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Technology, Wuhan, China, 2 Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China

Background: Rapid and effective discrimination between active tuberculosis (ATB) and
latent tuberculosis infection (LTBI) remains a challenge. There is an urgent need for
developing practical and affordable approaches targeting this issue.

Methods: Participants with ATB and LTBI were recruited at Tongji Hospital (Qiaokou
cohort) and Sino-French New City Hospital (Caidian cohort) based on positive T-SPOT
results from June 2020 to January 2021. The expression of activation markers including
HLA-DR, CD38, CD69, and CD25 was examined on Mycobacterium tuberculosis
(MTB)-specific CD4+ T cells defined by IFN-g, TNF-a, and IL-2 expression upon MTB
antigen stimulation.

Results: A total of 90 (40 ATB and 50 LTBI) and another 64 (29 ATB and 35 LTBI)
subjects were recruited from the Qiaokou cohort and Caidian cohort, respectively. The
expression patterns of Th1 cytokines including IFN-g, TNF-a, and IL-2 upon MTB antigen
stimulation could not differentiate ATB patients from LTBI individuals well. However, both
HLA-DR and CD38 on MTB-specific cells showed discriminatory value in distinguishing
between ATB patients and LTBI individuals. As for developing a single candidate
biomarker, HLA-DR had the advantage over CD38. Moreover, HLA-DR on TNF-a+ or
IL-2+ cells had superiority over that on IFN-g+ cells in differentiating ATB patients from LTBI
individuals. Besides, HLA-DR on MTB-specific cells defined by multiple cytokine co-
expression had a higher ability to discriminate patients with ATB from LTBI individuals than
that of MTB-specific cells defined by one kind of cytokine expression. Specially, HLA-DR
on TNF-a+IL-2+ cells produced an AUC of 0.901 (95% CI, 0.833–0.969), with a sensitivity
of 93.75% (95% CI, 79.85–98.27%) and specificity of 72.97% (95% CI, 57.02–84.60%)
as a threshold of 44% was used. Furthermore, the performance of HLA-DR on TNF-a+
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IL-2+ cells for differential diagnosis was obtained with validation cohort data: 90.91%
(95% CI, 72.19–97.47%) sensitivity and 68.97% (95% CI, 50.77–82.73%) specificity.

Conclusions: We demonstrated that HLA-DR on MTB-specific cells was a potentially
useful biomarker for accurate discrimination between ATB and LTBI.
Keywords: activation phenotype, HLA-DR, Mycobacterium tuberculosis, discrimination, active tuberculosis,
latent tuberculosis infection
INTRODUCTION

Tuberculosis (TB), caused byMycobacterium tuberculosis (MTB)
infection, remains a lethal infectious disease that needs to be paid
more attention globally (1–3). It was reported that there were still
an estimated 10 million cases and nearly 1.4 million deaths of the
disease in 2019 (4). The one main hurdle in controlling TB is the
difficulty in differentiating active TB (ATB) from latent TB
infection (LTBI) (5–8). Delayed ATB identification would
enhance TB transmission and hamper the global End TB
strategy (9, 10). Therefore, the development of tools for
discrimination between ATB and LTBI would be a priority in
the global effort to combat this disease (11, 12).

Pathogen detections including smear microscopy and
mycobacterial culture were applied widely in the TB diagnosis
field. However, the drawbacks of these conventional tests
included limited sensitivity and length of time consumed (13,
14). Although a rapid diagnosis has been enhanced by various
molecular techniques such as GeneXpert MTB/RIF and
GeneXpert MTB/RIF Ultra (15–20), these tests also showed
unsatisfactory utility, especially for paucibacillary cases (21–24).
Interferon gamma release assays, including T-SPOT.TB (T-SPOT)
and QuantiFERON-TB Gold In-Tube (QFT-GIT), were widely
used for identifying MTB infection (25–28). Nevertheless, these
two tests were not useful in distinguishing ATB from LTBI (29–31).
Moreover, a variety of host biomarkers identified by omics
including transcriptome (32–34), proteome (35, 36), and
metabolome (37–39) have been proposed as potential biomarkers
for diagnosing MTB infection. Howbeit, few studies validated their
actual benefit in various areas with different demographic, ethnic
settings, as well as TB prevalence. Besides, high operating costs and
infrastructural requirements hinder their use in resource-
constrained settings. Hence, there is an imperative need to seek
an approach with good performance based on existing
technology platforms.

Previous studies showed that MTB-specific T-cell activation
might associate with MTB antigen load (40, 41). Several
publications had denoted the potential of antigen-specific
HLA-DR and CD38 in TB diagnosis (41, 42). Notwithstanding,
further validation for these investigations, especially in different
populations, is needed to get the most promising biomarkers a
step closer to clinical translation. Meanwhile, T-cell activation
could reflect by multiple markers including HLA-DR, CD38,
CD69, and CD25. HLA-DR is usually highly expressed on the
surface of T cells in advanced stages of activation as one kind of
human class II major histocompatibility complex antigen (43–45).
CD38 is a type II transmembrane glycoprotein that is extensively
g 2
expressed on cells of hematopoietic and non-hematopoietic lineage
(46). It is downregulated in resting memory cells and elevates in
activated cells (45, 47). CD69 acts as a costimulatory molecule for T-
cell activation and proliferation (48). It is one of the early markers
upregulated after T-cell activation (45, 49–51). CD25, as a chain of
IL-2 receptor, plays a key role in responsiveness to IL-2, enabling T
lymphocyte activation and further IL-2 production (45, 52).
Different activation biomarkers may have inconsistent
performance in the diagnosis of TB. Besides, CD27 acts as a
differentiation marker expressed on T cells as a member of the
TNF receptor family (53). It was reported that the decreased
expression of this marker denoted a conversion of T cells towards
effector memory phenotype (54). Several previous studies have
found that CD27 expression on MTB-specific cells decreased in
ATB patients (40, 55, 56), suggesting its potential in TB diagnostics.
Moreover, the value of the combination of various activation and
differentiation biomarkers for TB diagnostics has not been
adequately elaborated. Therefore, the issue is needed to be
clarified. Meanwhile, MTB-specific T cells could represent by
multiple cytokine secretion profiles including IFN-g, TNF-a, and
IL-2 upon MTB antigen stimulation. Thus, there is urgent need to
identify appropriate combination for TB diagnosis with optimal
performance. The present study evaluated and validated the
potential utility of various activation and differentiation markers
on different MTB-specific cells for TB diagnosis.
METHODS

Study Design
The present study was carried out between June 2020 and
January 2021. Participants were recruited at Tongji Hospital
(Qiaokou cohort, the largest tertiary hospital in central China
with 5500 beds) and Sino-French New City Hospital (Caidian
cohort, a branch hospital of Tongji Hospital with 1600 beds),
respectively. Subjects in two cohorts were selected based on
positive T-SPOT results. On the basis of clinical and laboratory
assessments, participants were classified as patients with ATB
and individuals with LTBI. ATB patients were diagnosed by
positive mycobacterial culture and/or GeneXpert MTB/RIF with
supportive symptoms and radiological findings of ATB. LTBI
individuals were identified by positive T-SPOT result in the
absence of ATB evidence. Exclusion criteria for the study
included (1) having received anti-TB therapy for more than
2 weeks and (2) being younger than 17 years old. This study was
reviewed and approved by the committee of Tongji Hospital,
August 2021 | Volume 12 | Article 721013
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Tongji Medical College, Huazhong University of Science
and Technology.

T-SPOT Assay
Heparin-anticoagulated blood samples were collected for
performing T-SPOT assay (Oxford Immunotec, Oxford, UK).
The operation was conducted in accordance with manufacturer’s
instruction. Briefly, peripheral blood mononuclear cells (PBMCs)
were separated by Ficoll-Hypaque gradient centrifugation. Then,
the isolated PBMCs (2.5 × 105) were added to 96-well plates
precoated with antibody against IFN-g. There were four wells
each participant: medium (negative control), early secreted
antigenic target 6 (ESAT-6), culture filtrate protein 10 (CFP-
10), and phytohemagglutinin (positive control). Cells were
incubated for 16–20 h at 37°C with 5% CO2 and developed
using anti-IFN-g antibody conjugate with substrate to detect the
presence of IFN-g secreted cells. Spot-forming cells were counted
with an automated enzyme-linked immunospot reader (CTL
Analyzers, Cleveland, OH, USA). The test result was regarded
positive if ESAT-6 and/or CFP-10 spot number minus negative
control spot number ≥ 6. The test result was regarded negative if
both ESAT-6 spot number minus negative control spot number
and CFP-10 spot number minus negative control spot number ≤
5. Results were considered undetermined if the spot number in
Frontiers in Immunology | www.frontiersin.org 3
phytohemagglutinin well was <20 or spot number in the medium
well was >10.

Detection of Markers on MTB-Specific
CD4+ Cells
PBMCs were stimulated with peptide ESAT-6 (2 mg/ml) and
CFP-10 (2 mg/ml) for 18 h at 37°C with 5% CO2. Briefly, PBMCs
were counted and 1 × 106 cells were added to the well. Brefeldin
A was added to the mixture 6 h before staining of the cells. Post
incubation, PBMCs were first stained with Fixable Viability Stain
700 (BD Pharmingen) to discriminate live from dead cells,
followed by appropriate surface marker staining. Cell surface
staining was performed on PBMCs using the following anti-
human monoclonal antibodies: anti-CD4-APC-Cy7, anti-HLA-
DR-PerCp 5.5, anti-CD38-BV510, anti-CD69-BV421, anti-
CD25-APC, and anti-CD27-PE-Cy7. For intracellular staining,
the cells were fixed and permeabilized with Fixation and
Permeabilization Buffer (BD Biosciences). Intracellular
cytokine staining was conducted using the following anti-
human monoclonal antibodies: anti-IFN-g-BV605, anti-TNF-
a-FITC, and anti-IL-2-PE. The staining was performed at 4°C,
and the cells were stained for 30 min. The gating strategy was
shown in Figure 1. The information of used antibodies was
presented in Supplementary Table S1. Isotype controls with
FIGURE 1 | The gating strategies for cytokine expression and activation phenotype in the current study. FVS, fixable viability stain; MTB, Mycobacterium tuberculosis.
August 2021 | Volume 12 | Article 721013
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irrelevant specificities were included as negative controls. After
washing, the pellets were resuspended in 200 ml staining buffer
and analyzed with FACSCanto II flow cytometer (BD
Biosciences, San Jose, CA). The flow data were analyzed using
Flowjo software version 10.6.2 (TreeStar, Ashland, OR).

The background in the unstimulated tube was subtracted
when reporting the percentage of cytokine-producing cells in the
stimulated tube. MTB-specific cells were determined by cytokine
production including IFN-g, TNF-a, and IL-2. Responders were
defined as individuals with relative counts of cytokine-producing
CD4+ T cells (more than 15 events were recorded) in MTB
antigen-stimulated condition that were significantly higher than
the unstimulated control (a fold change of more than 3). The 15-
event cut-off for phenotypic analysis was applied to each cytokine
combination. Phenotype analysis for MTB-specific CD4+ T cells
was only performed on responders.

Statistical Analysis
Continuous variables were described using median (interquartile
range) or means ± standards deviation (SD). Categorical
variables were expressed as number (%). Comparison between
various groups was performed using Mann-Whitney U test for
continuous variables, and Chi-square test or Fisher’s exact test
for categorical variables. A two-side test with P < 0.05 was
considered statistically significant.

The diagnostic performance of various biomarkers was
assessed by receiver operator characteristics (ROC) curve
analysis. Area under the curve (AUC), sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV),
positive likelihood ratio (PLR), negative likelihood ratio (NLR),
and accuracy, together with their 95% confidence intervals (CI),
were determined. The comparison between various ROC AUCs
was performed by using z test with the procedure of Delong et al.
(57). Data analysis was performed using GraphPad Prism version
8 (GraphPad Software, San Diego, CA, USA), R 4.0.2 program
(R Core Team), SPSS version 25.0 (SPSS, Inc., Chicago, IL, USA),
and MedCalc version 11.6 (MedCalc, Mariakerke, Belgium).
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

Demographic and Clinical Characteristics
of Study Participants
Out of 90 subjects from Qiaokou cohort, 40 were ATB patients
and the other 50 were LTBI individuals. Among 64 cases from
the Caidian cohort, 29 were diagnosed as ATB and 35 were
diagnosed as LTBI. Participants had a mean age of around 60
years and more than half were males. There was no significant
difference between ATB patients and LTBI individuals in
distribution of age and gender. An overview of the clinical and
demographic characteristics of recruited participants was
presented in Table 1.

Cytokine Expression Patterns Upon MTB
Antigen Stimulation for Distinguishing ATB
From LTBI
We measured the expression of Th1 cytokines including IFN-g,
TNF-a, and IL-2 secreted by CD4+ T cells upon MTB antigen
stimulation and analyzed the value of expression profile for
distinguishing ATB patients from LTBI individuals. It was
observed that statistical difference existed in some co-
expression patterns between patients with ATB and LTBI
individuals (Figure 2A). When we assessed the ability of
cytokine secretion patterns to diagnose ATB disease using
ROC curve analysis, it was found that the AUCs produced by
all candidates were lower than 0.7 (Figure 2B).

Activation Markers on CD4+ T Cells for
Discriminating ATB From LTBI
The utility of activation markers including HLA-DR, CD38,
CD69, and CD25 on CD4+ T cells for discriminating ATB
patients from LTBI individuals was evaluated. The expression
of CD38 and CD25 in ATB patients was significantly higher than
that in LTBI individuals, while no statistical difference was
observed in HLA-DR and CD69 expression between these two
groups (Figure 3A). ROC curve analysis showed that the AUCs
TABLE 1 | Demographic and clinical characteristics of study population.

Variables Qiaokou cohort (training set) P* Caidian cohort (validation set) P* P†

ATB (n = 40) LTBI (n = 50) ATB (n = 29) LTBI (n = 35)

Age, years 50.8 ± 18.2 48.9 ± 16.7 0.529 52.0 ± 17.0 53.1 ± 15.7 0.981 0.351
Sex, male, % 25 (62.5%) 31 (62.0%) 0.961 17 (58.6%) 21 (60.0%) 0.911 0.721
Underlying condition or illness
HIV infection 1 (2.5%) 0 (0.0%) 0.261 1 (3.5%) 0 (0.0%) 0.268 0.807
Diabetes mellitus 7 (17.5%) 7 (14.0%) 0.649 5 (17.2%) 3 (8.6%) 0.296 0.593
Solid tumor 5 (12.5%) 4 (8.0%) 0.48 3 (10.3%) 4 (11.4%) 0.89 0.851
Hematological malignancy 3 (7.5%) 1 (2.0%) 0.208 2 (6.9%) 1 (2.9%) 0.447 0.943
Liver cirrhosis 2 (5.0%) 1 (2.0%) 0.431 2 (6.9%) 3 (8.6%) 0.804 0.217
End-stage renal disease 5 (12.5%) 3 (6.0%) 0.282 5 (17.2%) 3 (8.6%) 0.296 0.469
Organ transplantation 2 (5.0%) 0 (0.0%) 0.11 1 (3.5%) 1 (2.9%) 0.892 0.729
Immunosuppressive condition‡ 7 (17.5%) 7 (14.0%) 0.649 4 (13.8%) 3 (8.6%) 0.505 0.411
Positive culture for MTB 30 (75.0%) N/A N/A 25 (86.2%) N/A N/A N/A
Positive GeneXpert MTB/RIF 31 (77.5%) N/A N/A 22 (75.9%) N/A N/A N/A
August 2021 | Volume
 12 | Article 7
ATB, active tuberculosis; LTBI, latent tuberculosis infection; MTB, Mycobacterium tuberculosis; N/A, not applicable. *Comparisons were performed between ATB and LTBI groups using
Mann-Whitney U test, Chi-square test, or Fisher’s exact test. †Comparisons were performed between Qiaokou and Caidian cohorts using Mann-Whitney U test, Chi-square test, or
Fisher’s exact test. ‡Patients who underwent chemotherapy or took immunosuppressants within 3 months. Data were presented as means ± SD or numbers (percentages).
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were 0.699 (95% CI, 0.589–0.809) for CD25 and 0.625 (95% CI,
0.508–0.742) for CD38 (Figure 3B). When combining with
CD27, no improved performance was obtained for the purpose
of distinguishing ATB patients from LTBI individuals (Figure 3C).

Activation Markers on MTB-Specific Cells
for Differentiating ATB From LTBI
We examined the expression levels of activationmarkers onMTB-
specific cells determined by Th1 cytokine expression. Obvious
difference was found in HLA-DR and CD38 expression on MTB-
specific cells between ATB patients and LTBI individuals, while no
significant difference was observed in CD69 and CD25 expression
between these two groups (Figure 4). ATB patients showed
significantly higher expression of HLA-DR and CD38, especially
on polyfunctional MTB-specific cells, compared to LTBI
Frontiers in Immunology | www.frontiersin.org
 5
individuals (Figures 4A, C). Specially, when a threshold was set as
44%, HLA-DR onTNF-a+IL-2+ cells was able to discriminate ATB
patients fromLTBI individualswith a sensitivity of 93.75% (95%CI,
79.85–98.27%) and specificity of 72.97% (95% CI, 57.02–84.60%)
(Table 2 and Figure 4B). The comparison between AUCs showed
that the performance of HLA-DR on TNF‐a+ cells was superior to
that on IFN‐g+ cells (Z test, P < 0.05). Moreover, HLA‐DR on
IFN‐g+TNF‐a+, IFN‐g+IL-2+, and TNF‐a+IL-2+ cells had
superiority over that on IFN‐g+ cells in differentiating ATB from
LTBI (Z test, P < 0.05). Meanwhile, it was observable that CD27
expression on MTB-specific cells was significantly lower in ATB
patients to that in LTBI individuals (Figures 4G, H). The value of
combination of activationmarkers and CD27was also analyzed for
differential diagnosis purpose.However, therewas no added benefit
observed (Supplementary Figure S1).
A

B

FIGURE 2 | The performance of various cytokine expression pattern upon MTB antigen stimulation in distinguishing ATB patients from LTBI individuals in Qiaokou
cohort. (A) Aligned dot plots showing the results of the expression pattern of IFN-g, TNF-a, and IL-2 upon MTB antigen stimulation in ATB patients and LTBI
individuals. Horizontal lines indicate the medians. (B) ROC analysis showing the performance of various cytokine expression pattern in discriminating ATB patients
from LTBI individuals. *P < 0.05 (Mann-Whitney U test). MTB, Mycobacterium tuberculosis; ATB, active tuberculosis; LTBI, latent tuberculosis infection; AUC, area
under the curve.
August 2021 | Volume 12 | Article 721013
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Validation of Activation Markers on MTB-
Specific Cells for Differential Diagnosis
Between ATB and LTBI
Another blinded set (Caidian cohort) was enrolled to validate the
performance of biomarkers discovered inQiaokou cohort. Excellent
Frontiers in Immunology | www.frontiersin.org 6
performance of HLA-DR on polyfunctional MTB-specific cells was
found for the differential diagnosis between ATB patients and LTBI
individuals.With the thresholdof 48%, the sensitivity and specificity
of HLA-DR on IFN-g+TNF-a+ cells were 82.61% (95% CI, 62.86–
93.02%) and 69.70% (95%CI, 52.66–82.63%), respectively (Table 3,
A

B

C

FIGURE 3 | The performance of various markers on CD4+ T cells in distinguishing ATB patients from LTBI individuals in Qiaokou cohort. (A) Scatter dot plots
showing the results of the expression of HLA-DR, CD38, CD69, CD25, and CD27 on CD4+ T cells in ATB patients and LTBI individuals. Horizontal lines indicate the
medians. (B) ROC analysis showing the performance of the expression of CD38 and CD25 on CD4+ T cells in discriminating ATB patients from LTBI individuals.
(C) Scatter dot plots showing the results of the proportions of HLA-DR+CD27- cells, HLA-DR-CD27+ cells, CD38+CD27- cells, CD38-CD27+ cells, CD25+CD27- cells,
and CD25-CD27+ cells of CD4+ T cells in ATB patients and LTBI individuals. Horizontal lines indicate the medians. *P < 0.05, **P < 0.01, ns, no significance (Mann-
Whitney U test). MTB, Mycobacterium tuberculosis; ATB, active tuberculosis; LTBI, latent tuberculosis infection; AUC, area under the curve.
August 2021 | Volume 12 | Article 721013
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Figures 5A,B). Using a cut-off value of 51%,HLA-DRon IFN-g+IL-
2+ cells was able to discriminate between ATB patients and LTBI
individuals with a specificity, sensitivity, and AUC of 83.33% (95%
CI, 66.44–92.67%), 90.48% (95%CI, 71.09–97.35%), and 0.938 (95%
Frontiers in Immunology | www.frontiersin.org 7
CI, 0.876–1.000), respectively (Table 3 and Figures 5A, B). When a
cut-off value of 44%wasused, a sensitivity of 90.91%(95%CI, 72.19–
97.47%) and a specificity of 68.97% (95% CI, 50.77–82.73%) were
observed in HLA-DR on TNF-a+IL-2+ cells (Table 3 and
A B

D

E F

G H

C

FIGURE 4 | The performance of activation markers on MTB-specific CD4+ T cells in distinguishing ATB patients from LTBI individuals in Qiaokou cohort. (A) Aligned dot
plots showing the results of HLA-DR expression on MTB-specific cells in ATB patients and LTBI individuals. Horizontal lines indicate the medians. (B) ROC analysis
showing the performance of HLA-DR expression on MTB-specific cells in discriminating ATB patients from LTBI individuals. (C) Aligned dot plots showing the results of
CD38 expression on MTB-specific cells in ATB patients and LTBI individuals. Horizontal lines indicate the medians. (D) ROC analysis showing the performance of CD38
expression on MTB-specific cells in discriminating ATB patients from LTBI individuals. (E) Aligned dot plots showing the results of CD69 expression on MTB-specific cells
in ATB patients and LTBI individuals. Horizontal lines indicate the medians. (F) Aligned dot plots showing the results of CD25 expression on MTB-specific cells in ATB
patients and LTBI individuals. Horizontal lines indicate the medians. (G) Aligned dot plots showing the results of CD27 expression on MTB-specific cells in ATB patients
and LTBI individuals. Horizontal lines indicate the medians. (H) ROC analysis showing the performance of CD27 expression on MTB-specific cells in discriminating ATB
patients from LTBI individuals. *P < 0.05, **P < 0.01, ***P < 0.001 (Mann-Whitney U test). MTB, Mycobacterium tuberculosis; ATB, active tuberculosis; LTBI, latent
tuberculosis infection; AUC, area under the curve.
August 2021 | Volume 12 | Article 721013
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Figures 5A, B). Furthermore, if using the cut-off value of 51%
obtained from Qiaokou cohort, the sensitivity and specificity of
HLA-DRon IFN-g+TNF-a+IL-2+ cellswere 95.00%(95%CI, 76.39–
99.11%) and 82.14% (95% CI, 64.41–92.12%), respectively (Table 3
andFigures 5A,B).Meanwhile, we also analyzed the potential value
of the combination of HLA-DR and CD27 for TB diagnostic issue.
Consistent with Qiaokou cohort, no obvious improvement was
observed after combining CD27 (Figures 5C–F). Table 3
summarized diagnostic performance of HLA-DR on MTB-specific
cells when applied to the validation cohort.
DISCUSSION

The lack of efficacious diagnostic tools poses a major challenge to
control TB efforts (58, 59). Although many advances have been
achieved, especially in omics field (60–62), there were some
Frontiers in Immunology | www.frontiersin.org 8
practical limitations for their clinical application, including
expensive laboratory facilities and sophisticated operating
procedures. Meanwhile, immunodiagnostics has received
considerable attention as an alternative for discrimination of
MTB infection status in recent years (63–70). Nevertheless, the
identified biomarkers including proteins and cytokines in serum
or plasma for diagnostic aim may not be specific for TB due to
the influence brought by other immune related diseases such as
infection and autoimmune diseases (71–77). Thus, an intensified
search for suitable host-specific biomarkers targeting TB
diagnostic purpose was urgently needed (78).

With the emergence of flow cytometry as a prominent
advancement, many researchers detected makers on immune
cell surface or intracellular cytokines for diagnosing infectious
diseases (79–81). Some previous works showed that the immune
phenotype profile was associated with MTB infection status (82).
Howbeit, these evaluations might only denote the global
response of the host and could not meticulously reflect the
TABLE 2 | The performance of HLA-DR on MTB-specific cells for distinguishing between ATB and LTBI in Qiaokou cohort.

Variables Cutoff
value

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

PLR
(95% CI)

NLR
(95% CI)

Accuracy

HLA-DR on IFN-g+ cells (%) 17 0.662
(0.549–0.775)

57.50%
(42.19–71.49%)

65.31%
(51.31–77.08%)

57.50%
(42.19–71.49%)

65.31%
(51.31–77.08%)

1.66
(1.04–2.65)

0.65
(0.43–0.98)

61.80%

HLA-DR on TNF-a+ cells (%) 38 0.880
(0.804–0.956)

85.71%
(70.63–93.74%)

77.78%
(63.73–87.46%)

75.00%
(59.81–85.81%)

87.50%
(73.89–94.54%)

3.86
(2.2–6.77)

0.18
(0.08–0.42)

81.25%

HLA-DR on IL-2+ cells (%) 43 0.824
(0.728–0.920)

82.86%
(67.32–91.90%)

74.42%
(59.76–85.07%)

72.50%
(57.17–83.89%)

84.21%
(69.58–92.56%)

3.24
(1.9–5.51)

0.23
(0.11–0.49)

78.21%

HLA-DR on IFN-g+TNF-a+

cells (%)
48 0.909

(0.843–0.974)
84.38%

(68.25–93.14%)
82.05%

(67.33–91.02%)
79.41%

(63.20–89.65%)
86.49%

(72.02–94.09%)
4.7

(2.36–9.35)
0.19

(0.08–0.43)
83.10%

HLA-DR on IFN-g+IL-2+ cells
(%)

51 0.889
(0.812–0.967)

75.00%
(57.89–86.75%)

86.11%
(71.34–93.92%)

82.76%
(65.45–92.40%)

79.49%
(64.47–89.22%)

5.40
(2.34–12.48)

0.29
(0.16–0.54)

80.88%

HLA-DR on TNF-a+IL-2+ cells
(%)

44 0.901
(0.833–0.969)

93.75%
(79.85–98.27%)

72.97%
(57.02–84.60%)

75.00%
(59.81–85.81%)

93.10%
(78.04–98.09%)

3.47
(2.03–5.93)

0.09
(0.02–0.33)

82.61%

HLA-DR on IFN-g+TNF-a+IL-
2+ cells (%)

51 0.902
(0.831–0.972)

77.42%
(60.19–88.61%)

84.85%
(69.08–93.35%)

82.76%
(65.45–92.40%)

80.00%
(64.11–89.96%)

5.11
(2.23–11.71)

0.27
(0.14–0.52)

81.25%
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MTB, Mycobacterium tuberculosis; ATB, active tuberculosis; LTBI, latent tuberculosis infection; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value;
PLR, positive likelihood ratio; NLR, negative likelihood ratio; CI, confidence interval.
TABLE 3 | The performance of HLA-DR on MTB-specific cells for distinguishing between ATB and LTBI in Caidian cohort.

Variables Cutoff
value

AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

PLR
(95% CI)

NLR
(95% CI)

Accuracy

HLA-DR on IFN-g+ cells (%) 17 0.510
(0.364–0.657)

39.29%
(23.56–57.59%)

60.00%
(43.57–74.45%)

44.00%
(26.66–62.93%)

55.26%
(39.71–69.85%)

0.98
(0.53–1.81)

1.01
(0.68–1.51)

50.79%

HLA-DR on TNF-a+ cells (%) 38 0.824
(0.723–0.924)

76.92%
(57.95–88.97%)

65.71%
(49.15–79.17%)

62.50%
(45.25–77.07%)

79.31%
(61.61–90.16%)

2.24
(1.35–3.72)

0.35
(0.17–0.74)

70.49%

HLA-DR on IL-2+ cells (%) 43 0.881
(0.793–0.970)

81.82%
(61.48–92.70%)

70.97%
(53.41–83.91%)

66.67%
(47.82–81.36%)

84.62%
(66.47–93.85%)

2.82
(1.57–5.06)

0.26
(0.1–0.64)

75.47%

HLA-DR on IFN-g+TNF-a+

cells (%)
48 0.891

(0.811–0.972)
82.61%

(62.86–93.02%)
69.70%

(52.66–82.63%)
65.52%

(47.35–80.06%)
85.19%

(67.52–94.09%)
2.73

(1.57–4.73)
0.25

(0.1–0.63)
75.00%

HLA-DR on IFN-g+IL-2+ cells
(%)

51 0.938
(0.876–1.000)

90.48%
(71.09–97.35%)

83.33%
(66.44–92.67%)

79.17%
(59.53–90.76%)

92.59%
(76.63–97.95%)

5.43
(2.41–12.23)

0.11
(0.03–0.43)

86.27%

HLA-DR on TNF-a+IL-2+ cells
(%)

44 0.892
(0.806–0.978)

90.91%
(72.19–97.47%)

68.97%
(50.77–82.73%)

68.97%
(50.77–82.73%)

90.91%
(72.19–97.47%)

2.93
(1.68–5.12)

0.13
(0.03–0.51)

78.43%

HLA-DR on IFN-g+TNF-a+IL-
2+ cells (%)

51 0.946
(0.888–1.000)

95.00%
(76.39–99.11%)

82.14%
(64.41–92.12%)

79.17%
(59.53–90.76%)

95.83%
(79.76–99.26%)

5.32
(2.39–11.85)

0.06
(0.01–0.41)

87.50%
MTB, Mycobacterium tuberculosis; ATB, active tuberculosis; LTBI, latent tuberculosis infection; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value;
PLR, positive likelihood ratio; NLR, negative likelihood ratio; CI, confidence interval.
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host-specific immune response to the disease. Thus, the utility of
these methods is susceptible to body immunity, and their
performance varies greatly in different populations, making it
difficult to meet clinical diagnostic need.

Our study focused on MTB-specific cells by gating cells with
Th1 cytokine secretion upon MTB antigen stimulation. It is a
very small cell subset that can best reflect the host’s immune
response to MTB infection. We firstly analyzed the cytokine
production patterns in ATB patients and LTBI individuals.
However, not as reported by previous study (83), no obvious
difference was observed. Next, we simultaneously investigated
the value of four activation biomarkers including HLA-DR,
CD38, CD69, and CD25 on MTB-specific CD4+ T cells, for
differentiating ATB patients from LTBI individuals. After ROC
Frontiers in Immunology | www.frontiersin.org 9
curve analysis, two biomarkers of activation (HLA-DR and
CD38) showed discriminatory roles. Among them, HLA-DR
was the better promising biomarker. Then, we compared the
difference of HLA-DR on various MTB-specific cells.
Interestingly, we found that the performance of HLA-DR on
different MTB-specific cells defined by different cytokine
combinations was inconsistent. HLA-DR on TNF-a+ or IL-2+

cells was remarkably superior to that on IFN-g+ cells in
distinguishing ATB patients from LTBI individuals. Besides,
HLA-DR on polyfunctional MTB-specific cells showed a
higher capability than that on MTB-specific cells defined by
one cytokine secretion. These data signified the heterogeneity of
MTB-specific cells, and the selection of cell subset determined
the diagnostic performance of specific biomarkers. Meanwhile,
A B

D

E F

C

FIGURE 5 | The performance of HLA-DR on MTB-specific cells in distinguishing ATB patients from LTBI individuals in Caidian cohort. (A) Aligned dot plots showing
HLA-DR expression on MTB-specific cells in ATB patients and LTBI individuals. Horizontal lines indicate the medians. (B) ROC analysis showing the performance of
HLA-DR expression on MTB-specific cells in discriminating ATB patients from LTBI individuals. (C) Aligned dot plots showing the proportions of HLA-DR+CD27- cells
of MTB-specific cells in ATB patients and LTBI individuals. Horizontal lines indicate the medians. (D) ROC analysis showing the performance of the proportion of
HLA-DR+CD27- cells of MTB-specific cells in discriminating ATB patients from LTBI individuals. (E) Aligned dot plots showing the proportions of HLA-DR-CD27+ cells
of MTB-specific cells in ATB patients and LTBI individuals. Horizontal lines indicate the medians. (F) ROC analysis showing the performance of the proportion of
HLA-DR-CD27+ cells of MTB-specific cells in discriminating ATB patients from LTBI individuals. **P < 0.01, ***P < 0.001 (Mann-Whitney U test). MTB,
Mycobacterium tuberculosis; ATB, active tuberculosis; LTBI, latent tuberculosis infection; AUC, area under the curve.
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an opposite trend to HLA-DR was observed in CD27 on MTB-
specific cells in ATB patients and LTBI individuals. Thus, we
tried to improve the efficacy for discrimination by the
combination of HLA-DR with CD27. Notwithstanding, no
increased or even decreased performance was obtained.
Therefore, independent HLA-DR on MTB-specific cells, rather
than combination with others, is more likely to be recommended
as a diagnostic biomarker.

Three points should be noted: first, it was observed that HLA-
DR on IFN-g+ cells had relatively poor performance in
distinguishing ATB from LTBI when comparing to that of TNF-
a+ or IL-2+ cells. We found that the percentages of IFN-g+ cells in
unstimulated tubes ranged from 0.02% to 0.1%, while the
percentages of TNF-a+ cells and IL-2+ cells in unstimulated tubes
ranged from 0.01% to 0.04%. The background value for IFN-g was
relatively higher than that for TNF-a and IL-2. Thus, some of the
IFN-g+ cells in stimulated tubes were not MTB-specific cells. It may
be one reason for the poor performance of HLA-DR on IFN-g+ cells
in differentiating ATB from LTBI. Second, the variation of HLA-DR
expression in the LTBI group might be due to the different infection
status. Some individuals in the LTBI group have been infected for a
long time, while the others were infected with MTB recently. As
indicated by previous study, some subjects with recent MTB
infection would also have high HLA-DR expression on MTB-
specific cells (84). Thus, another approach that could be
combined with markers in the present study to improve
diagnostic specificity should be developed in the future. Third,
given that the increasing number of MTB antigen has been
identified in recent years and the response patterns of PBMCs
varied upon different antigen stimulation (85–87), the investigation
targeting optimal antigen selection is needed in the future.

Several limitations should be mentioned. First, although there
were two centers in the current study, the number of recruited
partakers in each center was circumscribed. These biomarkers
should be further validated in larger cohorts. Second, although
some diseases including diabetes and tumors were involved in
underlying condition of the enrolled patients in this study, further
investigation is required to elucidate the influence of other diseases
such as COVID-19 on the performance of these biomarkers. Finally,
given the fact that the biomarkers detected in the present study were
on MTB-specific cells, HLA-DR would be useless when applying to
cases with few MTB-specific cells, such as T-SPOT-negative
individuals (88, 89). Hence, more reasonable methods for this
population should be developed in the future.

In conclusion, our study demonstrated that HLA-DR on
MTB-specific cells has robust diagnostic potential for
discrimination between ATB and LTBI. Notably, the detection
of biomarkers discovered in the present study is amenable to the
existing platforms.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
Frontiers in Immunology | www.frontiersin.org 10
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the committee of Tongji hospital, Tongji Medical
College, Huazhong University of Science and Technology. The
patients/participants provided their written informed consent to
participate in this study.
AUTHOR CONTRIBUTIONS

YL designed the study. LM, QL, and GT set up the clinical
cohorts at the respective hospitals. HS, LW, ST, HH, MH, and
RO included patients and collected data. YL performed the main
experiment. YL analyzed and interpreted the data. YL and YX
did the statistical analysis. YL draft the manuscript. YL, FW, and
ZS contributed to the revision of manuscript. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was funded by Graduate Innovation Fund of
Huazhong University of Science and Technology (grant
number 2021yjsCXCY088) and Special Foundation for
National Science and Technology Basic Research Program of
China (grant number 2019FY101206).
ACKNOWLEDGMENTS

We would like to thank all participants for contributing to this
study and all the staff in the Department of Laboratory Medicine
of Tongji Hospital.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.721013/
full#supplementary-material

Supplementary Figure 1 | The performance of the combination of activation
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dot plots showing the proportions of CD38+CD27- and CD38-CD27+ cells of MTB-
specific cells in ATB patients and LTBI individuals. Horizontal lines indicate the
medians. (D) ROC analysis showing the performance of the proportions of
CD38+CD27- and CD38-CD27+ cells of MTB-specific cells in discriminating ATB
patients from LTBI individuals. (E) Aligned dot plots showing the proportions of
CD69+CD27- and CD69-CD27+ cells of MTB-specific cells in ATB patients and LTBI
individuals. Horizontal lines indicate the medians. (F) ROC analysis showing the
performance of the proportions of CD69+CD27- and CD69-CD27+ cells of MTB-
specific cells in discriminating ATB patients from LTBI individuals. (G) Aligned dot
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specific cells in ATB patients and LTBI individuals. Horizontal lines indicate the
medians. (H) ROC analysis showing the performance of the proportions of
CD25+CD27- and CD25-CD27+ cells of MTB-specific cells in discriminating ATB
Frontiers in Immunology | www.frontiersin.org 11
patients from LTBI individuals. *P < 0.05, **P < 0.01, ***P < 0.001 (Mann-Whitney U
test). MTB, Mycobacterium tuberculosis; ATB, active tuberculosis; LTBI, latent
tuberculosis infection; AUC, area under the curve.
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