered regulating drug re-
sponse using Delta-gkm-SVM alone to predict binding-change SNPs.
(6) Table S6. The results of drug associated enrichment tests for all
888 TF-drug pairs. (7) Table S7. Mediator genes in ELF1-doxorubicin
Analysis. SNPs in the intersection of TF-drug hypergeometric tests
are: (1) eQTLs associated to drug response genes; (2) “binding-change
SNPs” of the TF. DRGs associated with those SNPs are potentially me-
diators regulated by the TF. Here we list all mediator genes in ELF1-
Docorubicin analysis. (XLS 149 kb)

Additional file 3: Transcription factor binding motifs. We obtained 239
PWMs from three different data sources: (1) factor book motifs processed by
ENCODE UCSC; (2) motifs downloaded from Factorbook; (3) HOCOMOCO
Human (v10) motifs. STAP models are trained separately for each motif. We
excluded a motif if the maximum prediction of the corresponding STAP
model is too small (< 0.5). The remaining 225 PWMs, which were used in
further analysis, are included in Additional file 3. (TXT 72 kb)
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