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Abstract

Genome-wide association studies (GWAS) simultaneously investigating hundreds of thousands of single nucleotide
polymorphisms (SNP) have become a powerful tool in the investigation of new disease susceptibility loci. Haplotypes are
sometimes thought to be superior to SNPs and are promising in genetic association analyses. The application of genome-
wide haplotype analysis, however, is hindered by the complexity of haplotypes themselves and sophistication in
computation. We systematically analyzed the haplotype effects for breast cancer risk among 5,761 African American women
(3,016 cases and 2,745 controls) using a sliding window approach on the genome-wide scale. Three regions on
chromosomes 1, 4 and 18 exhibited moderate haplotype effects. Furthermore, among 21 breast cancer susceptibility loci
previously established in European populations, 10p15 and 14q24 are likely to harbor novel haplotype effects. We also
proposed a heuristic of determining the significance level and the effective number of independent tests by the
permutation analysis on chromosome 22 data. It suggests that the effective number was approximately half of the total
(7,794 out of 15,645), thus the half number could serve as a quick reference to evaluating genome-wide significance if a
similar sliding window approach of haplotype analysis is adopted in similar populations using similar genotype density.
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Introduction

Genome-wide association studies (GWAS) have been demon-

strated to have the power to detect modest to small effects of

genetic variants with various common diseases [1]. A large

number of novel SNPs have been identified and successfully

replicated in associations with complex diseases, such as cancers,

diabetes, and cardiovascular disease [2]. Meanwhile, haplotype

analysis has become a prominent example of multilocus genetic

association studies and has assisted in finding new disease

susceptibility loci [3–8]. Haplotypes consist of SNPs or other

genetic markers on the same chromosome that are inherited

together with little contemporary recombination [9]. Haplotype

information may aid GWAS in identifying new marker-phenotype

associations for several reasons [10]. First, haplotypes characterize

the exact organization of alleles along the chromosome. Although

D’ and r2 are useful in capturing the linkage disequilibrium (LD)

pattern between a pair of markers, they are hardly to be extended

to higher order of dependency among markers. As a result, LD

analysis based on underlying haplotypes can be more accurate

[11]. Second, by constructing haplotype blocks from SNPs, more

information can be incorporated into the association tests,

especially when haplotypes themselves are in closer LD with the

causal variant than any single genotyped SNP [12]. Haplotype

analysis has been reported to be superior to analysis based on

individual SNPs by simulation [13] and empirical studies [14,15].

Although haplotype analysis is seemingly appealing, its imple-

mentation on the genome wide scale is unwieldy given the

uncertainty and complexity of haplotypes [16], as well as the

difficulty of adjusting for multiple testing when hundreds of

thousands of hypotheses are being tested simultaneously. For

instance, there is no consensus in the exact definition of haplotype

blocks, making the boundaries of haplotype blocks not unambig-

uous [17]. One definition is based on D’ among neighboring SNPs

which needs to exceed a pre-specified cutoff value [18]; another

commonly implemented method requires a reduced haplotype

diversity on a chromosomal segment [19]. Unfortunately, no

method is uniformly better than the others in application [15]. We

favor a sliding window framework since haplotypes can be quickly

constructed and all genotyped SNPs are incorporated [20]. Fixed

window sizes are computationally easier and more efficient in

practice relative to varying window sizes. Mathias et al [21]

successfully identified five asthma susceptibility loci on chromo-

some 11 in African Americans via the sliding window approach, in

which the window sizes were 2–6 SNPs. Lambert et al. [22]

adopted a similar approach where 10 consecutive haplotype

tagging SNPs (htSNPs) were defined as a sliding window and

found a haplotype residing in FRMD4A gene at 10p13 with

increased risk for Alzheimer’s disease. In this paper, we scanned

throughout the 22 autosomes to search for significant haplotype

effects for breast cancer risk among 5,761 African American

women using the sliding window approach of 5 contiguous SNPs.

The haplotype effects were then compared with individual SNP

effects including genotyped and imputed SNPs at the same

chromosomal position. To determine a valid significance level,

1,000 permutations were exploited using the chromosome 22 data.

The permutation-based chromosome-wide significance level for

chromosome 22 and the effective number of independent tests

were computed from the empirical distribution of the minimum p-

values. The genome-wide significance level can then be readily

determined through Bonferroni correction by substituting the

effective number of tests for the total number of tests. While

globally significant results were not obtained, closer attention

should be paid to the regions revealed by the most significant

haplotypes on chromosomes 1, 4 and 18. We also scrutinized 21

known breast cancer risk regions [23] for potential haplotype

effects and found 10p15 and 14q24 may possess novel haplotype

effects.

Materials and Methods

Ethics Statement
The Institutional Review Board at the University of Southern

California approved the study protocol. All participants gave

informed written consent at the time of blood draw.

Study Population
There were a total of 5,984 African American women included

in this study, of which 3,153 were cases with breast cancer and

2,831 were controls. The entire sample was derived from nine

epidemiological studies: (i) The Multiethnic Cohort Study (MEC)

[24]: 734 cases and 1,003 controls; (ii) The Los Angeles

component of the Women’s Contraceptive and Reproductive

Experiences Study (CARE) [25]: 380 cases and 224 controls; (iii)

The Women’s Circle of Health Study (WCHS) [26]: 272 cases and

240 controls; (iv) The San Francisco Bay Area Breast Cancer

Study (SFBCS) [27]: 172 cases and 231 controls; (v) The Northern

California Breast Cancer Family Registry (NC-BCFR) [28]: 440

cases and 53 controls; (vi) The Carolina Breast Cancer Study

(CBCS) [29]: 656 cases and 608 controls; (vii) The Prostate, Lung,

Colorectal, and Ovarian Cancer Screening Trial (PLCO) Cohort

[30]: 64 cases and 133 controls; (viii) The Nashville Breast Health

Study (NBHS) [31]: 310 cases and 186 controls; (ix) Wake Forest

University Breast Cancer Study (WFBC) [32]: 125 cases and 153

controls. All cases were African American women diagnosed with

invasive or in situ breast cancer. Controls were mainly recruited

through random digit dialing. A more detailed description of the

characteristics of each study is available in Table S1 and elsewhere

[23].

Genotyping and Quality Control
Genotyping was performed using the Illumina Human 1M-Duo

chip. Individuals whose samples had low DNA concentrations

(,20 ng/ml) were removed (n = 52). We also removed unexpect-

edly related individuals (n = 29), call rates ,95% (n = 100), African

ancestry ,5% (n = 36), and individuals of ambiguous sex (n = 6).

We excluded SNPs with call rate ,95% (n = 21,732) and minor

allele frequency (MAF) ,1% (n = 80,193). SNPs with a concor-

dance rate lower than 98% were removed too (n = 11,701). The

average concordance rate of the sample was 99.95%. Hardy-

Weinberg equilibrium (HWE) was not imposed as one of the

quality control criteria given that African Americans are known as

an admixed population [33]. Except for a SNP on chromosome 5

showing significant deviation from HWE (discussion follows in the

Results section), none of the other SNPs included in the following

analyses were severely out of HWE (Exact test p-value .161026)

[34]. The total number of SNPs remained in the analysis was

1,006,480 in 5,761 subjects (3,016 cases and 2,745 controls).

Statistical Analysis
Sliding window size. The sliding window approach was

adopted to define haplotype blocks throughout 22 autosomes for

its maximum coverage of genotyped SNPs given the exploratory

nature of the present study. The choice of the 5-SNP window was

mostly in agreement with the average block size for the HapMap

Yoruba population [in Ibadan, Nigeria (YRI), HapMap Phase II]

(Table S2). Wang et al [35] showed that based on Gabriel’s

definition of haplotype blocks [9,36], 57% of LD blocks in the YRI

Haplotype Effects on Breast Cancer Risk
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population were shorter than 10 kb and 37% of the blocks were

between 10 kb and 50 kb. For our AABC data, the universal 5-

SNP windows across 22 chromosomes achieved a comparable

distribution of haplotype block sizes, i.e., 55% of the 5-SNP

windows shorter than 10 kb and 44% between 10 kb and 50 kb

long. The distributions of haplotype block sizes defined by sliding

windows did not differ greatly by chromosome (Figure S1),

indicating that on no chromosome the 5-SNP sliding windows

have a disproportionately poor coverage of exceptionally long or

short blocks in general. Admittedly, the universal 5-SNP windows

across 22 autosomes or throughout approximately 1 million SNPs

may not comprehensively capture individual haplotype block size

variations at specific loci. It is nonetheless deemed a fairly good

approximation with some theoretical basis.

Haplotype inference. The haplotype frequencies within

each haplotype block defined by the sliding windows were

estimated using the Expectation-Maximization (E-M) algorithm

outlined by Excoffier and Slatkin [37], and Stram [38,39]. Let

lh(H) count the true, yet generally unknown, number of copies of

a haplotype h, with frequency ph, contained in the haplotype pair

H carried by a given individual, i.e., lh(H) takes possible values of

0, 1 or 2, meaning 0, 1 or 2 copies of such haplotype h in haplotype

pair H are inherited from parents; let E(lh(H)DGi) denote the

expected number of copies of each possible haplotype h given the

individual’s observed genotype Gi. These expectations are

computed iteratively as

E(lh(H)DGi)~

P
H*Gi

lh(H)ph
1
ph2

P
H*Gi

ph
1
ph2

ð1Þ

with

ph~
1

2N

XN

i~1

E(lh(H)DGi) ð2Þ

where
X

H*Gi
(Textranslationfailed)indicates the summation is

over the haplotype pairs, H , compatible with the observed

genotype,Gi. The algorithm starts with initial haplotype frequen-

cies, p
(0)
h , and updates them iteratively. Equation (1) is the

expectation step and (2) is the maximization step of the E-M

algorithm.

Association testing. The inferred haplotype dosage esti-

mates, E(lh(H)DGi), abbreviated as l̂lh, can be used individually in

a 1-degree-of-freedom (d.f.) test in testing for haplotype-specific

associations with the disease using model (3),

logit Pr(Yi~1Dl̂lh,X)
� �

~mzbhl̂lhzbxX ð3Þ

or a global test simultaneously fitting all haplotypes

l̂l~(l̂l1,l̂l2,:::,l̂lDH D{1) within the haplotype block defined by a

sliding window using model (4),

logit Pr(Yi~1Dl̂l,X)
� �

~mz
XDH D{1

h~1

bhl̂lhzbxX ð4Þ

where DH D denotes the total number of possible haplotypes within

that block and the degrees of freedom of the global test in model

(4) are therefore DH D{1. In both models, X is the vector of

covariates, including age, study, and the top ten eigenvectors of

ancestral information estimated by principal components analysis

[40] to adjust for global ancestry differences. The eigenvectors are

included in the model to control for potential confounding due to

population stratification and admixture. In haplotype association

analysis, a large fraction of the inferred haplotypes can be very

rare, with frequency close to zero [41]. It is customary to discard

rare haplotypes that are less than 1% frequent to reduce the total

d.f. of the model so that the power to detect risk effects of relatively

common haplotypes can be well preserved. Suppose that there are

DH ’D haplotypes greater than 1% of frequency, where DH ’D,,DH D
holds true in many cases, the d.f. of the global test reduces to

DH ’D{1 from DH D{1 as indicated in model (5)

logit Pr(Yi~1Dl̂l,X)
� �

~mz
XDH ’D{1

h~1

bhl̂lhzbxX ð5Þ

We started with applying the global test throughout the whole

genome to agnostically search for haplotype effects following the 5-

SNP sliding window framework, while the 1 d.f. test of individual

haplotype-specific effects was performed only when a potentially

significant region was detected by the global test. For visualization

purposes, haplotype effects were compared to the effects of the

constituent SNPs at the same chromosomal region by an overlaid

Manhattan plot showing the statistical significance, presented as –

log10(p-value), of both haplotypes and SNPs. Haplotype effects

would become interesting only if a noticeable haplotype effect

peak was not accompanied by a similar significance peak involving

the constituent SNPs. For regions exhibiting considerable haplo-

type effects, they were further extended both upstream and

downstream by half of the original width to include more flanking

SNPs and haplotypes, making the extended regions twice longer

(Table S3). All possible individual haplotypes composed of 2 up to

10 SNPs (or the maximum number of genotyped SNPs contained

in the extended region, whichever is smaller) with haplotype

frequency .1% were investigated exhaustively to single out the

particular haplotype(s) explaining the significant global test. The

top individual haplotypes were further verified by a likelihood ratio

(LR) test comparing the model with both the top haplotype and

the best single SNP contained (model 6) to the nested model with

the same best SNP only (model 7),

logit Pr(Yi~1Dl̂lh,gi,X)
� �

~mzbhl̂lhzbggizbxX ð6Þ

logit Pr(Yi~1Dgi,X)ð Þ~mzbggizbxX ð7Þ

where gi denotes the genotypes of the SNP carried by an individual

i and an additive excessive effect of each risk allele on the disease is

assumed. The novelty of the haplotype effects compared to the

SNP effects was assessed using a LR test with 1 d.f. We were also

interested in whether the haplotype effects could be otherwise

captured by genotype imputation in the same region. The

genotype imputation was performed by Mendel-GPU [42] using

the 1000 Genomes Projects (1 KGP) data as the reference panel

[43]. The much denser 1 KGP has a better genomic coverage of

rare and low frequency markers and is reported to be capable of

providing more statistical power to identify the underlying

associations [44]. The superiority of haplotype analysis to SNP

imputation could be highlighted by the presence of haplotype

signals where significant genotyped or imputed SNPs are absent.

In regions with the strongest haplotype effects, we also inferred

Haplotype Effects on Breast Cancer Risk
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and adjusted for the local ancestry information for each marker

residing near the haplotypes of interest (6250 kb). The local

ancestry characterizes the proportions of European and African

ancestry, represented by the posterior probabilities of carrying 0,

1, and 2 copies of a European allele at each SNP. The local

ancestry was computed by HAPMIX [45] with 240 HapMap

EUR+YRI phased founder haplotypes per chromosome as input.

The top haplotype effect was further adjusted for the inferred local

ancestry in addition to adjustment for global ancestry (i.e. using

the leading principal components), age, and study as described

above. This additional adjustment for local ancestry could help

eliminate false positive haplotype effects that were confounded by

local ancestry [46].

In addition, haplotype effects in the neighborhood of known

breast cancer risk SNPs identified predominantly in European

populations were investigated especially carefully. Twenty-one

regions (1p11, 2q35, 3p24, 5p12, 5q11, 6q14, 6q25, 8q24, 9p21,

9q31, 10p15, 10q21, 10q22, 10q26, 11p15, 11q13, 14q24, 16q12,

17q22, 19p13, and 20q11) and their associated SNPs were of

primary interest. Regions with potential of harboring unknown

haplotype effects were scrutinized by inferring all possible

individual haplotypes of frequency .1% consisting of 2–10

consecutive SNPs in the neighborhood of 6250 kb of known

breast cancer risk hits (except for 8q24, where 62 Mb was used

[47–49]). As before, the important haplotype effects were

compared with the significance of genotyped as well as with the

1 KGP imputed SNPs in the same region. The independence of

these haplotype-disease associations were further verified by LR

tests adjusting for the SNP effects from both the regionally best

SNP and the known breast cancer risk SNP. Notable haplotypes

residing in proximity to the known breast cancer risk hits were

again corrected for local ancestry inferred from the same region to

eliminate potential confounding due to local genetic ancestry

admixture.

PLINK [50] was the primary software to conduct the

association analyses. All regression models were adjusted for age,

study, and global ancestry. For important haplotypes indentified

through association analyses, local ancestry was additionally

adjusted for.

Permutation test. In order to obtain a valid significance

threshold for the global test of haplotype analysis, 1,000 replicates

of chromosome 22 data were generated by randomly shuffling the

case-control status for each individual in the sample while

maintaining the same numbers of cases and controls as in the

original data. Each replicate was analyzed using the same global

test logistic regression model to test the overall significance of

haplotype blocks defined by the same 5-SNP sliding window

(model 5). The same covariates were adjusted for as well, i.e., age,

study and global ancestry, but not local ancestry. The minimum p-

values of the global tests for haplotype block effects from 1,000

permutations were recorded and sorted in ascending order and the

fifth percentile of the 1,000 minimum p-values was considered the

permutation-based p-value so that the chromosome-wide type I

error rate equals 0.05. Following Dudbridge et al. [51], we

substituted the total number of tests with the effective number of

independent tests neff. If neff exists, then it can be inferred from the

beta distribution of the minimum p-values with parameters (1,neff )

[52].

Pr(minPƒa)~1{(1{a)neff

The probability density function of the beta distribution with

parameters (a,b) is,

f (x; a,b)~
C(azb)

C(a)C(b)
xa{1(1{x)b{1

where C(:) is the gamma function with two parameters a,b.0.

Therefore beta distributions were fitted to the minimum p-values

from the 1,000 permutation replicates in two scenarios: (i) the

parameter a of the beta distribution is set equal to 1; (ii) both

parameters a and b are free to vary. In the second scenario, the

minimum p-values are consistent with the theoretical beta

distribution if the null hypothesis a~1 is not rejected; b can thus

be interpreted as the effective number of independent sliding

windows, neff. The parameters in the beta distribution were

estimated using maximum likelihood estimation (MLE) method.

Quantile-Quantile (QQ) plots were generated to evaluate the

goodness-of-fit of these beta distributions. The aforementioned

analysis was implemented in SAS version 9.1.2 (SAS Institute,

Cary, NC).

Results

The minimum p-values from the 1,000 permutations of

chromosome 22 data containing 15,649 genotyped SNPs ranged

between 1.5461027 and 9.4461024 with the fifth percentile being

5.5861026. So the permutation-based effective number of tests for

chromosome 22 was simply 0:057(5:58|10{6)~8,963. The

maximum likelihood estimates of the beta distribution parameters

were âa~0:95 and b̂b~7,426; or b̂b~7,794 if a was constrained at 1.

Although the null hypothesis of equality a~1 was nominally

rejected in the former two-parameter case (p,0.01), âa~0:95 was

close to 1 and the QQ plot comparing it to the Beta(1,7426)

distribution showed the majority of the data points fell on the

diagonal line, suggesting the lack of fit was not severe (Figure 1A).

When setting a~1 and experimenting with differentb’s,

i.e.7,400ƒbƒ8,300, goodness-of-fit tests based on empirical

distribution functions (EDF) statistics (Kolmogorov-Smirnov,

Cramer-von Mises and Anderson-Darling statistics) did not reject

the null hypothesis at the 0.10 significance level, implying that the

minimum p-values followed the designated beta distributions

satisfactorily (Table 1). The range of the effective numbers of tests,

7,400–8,300, included half the number of total sliding windows

(15,645=2~7822:5). The corresponding significance level under

this approximation was 0:0577,823~6:39|10{6, benchmark-

ing to the 5.7 percentile of the minimum p-values from 1,000

permutations. The QQ plot for those minimum p-values

compared to Beta (1,7823) distribution indicated the fit was

reasonably good (Figure 1B) and none of the goodness-of-fit tests

were rejected (p.0.25). We proceeded with the effective number

of independent tests equal to half of the total number of

overlapping haplotype blocks as a quick reference to spotting

potentially significant haplotype effects. The genome-wide signif-

icance level was therefore derived as

pG~ 0:057
1,006,480

2
~9:94|10{8in contrast to the Bonfer-

roni corrected genome-wide significance level

pB{G~0:0571,006,480~4:97|10{8.

In search of haplotype peaks where significant SNPs were

absent on the Manhattan plots, a region on chromosome 5

exhibited a distinct haplotype effect compared with individual

SNP associations at the same chromosomal region (Figure S2).

There were five overlapping haplotype blocks defined by 5-SNP

sliding windows with global test p-values (p = 1.7061028,

3.1661028, 1.8561027, 1.4561026, and 3.3861026, respectively)

less than any single SNP’s p-value within the same region.

Haplotype Effects on Breast Cancer Risk
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However, the most significant SNP rs6882564 (p = 1.1461024)

made up all the significant haplotypes and were noted to be

severely out of HWE (p,161027). A review of the intensity plots

for this SNP showed that rs6882564 was clearly miscalled by the

genotyping algorithm, and thus we dropped from consideration all

haplotypes that contain rs6882564, leaving no other haplotypes in

the same region genome-wide significant. No other haplotype

blocks throughout the genome had a global test p-value less than

1026. The top 10 independent genomic regions with haplotype

global test p-value between 1.6061026 and 1.5161025 are

summarized in Table S3. After visual examination of the

Manhattan plots contrasting the haplotype-specific effects with

the individual SNP effects, the remaining most significant regions

unlikely to be explained solely by SNPs were chr1:8,309,317-

8,318,147, chr4:122,325,743-122,363,114, and chr18:35,670,316-

35,683,522. Notably, on chromosome 1, the 5-SNP haplotype

AGCTG (Position: 8309317-8318147; frequency = 0.24)

(Figure 2A; Table 2) comprised of SNPs rs9628987, rs2289731,

rs12711517, rs2305016, and rs7535752, had a p-value three

orders of magnitude less than that of the most significant SNP

contained in the haplotype, rs12711517 (haplotype p = 5.0961026

vs. SNP p = 9.8861023). When conditioning on this locally most

significant SNP, the haplotype effect stayed almost unchanged

(adjusted OR = 0.82; 95% CI = 0.74–0.91) and remained the most

significant haplotype, although the adjusted haplotype specific

association p-value was less significant than that of without

adjustment for the best SNP (unadjusted haplotype p = 5.0961026

vs. adjusted haplotype p = 1.3661024). On chromosome 4, a 2-

SNP haplotype AG (Position: 122340944-122346258; frequen-

cy = 0.64) was close to two orders of magnitude more significant

than its best individual SNP, rs13116936 (3.3761027 vs.

1.0961025) (Figure 2B) and the unadjusted haplotype specific

effect was among the most significant in all top 10 independent

regions. After adjusting for the best SNP, the haplotype effect

remained significant at p = 7.5461024. A potentially interesting

finding was on chromosome 18 (Figure 2C) where a much rarer 6-

SNP haplotype AACGTT (Position: 35670316-35684521; fre-

quency = 0.03) showed an improvement of haplotype significance

with the adjusted p-value of 2.4261025 in contrast to the

unadjusted p-value of 6.9661025. The haplotype specific effect

did not alter meaningfully before and after the adjustment for the

best SNP (unadjusted OR = 1.72, 95% CI = 1.32-2.25; adjusted

OR = 1.79, 95% CI = 1.36-2.34). The carrier of one copy of this

haplotype had 1.79 times higher breast cancer risk relative to

women who did not carry it, much stronger than the best SNP

rs47995220 alone (OR = 1.23; 95% CI = 1.11-1.45). These three

novel haplotypes found on chromosomes 1, 4 and 18 were further

verified with comparison to the imputed SNPs based on the 1000

Genomes Project released data within the same chromosomal

Figure 1. Comparison of the permutation minimum p-values to theoretical beta distributions. (A). Quantile-Quantile plot comparing the
minimum p-values from 1,000 permutations on chromosome 22 data to beta(1,7426). (B). Quantile-Quantile plot comparing the minimum p-values to
beta(1,7823).
doi:10.1371/journal.pone.0057298.g001

Table 1. Fitting the minimum p-values from 1,000
permutations of chromosome 22 data to theoretical beta
distributions beta(a,b).

Parameter Goodness of fit (p-value)

a b
Kolmogorov-
Smirnov

Cramér-von
Mises

Anderson-
Darling

0.95 7426 .0.25 .0.25 .0.25

1 7794 .0.25 .0.25 .0.25

1 8500 0.044 0.061 0.039

1 8400 0.088 0.123 0.089

1 8300 0.164 0.236 0.188

1 7600 .0.25 .0.25 .0.25

1 7400 .0.25 0.16 0.116

1 7300 0.147 0.049 0.047

doi:10.1371/journal.pone.0057298.t001
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regions. None of the aforementioned novel haplotype-specific

associations could have been revealed by imputed SNPs

(Figure 3A–C). As shown in the Manhattan plots contrasting the

haplotype effects with that of the imputed SNPs, the most

significant haplotypes were independent of the neighboring

clusters of imputed SNPs; no adjacent SNPs achieved comparable

significance as the top haplotypes did. These novel haplotypes

were not confounded by local ancestry inferred from neighboring

SNPs either (Table S5). The test statistics stayed largely unchanged

after further adjusting for the local ancestry in addition to the

global ancestry for a finer correction for population admixture.

Among the remainder of the top 10 independent regions with

haplotype global test p-values less than 1.5161025, the signifi-

cance levels of the top individual haplotypes and SNPs were very

close for chromosomes 3, 5 and 10, implying that the noticeable

haplotype effects shown on the Manhattan plots can be mostly

credited to the genotyped SNPs (Figures S3 A–C). On the rest of

the chromosomes, the top SNPs were more significant than any

inferred haplotypes, so that the haplotypes did not contribute more

information towards genetic association tests in those regions than

SNPs themselves.

As noted by Chen et al [23], the endeavor to replicate the

significance of the known GWAS hits using the AABC data was

largely unsuccessful, implying the risk loci for breast cancer found

in other GWAS, predominantly of European ancestries, may not

be the same as in African Americans. For four of the known

GWAS SNPs the associations in our African American breast

cancer data had a nominally significant p-value less than 0.05

(Table S4), namely rs13387042 at 2q35 (OR = 0.89; 95%

CI = 0.82–0.97; p = 0.00713), rs865686 at 9q31 (OR = 0.92;

95% CI = 0.85–0.99; p = 0.0287), rs2981582 at 10q26

(OR = 1.11; 95% CI = 1.03–1.19; p = 0.0087), and rs2363956 at

19p13 (OR = 0.88; 95% CI = 0.82–0.95; p = 8.161024). They are

all common variants of modest effects in this study with minor

allele frequency between 0.07 and 0.49. Across these 21 regions

with known breast cancer risk, 10p15 and 14q24 showed potential

haplotype effects with the global test p-value less than 1.061024,

albeit not genome-wide significant. When scrutinizing all possible

inferred individual haplotypes of 2–10 SNPs long in the vicinity of

the known markers, a 3-SNP haplotype at 10p15, CTC (Position:

5705780–5712025; frequency = 0.22) constituted by rs17141741,

rs2386661 and rs4414128 was three orders of magnitude more

significant than the most significant individual SNP contained in

the haplotype, rs4414128 (unadjusted haplotype p-value = 561026

vs. best SNP p-value = 7.0861023) (Table 3). This haplotype was

associated with a 20% reduced risk per copy for breast cancer

relative to the women not carrying it. The haplotype-specific effect

was almost unchanged after adjustment for both the best

contained SNP (rs4414128) and the index marker (rs2380205)

(adjusted haplotype OR = 0.81, 95% CI = 0.72–0.91,

p = 2.1661024). The haplotype signal was two or three orders of

magnitude more significant than any of the remaining individual

SNPs adjacent to that haplotype, as shown from the leftmost

haplotype signal peak in Figure 4A. When further compared to the

1 KGP imputed SNPs in the same region, this CTC haplotype

was still independent of the imputed SNPs (Figure 5A). The

imputed SNPs residing within close proximity had similar

significance levels to that of the genotyped SNPs (Figure 4A vs.

Figure 5A), which emphasized that haplotype effect was unlikely to

be explained by SNP imputation either. Another 3 SNP haplotype

GAG (Position: 6042374–6043841; frequency = 0.60) was stronger

than any genotyped SNPs. However, we found an imputed SNP

(rs3181152; risk allele: G; frequency: 0.45; p = 4.7261025) that fell

on this haplotype and was an even stronger predictor of risk. The

analysis of individual haplotype effects also identified a new region

at 14q24 containing the known hit rs999737, where the most

significant haplotype was CGCAGC (Position: 68033499–

68045127; frequency = 0.05) with the unadjusted haplotype p-

value over three orders of magnitude less than that of the best

contained SNP, rs10132579 (unadjusted haplotype p = 1.6961026

vs. best SNP p = 9.5561023) (Figure 4B). It was also noted that

this haplotype effect was stable after additional adjustment for

rs10132579 and rs999737 (unadjusted OR = 0.60, 95%

CI = 0.48–0.74 and the adjusted OR = 0.60 with 95%

CI = 0.47–0.77), suggesting approximately a 40% decreased breast

cancer risk per copy was associated with this CGCAGC haplotype

among the carriers. Taking local ancestry into account did not

change the results for either the CTC haplotype on 10p15 or the

CGCAGC haplotype on 14q25 (Table S5). There were numerous

other individual haplotypes with unadjusted significance between

1026 and 1025 on 8q24 and 19p13. However, these top haplotype

effects were indistinguishable from the top SNPs. Once adjusted

Figure 2. Comparison of the significance of individual haplotypes with the most significant SNPs in three regions on chromosomes
1, 4 and 18. These three regions, namely, (A) chr1:8,309,317-8,318,147; (B) chr4:122,325,743- 122,363,114; and (C) chr18:35,670,316-35,683,522 were
identified by the genome-wide haplotype association analysis using 5-SNP sliding windows. The regions were further extended both upstream and
downstream by half of the original width to explore underdetected effects. Black circles denote individual haplotypes, the sizes of which are
proportional to their haplotype frequencies. Red dots denote genotyped SNPs within the same region. Blue dot shows the most significant SNP.
doi:10.1371/journal.pone.0057298.g002
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for the best SNP contained, these haplotypes became insignificant

(p.0.05) (Figures S4 A–D).

Discussion

We implemented a genome-wide haplotype association analysis

searching for breast cancer risk susceptibility loci in African

American women. To quickly narrow down to potential risk

regions, a 5-SNP sliding window approach was applied throughout

22 autosomes. Among approximately 1 million windows, none

achieved the genome-wide significance determined by an approx-

imation to the beta distribution of the minimum p-values through

1,000 permutations (pG = 9.9461028). Only 10 independent

chromosomal regions had the haplotype global test p-value less

than 1.561025. The haplotype AGCTG at chromosome

1:8,309,317–8,318,147 showed a moderate haplotype effect that

was otherwise not captured by association analyses focusing on

SNPs. This region overlaps a solute carrier family 45 member 1

gene (SLC45A1, position: 8,306,977–8,326,814) that is predomi-

nantly expressed in brain tissues and is also seen frequently deleted

in brain tumor cells, suggesting a putative role as a tumor

suppressor [53], however, the clear picture of its biological

mechanism is far from complete. The 2-SNP haplotype AG on

chromosome 4:122,340,944–122,346,258 had a stronger associa-

tion with the disease than any SNPs in the same region. About

30 kb upstream of it resides TNIP3 gene (Homo sapiens

TNFAIP3 interacting protein 3). Both TNIP and TNFAIP

proteins were reported to overexpress in human carcinoma cells

and suppress the activation of nuclear factor kappa B (NF-kB)

[54]. The haplotype AACGTT at chromosome 18:35,670,316–

35,684,521 was associated with increased risk for breast cancer

and the haplotype effect was independent of individual SNP

Figure 3. Comparison of the significance of individual haplotypes with imputed SNPs in regions on chromosomes 1, 4 and 18.
Contrast of the haplotype effects with the effects of the 1000 Genome Project imputed SNPs in these three regions, namely, (A) chr1:8,309,317-
8,318,147; (B) chr4:122,325,743- 122,363,114; and (C) chr18:35,670,316-35,683,522 are shown. Black circles denote individual haplotypes, the sizes of
which are proportional to their haplotype frequencies. Red dots denote imputed SNPs within the same region. Blue dot shows the most significant
imputed SNP.
doi:10.1371/journal.pone.0057298.g003

Table 2. The most significant individual haplotypes identified in the extended regions on chromosomes 1, 4 and 18.

Unadjusted for SNP effect Adjusted for SNP effect

Chromosome Constituent SNPs Haplotype Frequency OR 95% CI Hap P OR 95% CI Hap Pa

1 rs9628987,rs2289731,rs12711517, AGCTG 0.24 0.81 (0.74–0.89) 5.09E–06 0.82 (0.74–0.91) 1.36E–04c

rs2305016,rs7535752

SNP adjustedb

rs12711517; T, 0.36; 1.11 (1.03–1.20);
p = 9.88E–03

4 rs17435444,rs13116936 AG 0.64 1.23 (1.13–1.33) 3.37E–07 1.74 (1.26–2.39) 7.54E–04c

rs13116936; T, 0.34; 0.84 (0.77–0.91);
p = 1.09E–05

18 rs7233920,rs4799278,rs12605634, AACGTT 0.03 1.72 (1.32–2.25) 6.96E–05 1.79 (1.36–2.34) 2.42E–05

rs4799520,rs7238528,rs17702736

rs4799520; A, 0.09; 1.23 (1.11–1.45);
p = 3.66E–04

athe p-value of LR test of the haplotype-specific effect after adjustment for the best SNP contained in that haplotype.
bthe rs number, risk allele and its frequency, Odds Ratios and 95% CI, and the p-value of the SNP that is adjusted for in the LR test are presented.
cThere are no individual haplotypes significant at 1.0E-4 in this region after adjustment for the best contained SNP. Instead the most significant haplotype is reported for
the sake of completeness.
doi:10.1371/journal.pone.0057298.t002
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effects, although no known genes are found nearby. Therefore,

these regions revealed by haplotype analysis are candidates for

fine-mapping to locate the casual variants as a first step towards

deciphering the true biological functions. Among the 21 known

breast cancer risk regions revealed by previous GWAS, 10p15 and

14q24 seem most likely to harbor unknown risk loci based on the

suggestive haplotype associations described above.

Figure 4. Two known breast cancer risk regions 10p15 and 14q24 exhibit putative haplotype effects. (A) 5.67–6.17 Mb region at 10p15;
(B) 67.84–68.34 Mb region at 14q24. Black circles denote individual haplotypes, the sizes of which are proportional to their haplotype frequencies.
Red dots denote genotyped SNPs within the same region. Blue dot shows the most significant SNP. Cyan dot denotes the known breast cancer risk
SNP identified by previous GWAS.
doi:10.1371/journal.pone.0057298.g004

Figure 5. Comparison of the significance of individual haplotypes with imputed SNPs in 10p15 and 14q24. (A) 5.67–6.17 Mb region in
10p15; (B) 67.84–68.34 Mb region in 14q24. Black circles denote individual haplotypes, the sizes of which are proportional to their haplotype
frequencies. Red dots denote imputed SNPs within the same region. Blue dot shows the most significant imputed SNP. Cyan dot denotes the known
breast cancer risk SNP identified by previous GWAS.
doi:10.1371/journal.pone.0057298.g005
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In previous work, Chen et al. [23] and Siddiq et al. [55] have

shown that the genome-wide significance for the 21 known breast

cancer SNPs did not replicate in African Americans. The majority

of those SNPs were discovered predominately in European

populations, with the exception of rs2046219 at 6q25 found in

the Han Chinese population. Chen et al have also shown that

many of the index risk variants for breast cancer are significant in

multiple populations except for African Americans [56]. We

confirmed that the most significant SNPs within each known

region are all different from the known breast cancer risk SNPs

(Table S4). All evidence underscores the different risk association

patterns between African Americans and European populations,

and limits the generalizability of the previously established

significant GWAS hits as well as presents new challenges in the

investigation of breast cancer susceptibility loci specifically for

African Americans.

The haplotype association tests were based on haplotype dosage

estimates inferred by the E-M algorithm from unphased genotypes

for unrelated subjects under the assumption of HWE (the

estimation step). We substituted the expected haplotype dosages

for the unknown true haplotypes and fit these continuous dosage

variables into conventional logistic regression models (l̂lin models 3

through 7) (the substitution step). Even though the haplotype

inference from diploid genotypes is not free from uncertainty, the

use of these continuous dosages largely correct for the uncertainty

derived from haplotype inference and the predictability of

haplotypes is quite high, especially when adjacent SNPs are in

high LD, a condition that often satisfies in analyses focused on

haplotype blocks [38]. This simple expectation-substitution

approach [57] has been shown to have a proper control of the

type I error rate for the association test when we believe the

haplotype dosage estimates have no differential errors between

cases and controls [58]. In other words, case-control status is

unrelated to the errors in haplotype dosage estimation, which is

generally valid when haplotypes are inferred by pooling both cases

and controls and the null hypothesis of no significant association

between haplotype and disease is true. Several concerns arise

when under the alternative hypothesis a few assumptions are no

longer true. For instance, if haplotype frequencies in cases and

controls are associated with the disease status, failure to account

for haplotype uncertainty can lead to estimates biased towards to

null [59,60]. Second, even though the SNPs are in HWE in the

general population, it may not be necessarily so in the case-

enriched case-control sample so that the estimation of haplotype

dosages may not be accurately inferred from the sample’s

genotypes. To address these aforementioned issues, Lin et al.

[61,62] proposed a maximum likelihood (ML) method that

simultaneously infers haplotype frequencies and regression pa-

rameters in the same model. Their method yields less biased

estimates and the confidence intervals of the regression coefficients

have better coverage of the true value through simulation data for

a variety of settings under the alternative hypotheses. We note

however that the superiority of the ML method over the

expectation-substitution applies only to scenarios where the true

magnitude of association is very large, i.e., b= 0.9 (OR = 2.5).

Such large effects seem to be rare in GWAS of either common

SNPs or common haplotypes studied here. Another simulation

analysis [59] also verified that in practical settings where a

haplotype block formed by a small number of SNPs with limited

haplotype diversity, the bias was minimal and the empirical

confidence intervals had appropriate coverage of the true value.

More importantly, the performances of the maximum likelihood

method and the expectation-substitution were almost indistin-

guishable, implying the expectation-substitution is robust to

reasonable departure from the assumptions. Therefore, substitut-

ing the inferred haplotype dosages in the regression model still

retains good statistical properties in most practical contexts of

haplotype association tests. If haplotypes with greater risk effect

were of interest, the simultaneous maximum likelihood method

would be preferable.

We may not have had enough statistical power to identify

significant rare haplotypes or modest to weak haplotype effects

despite our large sample size. Haplotypes of less than 1%

frequency were unaddressed in our analyses mainly due to the

intrinsic difficulty and unreliability of inference of those rare

haplotypes. Uncommonly short or long haplotypes in the genome

compromise our 5-SNP sliding windows flexibility to identify them

in the haplotype global test. It is possible that constructing a larger

window may capture more haplotype variety such that some rare

haplotypes can be taken into account. Nonetheless, concerns of

computing efficiency arise as the number of SNPs increases. For

example, if the total number of heterozygous SNPs in each

haplotype block is m, there could be 2m possible haplotypes and

thus (2mz1)2m{1 possible haplotype pairs being summed over in

Table 3. The most significant individual haplotypes in 10p15 and 14q24.

Unadjusted for SNP effect Adjusted for SNP effect

Chromsome SNPs Haplotype Frequency OR 95% CI Hap P OR 95% CI Hap Pa

10p15 rs17141741,rs2386661,rs4414128 CTC 0.22 0.79 (0.72–0.88) 5.00E–06 0.81 (0.72–0.91) 2.16E–04

Known Risk SNP adjustedb

rs2380205; C, 0.42; 0.98 (0.91–1.06); p = 0.5945

Best SNP adjustedb

rs4414128; T, 0.38; 1.11 (1.03–1.21); p = 0.007084

14q24 rs765899,rs737387,rs2842347, CGCAGC 0.05 0.6 (0.48–0.74) 1.69E–06 0.6 (0.47–0.77) 4.27E–05

rs757369,rs10132579,rs2842346

rs999737; T, 0.05; 0.98 (0.82–1.17); 0.7994

rs10132579; G, 0.37; 0.89 (0.82–0.97); p = 0.009551

athe p-value of LR test of the haplotype specific effect after adjustment for both the known breast cancer risk SNP and the best SNP contained in that haplotype.
bthe rs number, risk allele and its frequency, Odds Ratios and 95% CI, and the p-value for the SNP adjusted in the LR test are presented. For the regions with known
breast cancer risk hits, both the known hit and the locally best SNP were adjusted for in the LR test for the independence of haplotype signals.
doi:10.1371/journal.pone.0057298.t003
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the E-M algorithm for each subject. The number grows

exponentially, exacerbating the feasibility of implementing the

algorithm. Even though in reality, the number of possible

haplotypes may just be a fraction of 2m, the same idea still

applies. Qin et al [63] proposed the partition ligation E-M

algorithm by breaking up a sequence of SNPs into smaller pieces,

each including 5–10 markers. In our study, in order to maximize

the coverage of all genotyped SNPs, a 5-SNP window was adopted

to construct haplotype blocks and haplotype global test was

employed therein. Arguably, varying window sizes are capable of

reflecting varying degrees of LD in the data [64,65]: more SNPs

should be included in the same haplotype block when they are in

regions of extensive LD and fewer SNPs should be portioned

together given limited LD structure. However, it is difficult to

identify regions of high and low LD and alter the window sizes

accordingly across the entire genome with high precision. It was

recommended by Mathias et al [21] that smaller window sizes be

run prior to larger windows. We employed a strategy that both

quickly narrows down to potentially important regions through the

universal 5-SNP sliding windows and permits the flexibility of

detecting underlying haplotypes of 2–10 SNPs long residing in

those regions. The choice of 5-SNP window roughly agrees with

the overall average haplotype block sizes for people of African

ancestry, in which the total number of the haplotype blocks longer

than 10 SNPs (,25 kb) should not be unexpectedly large [9].

Larger windows may improve the ability to identify unknown

haplotype effects. However, if a haplotype effect existed in a 10-

SNP block, it would have been at least partly captured by at least a

few of a series of 5-SNP blocks. Note that this should never be used

as a one-size-fits-all solution since the SNP density, underlying

haplotype diversity, and populations under investigation can be

fundamentally different from study to study. A similar exploration

of the choice of the average window size is suggested prior to

applying the sliding windows approach in other groups with

different LD patterns.

One drawback in the use of overlapping sliding windows is the

difficulty of making correct inference of the type I errors.

Obviously, overlapping windows were not independent. A naı̈ve

application of Bonferroni adjustment would incur overly conser-

vative significance levels and the power to find true positive

associations would also be compromised. Permutation tests have

been shown to be capable of drawing the significant threshold

directly from the experimental data [66] and serve as the gold

standard in the comparison of performances of various multiple

testing adjustments [67]. Nevertheless, permutation tests are

computationally very intensive and time-consuming. One thou-

sand permutations in a genome-wide haplotype analysis can take

weeks to months to finish in light of large sample sizes, haplotype

inference, and association testing. Numerous innovative recom-

mendations [67–71] have been proposed and each has its own

merits. One category among those approaches incorporates the

computation of the effective number of independent tests: neff and

use of neff in Bonferroni correction. neff can be inferred from the

beta distribution of the minimum p-values from permutation

replicates. We conjectured that in our African American sample

the true number of effective tests for chromosome 22 lies

somewhere between 7,400 and 8,300, covering half the number

of total overlapping windows. So the permutation test implies that

approximately 50% of total sliding windows can be considered

independent and therefore a modified Bonferroni correction can

be used readily.

In summary, we applied a 5-SNP sliding window approach to

perform genome-wide haplotype association analysis and identi-

fied three novel regions with potential interest for further

investigation and validation. Two of 21 known breast cancer risk

regions established in previous GWAS, namely 10p15 and 14q24,

exhibited moderate haplotype effects and warrant additional

replication work to confirm their significance in African American

women.

Supporting Information

Figure S1 The distributions of 5-SNP sliding window
sizes shown in cumulative density. Each colored line

denotes the 5-SNP sliding window sizes on each chromosome,

shown as cumulative density of window sizes from the smallest to

the biggest. The black curve shows the average cumulative density

across 22 autosomes. The 1, 25, 50, 75, 90, and 99 percentile of

the average window size are 1, 5, 9, 14, 20 and 32 kb, respectively.
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Figure S2 Comparison of the significance of haplotype
blocks and SNPs on chromosome 5 (97.3 Mb –97.8 Mb).
Black dots represent the significance of haplotype blocks by the

global test. Red circles denote the significance of SNPs in the same

chromosomal region. All top five haplotype blocks overlap each

other and contain SNP rs6882564, which was severely out of

Hardy-Weinberg Equilibrium.

(TIFF)

Figure S3 Comparison of the significance of individual
haplotypes with the most significant SNPs in three
regions on chromosomes 3, 5 and 10. These three regions,

namely, (A) chr3:7,220,000-7,280,000; (B) chr5:142,326,000-

142,371,000; and (C) chr10:115,105,000-115,124,000 had small

p-values in the genome-wide haplotype association analysis. Black

circles denote individual haplotypes, the sizes of which are

proportional to their haplotype frequencies. Red dots denote

genotyped SNPs within the same region. Blue dot shows the most

significant SNP. The observed top individual haplotype effects

were mostly due to the top SNPs.

(TIFF)

Figure S4 Comparison of the significance of individual
haplotypes with genotyped and imputed SNPs in 8p24
and 19p13. (A),(C) 125.99-129.99 Mb region in 8q24; (B),(D)

17.00–17.50 Mb region in 19p13. Black circles denote individual

haplotypes, the sizes of which are proportional to their haplotype

frequencies. Red dots denote genotyped SNPs in (A),(B) and

imputed SNPs in (C),(D) within the same region of haplotypes. Blue

dot shows the most significant genotyped SNP in (A),(B) and the

most significant imputed SNP in (C),(D). Cyan dot in (C),(D) denotes

the known breast cancer risk SNP identified by previous GWAS.
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