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Abstract: Human Immunodeficiency virus (HIV)-associated neurocognitive disorders are a major
burden for people living with HIV whose viremia is stably suppressed with antiretroviral therapy. The
pathogenesis of disease is likely multifaceted, with contributions from viral reservoirs including the
brain, chronic and systemic inflammation, and traditional risk factors including drug use. Elucidating
the effects of each element on disease pathogenesis is near impossible in human clinical or ex vivo
studies, facilitating the need for robust and accurate non-human primate models. In this review, we
describe the major non-human primate models of neuroHIV infection, their use to study the acute,
chronic, and virally suppressed infection of the brain, and novel therapies targeting brain reservoirs
and inflammation.
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1. Introduction

Although viral suppression with antiretroviral therapies (ARTs) has significantly im-
proved HIV prognosis, people with HIV (PWH) still require long-term treatment and have
a higher risk of comorbid disease compared to people without HIV [1]. Specifically, 30–69%
of ART-treated, virally suppressed PWH develop HIV-associated neurocognitive disorders
(HANDs) [2–5]. HANDs cause cognitive and motor issues leading to reduced indepen-
dence and challenges associated with job-related tasks, organizational skills, homemaking,
medication adherence, and driving [6–10]. Whilst sustained ART suppression of viremia
has dramatically reduced the frequency of severe HIV-associated dementia (HAD) and
HIV encephalitis (HIVE), which affects 10–15% of unsuppressed individuals [11,12], the
incidence of milder forms of HANDs (namely; asymptomatic neurocognitive impairment
(ANI) and mild neurocognitive disorder (MND)) has increased in the post-ART era [13,14].
PWH also exhibit cognitive disease progression, continued loss in brain volume, and ongo-
ing pathology that is compounded by age and not resolved by ART [15–18]. Therefore, as
PWH age, it is estimated that HANDs will place an increasing burden on health resources,
with an estimated annual cost of AUD 53 million by 2030 in Australia alone [19].

The mechanisms driving HANDs are unclear, partly due to a likely multifaceted dis-
ease pathogenesis which is difficult to define using ex vivo human studies alone. Therefore,
the majority of our understanding of central nervous system (CNS) infection has been de-
rived from autopsy material and cerebrospinal fluid (CSF) biomarker studies. It is thought
that localized infection in the brain, shown to occur during acute infection, coupled with
chronic systemic inflammatory mechanisms, may contribute to neuronal degradation and
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HAND pathogenesis. However, the paucity of brain tissue and the inherent inability to
access longitudinal tissue samples in humans highlights the need for robust animal models
to better define HAND pathogenesis.

Non-human primate (NHP) models offer unique insight into the underlying and
governing mechanisms of neurocognitive disorders for many diseases in a manner not
possible in humans. For instance, the spontaneous NHP model of multiple sclerosis (MS),
a characteristically difficult disease to study at a cellular level in humans, mimics the
immunopathology of humans and has corroborated the role of a virus in demyelinating
diseases [20]. Recent advances and access to non-invasive approaches in such models also
allow for the assessment of both the cellular and behavioral effects of disease including
functional magnetic resonance imaging (MRI) and fluorodeoxyglucose-positron emission
tomography (FDG-PET), thus providing translational evidence for humans. Therefore,
animal models have allowed for significant advances in our understanding of these key
steps in disease pathogenesis.

NHP models infected with simian immunodeficiency virus (SIV) are the most physio-
logically relevant model of HIV. NHPs infected with SIV show similar disease pathogenesis
to HIV, including the development of acquired immune deficiency syndrome (AIDS), gas-
trointestinal damage and traditional AIDS-defining illnesses and comorbid disease ([21],
as reviewed by [22]). Importantly, SIV infection can be controlled and suppressed with
common ART regimens currently used in humans, therefore allowing for the long-term
assessment of the effects of chronic ART-suppressed SIV infection, which reflects the major-
ity of PWH worldwide. This allows for the assessment of SIV reservoirs in the body and
analytical treatment interruptions required to assess HIV cure strategies. Importantly, SIV
also enters the CNS early during infection and adaptations to promote neurotropism have
resulted in advanced models of neuroHIV.

In this review, we will discuss the different NHP models of neuroHIV and their uses
for studying viral entry and pathogenesis in the brain during acute, chronic, and virally
suppressed SIV infection. We will further discuss the appropriateness of these models to
study cognitive disorders associated with HIV and address the key unanswered questions
in the field; namely,

• How and when does HIV enter the CNS?
• How and where does HIV establish and maintain viral reservoirs?
• Are reservoirs of HIV in the brain replication competent?
• What is the role of chronic systemic peripheral inflammation in CNS dysfunction?

These questions are exceptionally difficult to answer in vivo in humans alone, as unlike
blood or peripheral tissue biopsies, sampling cannot be readily performed on the brain.
Furthermore, intervention studies are difficult and, in some cases, unethical to perform.
Therefore, physiologically relevant animal models are essential to answer these questions.

2. Non-Human Primate Models of NeuroHIV

NHP animal models are a powerful and versatile tool in the study of HIV infection
and persistence in the brain. Rhesus, cynomolgus, or pigtailed macaques have physiology,
immune system biology, neuroanatomy, and gastrointestinal tract (GIT) development and
anatomy analogous to humans, and when infected with strains of SIV display remark-
ably similar infection and disease progression to HIV infection [23,24]. Importantly, SIV
infection of NHPs recapitulates the key features of HIV transmission (including mucosal
transmission), viral dissemination, receptor usage and cellular tropism, disease progression,
pathology, and ART response (as reviewed in [22,25]). Long-term NHP studies also allow
for the longitudinal assessment of SIV viremia, immune activation, and ongoing pathogen-
esis in tissue compartments such as the lymph nodes, GIT, CSF, and brain, which are not
readily available from humans in most clinical studies. Importantly, different viral models
have been developed to answer key questions in early infection events, chronic disease
pathogenesis, and reservoir establishment/targeting in the brain. These are described in
detail below (Table 1).
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2.1. Accelerated CNS Infection

Accelerated CNS viral strains rapidly infect the CNS and typically result in SIV
encephalitis (SIVE) and full immunosuppressive disease over a period of months. For
instance, the infection of pigtailed macaques with both SIV/17E-Fr (neurotropic) and
SIV/∆B670 (immunosuppressive swarm) results in neurological disease in approximately
90% of animals within 85 days post inoculation [26–28]. The rapid rate of infection and
virulence of this strain has been useful in that it allows for the characterization of early
infection events and pathology in a significantly reduced time to CNS disease pathogenesis
and a higher frequency of neurological disease compared to non-accelerated strains [28].
While this accelerated model of CNS infection is ideal for SIVE studies, utilizing ART
reduces the incidence of SIVE, which necessitates a model of ART treatment in the HIV
infection of the brain [29,30]. Notably, other strains of SIV described below can exhibit
accelerated disease pathogenesis when host animals are CD8+ or CD4+ T-cell-depleted prior
to infection, thereby allowing viral infection to overwhelm host immune responses [31].
Different NHP species also have increased susceptibility to SIV/17E-Fr + SIV/∆B670, with
pigtailed macaques developing SIVE at a higher frequency and a quicker rate than rhesus
macaques (RMs) [32], highlighting the importance of selecting the most suitable animal
model for the research question.

2.2. Neurotropic SIVs

Primate lentiviruses (i.e., HIV-1, HIV-2 and SIVs) are dual receptor viruses that use
both the primary CD4 receptor and a coreceptor (primarily CCR5, CXCR4 or both) and
by virtue of their ability to infect myeloid lineage cells as well as CD4+ T cells, establish
infection within the CNS within 2 weeks post infection. NHPs infected with SIVmac251 or
the molecular clone SIVmac239 will typically progress to AIDS within 1–2 years without
ART, compared to 8–10 years for humans [33]. Animals infected with SIVmac251/239
develop neurological disease at a similar frequency to PWH, with approximately 25% of
animals developing SIVE within 1–3 years post infection [34,35]. As such, these models
are essential for the research of acute and chronic HIV infection and disease, the effect of
chronic systemic inflammation, and viral reservoir persistence (latent and active) during
long-term infection under suppressive ART. The depletion of CD8+ lymphocytes prior
to SIVmac251/239 infection accelerates disease progression and severity, with up to 85%
of animals developing SIVE within 6 months of infection [36]. While these models are
beneficial to accelerate disease progression, they may not be suitable when assessing neuro-
infection due to the critical role that CD8+ T cells play in targeting and killing virally
infected cells in the blood and the CNS [37,38].

Similar to the CD8+ T cell depletion model, the depletion of CD4+ T cells prior to
SIVmac251 inoculation accelerates disease progression and severity in the CNS due to
productive microglia infection [31]. Alternatively, the recently developed clone, SIVsm804E-
CL757, has been shown to result in SIVE in ~50% of animals around 1 year post infection
without immune modulation [39,40]. This clone was developed through serial passages of
non-neurovirulent SIVsmE543-3 through RMs [41].
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Table 1. NHP models of neuroHIV.

Model Strain Species CNS Pathology SIVE
Frequency Time to SIVE Reference

Accelerated

SIV/17E-Fr +
SIV/∆B670 PM

Consistently results in
severe SIVE and full
immunosuppression

~90% 3–6 months [26,27,42]

CNS disease SIVmac251 +
CD8+ T cell

depletion
RM

Consistently results in
SIVE and full

immunosuppression
50–100% 2–6 months [36,43,44]

SIVmac182 RM
Reliable infection of

the CNS, rarely forms
encephalitic lesions

Rare - [45–47]

Non-
accelerated

SIVmac251 RM

Consistent CNS
infection with natural
disease progression

and reservoir
formation

25% 7–36 months [34,36,48]

disease SIVsm804E-
CL757 RM

High frequency of
SIVE without rapid
disease progression

50% ~12 months [39,40]

SIVmac239 RM

Consistent CNS
infection with natural
disease progression

and reservoir
formation

25% 12–36 months [34,48,49]

Simian-HIV
SHIVSF162P3 RM

Consistent CNS
infection with natural
disease progression

14% ~6 months [50]

chimera SHIV-
1157ipd3N4 RM

Reliable infection of
the CNS, rarely forms

encephalitic lesions
Rare - [51]

ART: antiretroviral therapy, CNS: central nervous system, NHP: non-human primate, PM: pigtailed macaque (Macaca
nemestrina), RM: rhesus macaque (Macaca mulatta), SIV: simian immunodeficiency virus, SIVE: SIV encephalitis.

2.3. Simian-Human Immunodeficiency Viruses (SHIV)

Whilst the SIV variants above model HIV infection, they still predominantly contain
SIV viral genes and proteins, which are evolutionarily different to HIV and differ in
their sensitivity to certain antiretroviral (ARV) drugs (i.e., RT-SHIV contains HIVrt genes
to ensure sensitivity to nonnucleoside reverse transcriptase inhibitors (NNRTIs), which
specifically target HIV-1 reverse transcriptase (RT) and do not effectively inhibit SIV RT [52]).
Chimeric/recombinant viruses that infect NHPs and produce HIV proteins, such a HIV-1
env, have been developed to assess vaccine efficacy and broadly neutralizing antibody
(bNAb) therapeutic strategies to HIV infection in an NHP setting. The SHIV-1157ipd3N4
infection of the brain has been characterized in RMs and disease progression mimics HIV
infection in humans [51], with the viral infection of superficial meninges detected within
12 weeks post infection, with no SIVE lesions present in the CNS [51]. Of note, this strain is
R5-tropic and contains a subtype C env. SHIVSF162P3 is a CCR5-tropic virus that results in
SIVE in 14% of infected animals [50]. Due to the HIV-1 env, both models can be used to
assess the effect of novel therapies targeting the HIV envelope.

3. SIV Neuropathogenesis
3.1. SIV/HIV Entry into the CNS

NHP models of HIV have provided significant insight into early infection events in the
brain as studies in PWH are exceptionally difficult and the diagnosis of infection is often
made months after transmission events. Furthermore, characterizing viral penetration
into the brain can only be defined by CSF viral load testing, which is invasive and may
not reflect CNS tissue infection. Human ex vivo studies predict that HIV infects the CNS
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during early acute infection [53], with loss in the volume of brain parenchyma tissue
within the first 100 days of infection [54]. Specifically, HIV-infected CD4+ T cells and
monocytes in peripheral blood [55–58] travel across the blood–brain barrier (BBB) into the
CNS through normal immune surveillance [59–61], potentially in response to the activation
or impairment of the BBB itself. These findings have been supported and extended upon
through work in NHPs, where monocytes have been shown to infiltrate/localize within
the CNS early during SIV infection [62] and perivascular macrophages are productively
infected [63]. Accordingly, the blockade of leukocyte migration across the BBB in SIV-
infected RMs via treatment with the anti-α4-blocking antibody natalizumab impeded viral
entry into brain and gut tissue compared to untreated SIV-infected macaques [64].

NHP studies have further implicated T cells as a major source of viral infection into the
CNS. RMs infected with the non-accelerated SHIV-1157ipd3N4 showed an infiltration of T
cells and infected cells in the meninges following 12 weeks post infection [51]. Furthermore,
a more recent longitudinal study of SHIV-1157ipd3N4-infected animals detected spliced
viral RNA in CD4+ T cells in the CSF, accompanied by a higher frequency of activated
CD8+ T cells and monocytes in the CSF, demonstrating the presence of both active viral
transcription and likely immune activation during the first 4 weeks of infection [65]. There-
fore, HIV/SIV likely enters the CNS via multiple routes and is associated with immune
activation during early infection.

3.2. CNS Infection, Immune Dysfunction, and Encephalitis during Untreated SIV Infection

Following entry to the brain, HIV/SIV infects long-lived resident CNS cells such as
perivascular macrophages, microglia, pericytes, and astrocytes [50,66–70], and SIV DNA
persists post acute infection, resulting in the establishment of a brain viral reservoir [71].
Monocyte-derived macrophages and microglia are the main targets for HIV/SIV infection
in the CNS. HIV/SIV has also been found to infect astrocytes during acute infection [72,73],
which express little to no CD4, supporting the infection of other immune cell types in the
brain. Although HIV/SIV does not directly infect neurons, the infection of nearby cells can
indirectly cause neuronal death and degradation through the production of inflammatory
cytokines (e.g., TNFα) and toxic viral proteins, including tat and refs. [74–77].

Acute SIV infection is associated with neuronal damage and activated astrocytes and
microglia [78,79]; altered immune processes in the CNS likely also contribute to disease
pathology. Specifically, CD8+ T-cell-depleted SIVmac251-infected RMs show the recruit-
ment of MAC387+ macrophages in the meninges and choroid plexus during the first
3–4 weeks of infection [43]. Acute SIV infection is associated with increased IL-6 and
pSTAT1 expression, with levels in microglia preceding reliable viral detection within the
first week of SIV infection [49,80] (Figure 1). Monocyte/macrophage infiltration is associ-
ated with neuronal damage during early SIV infection [44] and the therapeutic blockade
of monocyte recruitment into the brain was associated with less neuronal injury [64], sup-
porting a potential proinflammatory effect of myeloid cell accumulation in the brain. These
findings in NHP models reflect evidence in ex vivo human studies where well established
plasma markers of myeloid cellular activation such as TNFα, IFNγ, sCD14, IL-1β, and IL-6
are generally increased in viremic or ART-naïve PWH and in some cases are associated
with HAND severity [81–83].

Altered CD8+ T cell responses during acute infection may also contribute to CNS
pathogenesis during acute infection. The depletion of CD8+ T cells in multiple SIV NHP
models accelerates CNS disease pathology and the administration of anti-CD8 monoclonal
antibody in the CSF of SIV-infected animals has been shown to result in an increase in SIV
DNA in the brain, and microglial activation [37]. A recent study by Mavian et al. [36] found
untreated SIV-infected RMs with detectable brain infection had a significantly higher gene
expression of monocyte and macrophage activation markers in animals that had undergone
CD8+ T cell depletion. The virus was detected in CSF taken at necropsy; however, the
presence of virus in the frontal lobe tissue did not correlate with CSF viral loads. Extensive
pathway analysis found 104 differentially expressed genes between animals with and
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without detectable virus in the brain, including genes integral to the regulatory pathways
of reactive oxygen species (ROS) and innate immunity (MIF, C1QB, NCF1, NO) [36].
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immune dysfunction in the brain of SIV-infected non-human primates.

If left untreated, SIV infection in the CNS results in SIVE, which is characterized
by multinucleated giant cells in the brain (i.e., the fusion of multiple cells), mediated by
nef [84], neuronal damage, and ultimately death. Encephalitic lesions in the brain form
following active viral replication, resulting in the recruitment/possible proliferation of
CD163/68+ perivascular macrophages and the recruitment of microglia, CD4+ T cells and
B cells [40,43,85]. Furthermore, active viral production and heightened immune activation
in SIVE lesions contributes to CNS pathology and neuronal damage. In PWH, HIVE is
strongly associated with HIV-associated dementia. Similarly, animals with SIVE have
elevated ratios of N-acetylaspartate/creatine, a surrogate measure of neuronal metabolites,
during the first month of infection [79]. Specifically, the level of menin in the CNS of
SIV- or SHIV-infected animals was increased during infection and was associated with the
tat-induced death of neurons, supporting a proapoptotic role of menin in the CNS during
SIV infection. Therefore, similar to HIVE, the development of SIVE is associated with death
in infected animals.

Finally, similar to findings in PWH, SIV infection is also associated with vascular
dysfunction and cerebrovascular disease that may also affect the CNS. SIV infection is
associated with endothelial activation and macrophage accumulation around vessels [86].
Furthermore, coagulation markers, including thrombotic microangiopathy in the brain, are
predictive of SIV disease [87], indicating a possible role of aberrant coagulation-induced
effects on the brains of SIV-infected animals.

3.3. SIV/HIV Persistence in the Brain Post-ART

The contribution of the CNS as a long-lived reservoir of replication-competent SIV/HIV
viral DNA (vDNA) to ART remains controversial in some circles. This is partly due to the re-
liance on well characterized autopsy material and difficulties in translating technologies to
brain tissues. We and others have shown that brain cells, including microglia/perivascular
macrophages, astrocytes, and pericytes from ART-suppressed individuals, harbour HIV
DNA [88]. We recently provided the first evidence that ART-suppressed PWH harbour
HIV DNA in the brain at similar levels to untreated PWH [89], demonstrating a stable
reservoir in the brain. Importantly, we further used droplet digital PCR approaches to
identify intact proviral genomes in the brain [89], supporting the presence of potentially
replication-competent genomes in the brain. Numerous studies, including our own in
human autopsy brain tissue or ex vivo CSF, have detected HIV DNA, which supports the
presence of ‘latent’ infection in the CNS compartment [35,90,91]. CNS viral escape has been
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reported in PWH on virally suppressive ART [92–94], where virus was found within the
CSF with no detectable virus in peripheral blood, suggesting that the CNS viral reservoir
may re-seed the periphery as virus can exit the brain [92]. However, ex vivo studies are
limited by accessibility issues and confounding factors. Furthermore, the impact of the
CNS viral reservoir on viral rebound after treatment cessation is controversial (as discussed
in [95]).

NHP studies have further advanced our understanding of a viral reservoir in the brain
of ART-suppressed animals (Table 2). A comprehensive full-body analysis of SIV/SHIV-
infected macaques virally suppressed with ART found cell-associated viral RNA (vRNA)
in every organ system tested, including the brain, despite undetectable virus in peripheral
blood [35]. This study included SIVmac251 and RT-SHIV-infected RMs which were either
left untreated, or treated with suppressive ART. The tissue viral load of the lymph node, gut,
spleen, brain, kidney, heart, lung, and liver was quantified using RNAscope/DNAscope
and the found frequency of infected cells in virally suppressed animals was lowered in
lymph node tissue, and to a lesser extent in gut and spleen tissue. However, the frequency
of vRNA+ cells in the brain tissue was not reduced, likely due to the poor penetration of
ART into the brain [35]. These findings are supported by additional work using classic
in situ hybridization (ISH) or RNAscope/DNAscope to detect single copies of vRNA or
vDNA, which have consistently detected SIV in multiple brain regions, including the basal
ganglia, frontal, and parietal cortex, despite ART treatment [30,35,96–100] (Figure 1).

Persistent vDNA+ cells are found in tissue reservoirs in the CNS and periphery,
likely due to the inability of ART to target latent virus. The SIV brain reservoir was also
demonstrated in the SIVE NHP model of the dual inoculation of SIV/∆B670 and SIV/17E-
Fr in pigtailed macaques [101]. All animals in this study were given ART, with seven of
the eight animals reaching viral suppression. All animals had vDNA+ cells detected in
the CNS; however, vRNA was not detected in the virally suppressed animals, indicating a
latent viral reservoir [101]. Mavigner and colleagues found no changes in vRNA or vDNA
in the CNS of ART-suppressed NHPs compared to viremic controls [98]. Furthermore,
ART (tenofovir, emtricitabine, and dolutegravir) concentrations were not detected in all
brain sections measured [98]. An early study of the effects of ART in the CNS found no
reduction of vDNA between treated and untreated NHPs; however, vRNA levels were
undetectable [29].

Table 2. Evidence of a SIV/SHIV reservoir in the brain of NHPs.

Study n Virus Inoculation
Route WPI ART (wks)

CNS
Infection
(vDNA or
vRNA+)

Technique Tissue

Estes, et al. [35] 5 SIVmac251/RT-
SHIV i.v. 28–30 20–26 Yes (vRNA) RNAscope/DNAscopeCerebrum

Hsu, et al. [51] 12 SHIV-
1157ipd3N4 IR or IV 12 No ART Yes (vRNA) RNAscope Meninges

Hsu, et al.
[102] 4 SHIV-

1157ipd3N4 IR 18 16 No RNAscope
Posterior
cingulate

gyrus

Yarandi, et al.
[97] 3

SIVmac251
(with CD8
depletion)

i.v. 17 14 Yes (vRNA) RNAscope Hippocampus

Mavigner, et al.
[98]

4 SIVmac251
(infant) Oral 31–42 26–37 Yes (vRNA

and vDNA) RNAscope/DNAscopeFC, PC and
BG

12 SIVmac251 i.v. 25–69 24–61 Yes (vRNA
and vDNA) RNAscope/DNAscopeFC, PC and

BG
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Table 2. Cont.

Study n Virus Inoculation
Route WPI ART (wks)

CNS
Infection
(vDNA or
vRNA+)

Technique Tissue

Bissel, et al.
[99] 5 SIVmac251 i.v. 48–63 10–25 Yes (vRNA) ISH

MFC,
caudate,

putamen,
hippocam-

pus and
cerebellum

Abreu, et al.
[103] 4 SIVmac251 i.v. 19 17 Yes (vRNA

and vDNA)

qPCR,
ddPCR,
QVOA

Macrophage
isolated
from FC,

PC, TC, BG
and TH

Zink, et al. [29] 5 SIV/17E-Fr +
SIV/∆B670 i.v. 23–25 21–23

No
(vRNA)Yes

(vDNA)

Real time
PCR and
RT-PCR

BG

Gama, et al.
[30] 5 SIV/17E-Fr +

SIV/∆B670 i.v. 33–90 28–71 Yes (vRNA) RNAscope
and ddPCR

OC, BG
and PC

Avalos, et al.
[101] 8 SIV/17E-Fr +

SIV/∆B670 i.v. 28–91 26–89
No

(vRNA)Yes
(vDNA)

ISH and
qVOA

OC, BG
and PC

Lee, et al. [40] 5 SIVsm804E-
CL757 ND 8–15 No ART Yes (vRNA

and vDNA)

qPCR,
coculture,

RNAscope

Isolated
mononu-
clear cells

and
midbrain

ART: antiretroviral therapy, BG: basal ganglia, ddPCR: digital droplet PCR, FC: frontal cortex, IR: intrarectally,
i.v: intravenous, IV: intravaginally, ISH: in situ hybridization, MFC: midfrontal cortex, ND: not described, OC:
occipital cortex, PC: parietal cortex, qPCR: quantitative PCR, qVOA: quantitative viral outgrowth assay, RT-PCR:
reverse transcription PCR, SIV: simian immunodeficiency syndrome, TC: temporal cortex, TH: thalamus, vDNA:
viral DNA, vRNA: viral RNA, WPI: weeks post infection.

Whether viruses present in the CNS are truly replication-competent and capable of
producing infectious virions, thus contributing to subsequent cellular infection, is a major
question in the field and exceptionally difficult to answer in humans ex vivo. Studies in
human peripheral blood mononuclear cells (PBMCs) have demonstrated that the large
majority of proviruses are replication incompetent (i.e., ‘defective’) due to hypermutations
and/or deletions in the genome [104]. Therefore, quantifying the total reservoir size is mis-
leading as it likely overestimates the total number of intact, replication-competent genomes.

Alternatively, assays that measure functional HIV transcripts, full length genomes,
viral proteins, or ultimately viral outgrowth in target cells are more indicative of the
replication competence of viral reservoirs. Ex vivo human studies have detected HIV RNA
in the CSF of ART-suppressed individuals, potentially related to ongoing viral replication
in the brain. However, it is possible that these viruses are entering the CSF from the
blood, and are therefore not truly reactivating viruses from the CNS. To date, the best
evidence of possible replication-competent viral genomes in the CNS derives from NHP
studies. A study using pigtailed macaques infected with SIV/∆B670 and SIV/17E-Fr
were virally suppressed for 500 days with ART followed by latency reversal treatment
demonstrated increased CSF viral loads, supporting the activation of latent virus present
in the CNS [30]. In another study, a macrophage quantitative viral outgrowth assay
was developed to demonstrate that the majority of virally-suppressed animals contained
latently infected brain macrophages, and that virus produced in the outgrowth assay was
replication competent [101]. Therefore, the CNS viral reservoir represents a barrier for both
the long-term treatment of HIV and cure research, due to the potential reseeding of CNS
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virus into the periphery after ART cessation, as well as the local immune environment in
the CNS during ART suppression.

3.4. Chronic Immune Activation Is Present in the CNS of ART-Suppressed PWH and
SIV-Infected NHPs

Chronic immune activation and cellular dysfunction in the CNS likely persists fol-
lowing ART and is hypothesized to contribute to the pathogenesis of HANDs in ART-
suppressed PWH. The low-level expression of the HIV tat protein promotes a neurode-
generative phenotype caused by a reduction in brain volume, astrocyte activation, inflam-
matory cytokine expression, as well as synapse and axonal damage [77,105,106]. Immune
activation markers including sCD163, sCD14, neurofilament light chain (NF-L), glutamate,
neopterin, CXCL-10, high mobility group box 1 (HMGB1) and IL-8 remain elevated in
the plasma/CSF of ART-suppressed PWH [107–113], suggestive of ongoing neuroinflam-
mation and neuronal damage in these individuals. Furthermore, plasma sCD163 levels
distinguish the milder forms of HANDs in virally suppressed individuals [114]. However,
these findings are limited in that they assess the surrogate biomarkers of neuroinflamma-
tion measured in the CSF/plasma, which may not necessarily reflect ongoing immune
activation in the brain and may be confounded by immune activation systemically.

To date, comparatively few studies have assessed the immune environment in the
brain of ART-suppressed SIV-infected animals, and findings appear to differ depending on
the models used. As described above, untreated SIV infection generally is associated with
elevated immune activation, oxidative stress, and cellular dysfunction. Several studies
using accelerated infection models show that ART treatment reduces the level of inflam-
matory cytokines compared to untreated SIV infection; however, levels remain elevated in
ART-treated animals relative to SIV-uninfected controls [29,115]. Specifically, the levels of
macrophage infiltration (CD68) and TNFα and IFNγ staining by immunohistochemistry
were not significantly changed within the CNS, indicating ongoing cellular activation in
the brain [29]. Increased measures of cell death (as measured by cleaved-caspase 3 staining)
in neurons has also been detected in the CNS of ART-treated NHPs [97]. Importantly,
cleaved-caspase 3 was co-expressed in Nef+ neurons in ART-treated animals [97] (Figure 1),
highlighting the cascading effect of viral proteins on the neuroimmune environment leading
to neuronal death [75]. Solis-Leal and colleagues also identified the higher gene expression
of proinflammatory IL-16, IL-6R, and IL-9, and chemokines CX3CL1 and CXCL12, in the
basal ganglia tissue of SIVmac251-infected Chinese-origin RMs on suppressive ART [115]
(Figure 1).

Conversely, several studies have found that ART treatment results in the near complete
resolution of heightened immune activation in the brain. Mx2, superoxide dismutase 2
(SOD2), TNFα, and CCL2 levels in the brain of ART-treated SIV-infected RMs were similar
to uninfected controls in contrast to heightened levels in ART-naïve animals, supporting the
idea that ART treatment dampens SIV-infected immune activation in the brain [100,116,117].
These findings have been further supported by a recent study using single-cell RNAseq
that identified that the inflammatory profile of microglia isolated from ART-suppressed
SIVmac251-infected animals were more similar to those seen in uninfected animals than
untreated SIV-infected animals [118]. Therefore, ART-treatment likely dampens immune
activation in the brain.

4. Confounding Drivers of SIV Neuropathology
4.1. Chronic Systemic Inflammation

The gut is one of the first major sites of viral replication following HIV infection due
to its high density of HIV susceptible CD4+ T cells [119,120]. The preferential destruction
of approximately 60% of CD4+ T cells and the ensuing inflammatory response in the
gut causes damage to the epithelium [121,122], leading to microbial translocation and
the perpetuation and augmentation of immune activation and inflammatory sequela that
further damages the gut. Seminal studies by Estes, Brenchley, and colleagues identified
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the effects of SIV-induced gut damage on SIV disease pathogenesis, which had significant
implications on PWH [123]. SIV infection in RMs mimics the key pathological features of
the natural progression of HIV in humans, such as CD4+ T cell depletion, chronic systemic
inflammation, lymphoid and GIT tissue pathology, neuropathology, establishment of the
latent reservoir, and progression to AIDS (as reviewed in [22]). Sooty mangabeys and
African green monkeys are natural hosts of SIV and therefore do not progress to AIDS,
despite high viremia and active viral replication [121,122]. Both progressive and non-
progressive NHP models of SIV have contributed to the discovery and establishment of
key mechanisms of HIV pathogenesis, including the critical role GIT damage and microbial
translocation have in driving systemic inflammation [119,123].

This physical and immunological damage to the gut impairs mucosal integrity re-
sulting in a “leaky gut” whereby microbes and their products such as lipopolysaccharide
(LPS) can translocate through the enterocytes and between epithelial cells into the blood
stream. The resulting gut dysbiosis persists despite ART [124–126], likely due to the inabil-
ity to restore the normal colonic immunologic environment within the gut [127]. Microbial
translocation, as measured by plasma levels of LPS and soluble LPS coreceptor levels
(sCD14), has been found to be an early predictor of HAND progression [83,128–131] and
HIV-related mortality [132] in ART-treated PWH. Numerous studies have consistently
documented GIT epithelial barrier damage (e.g., levels of intestinal fatty-acid binding
protein (I-FABP)), inflammation, and dysbiosis that occurs during SIV infection [123] (as
reviewed in [133]). However, data of persistent inflammation and microbial translocation
in ART-treated animals have generated varied results. Longitudinal microbiome studies of
ART-treated RMs demonstrate the potential reversal of microbial dysbiosis after long-term
viral suppression [133–135]. While partial recovery is seen in the gut microbiome, biomark-
ers of epithelial barrier damage and microbial translocation remain elevated [136,137]
(Figure 1). Therefore, further research is required to establish how bacterial taxa can impact
SIV pathogenesis and systemic inflammation.

4.2. Limited Penetrance and Toxicity of ART

Studies in humans indicate that some ART compounds do not penetrate the brain, which
may lead to pockets within deep tissue sites including the brain where HIV/SIV may be able
to replicate, drive immune activation, and contribute to neurocognitive decline [77,93,138]. In
addition to the CNS, lower antiretroviral drug levels were found in lymphatic compartments
compared to peripheral blood, which may contribute to the formation and persistence of viral
reservoirs within these peripheral compartments [139,140]. However, to date, limited evidence
of ART penetration in NHP models exists. Similar to human studies, we demonstrated that
ART penetrance in lymph node, ileum, GALT, and RALT in SIV-infected animals was lower
compared to blood [35]. However, the penetrance of ART into the brain was not assessed in
this study.

4.3. Substance Use, Ageing and Other Modifiable Risk Factors

PWH have higher rates of illicit drug use than HIV-seronegative individuals, which
may potentiate HAND pathogenesis. Importantly, the use of SIV animal models has
allowed for the controlled assessment of each modifiable risk factor on neuropathogenesis,
where morphine use, methamphetamine use, smoking, and even age have been linked to
neuropathogenesis in SIV-infected animal models. Specifically, morphine use accentuates
SIV neuropathology including higher levels of the infiltrating of myeloid cells in the
brain during acute infection relative to SIV-infected animals who were not treated with
morphine [141]. Interestingly, methamphetamine and/or morphine use are also associated
with higher levels of SIV vRNA and immune activation in the brain of SIV-infected animals
relative to SIV-infected animals not treated with either drug [142–145]. Conversely, cocaine
use does not appear to impart significant effects of either SIV reservoir size or immune
activation in the brain [146].
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5. Can We Model SIV/HIV-Related Cognitive Impairment in NHPs?

Cognitive and behavioral testing is essential in characterizing the pathogenesis of the
milder forms of HANDs. However, the evidence of the suitability and applicability of NHP
models of HIV to study cognitive impairment is limited. NHPs infected with neurovirulent
strains of SIV (SIV/17E-Fr + SIV/∆B670) and experimentally induced encephalitis have shown
deficits in motor control and spatial working memory with similarities to PWH [147–150].
Deficits in motor (forearm force) and cognitive (progressive ratio tests) function associated
with SIV infection have been associated with CSF viral load and have also been shown to be
exacerbated by morphine treatment [151]. However, as virologically well controlled PWH
rarely experience severe dementia or HIVE, the relevance of these outcomes in NHPs or
the suitability of these cognitive tests as a measure of more mild impairment are unclear. A
study of Chinese-origin RMs infected with SIVmac251 and either suppressed with ART or
left untreated found no differences in cognitive function, despite detectable viral load in the
CSF [99]. However, it is of note that these animals were aged and showed no changes in
inflammatory cytokine levels or SIV-induced disease pathogenesis, possibly supporting a role
for immune activation in contributing to HAND pathogenesis. Alternatively, RMs infected
with neurovirulent SIVmacR71/E17 and treated with morphine showed impaired behavioral
deficit relative to SIV-infected animals [151].

Broader behavioral testing used in NHP models of other cognitive disorders in the
absence of encephalitis may offer translational benefit for modelling mild HANDs. In hu-
mans, HAND diagnosis includes a battery of cognitive testing that spans multiple cognitive
domains including: verbal/language; attention/working memory; abstraction/executive;
memory (learning, recall); speed of information processing; sensory–perceptual; and motor
skills [6]. Although the specific test may change, each cognitive domain can be mea-
sured and compared between humans and NHPs. The 5-Choice Reaction time task is
a well-defined model of attention that has been tailored for use in humans, NHPs, and
rodents (as reviewed in [152]). This model primarily measures sustained attention through
a brief visual stimulus and the reaction times over consecutive trials (generally 80–100 trials
per session).

In contrast to SIV models, behavioral testing in NHP models of other neurocognitive
disorders such as Huntington’s and Parkinson’s disease are more well-established and may
be applicable to chronic SIV. Specifically, cognitive impairment and anxiety-like behavior
have been described in a transgenic NHP model of Parkinson’s disease [153]. Behavioral
testing protocols relating to age-related learning and function may also be translated to
SIV infection as age-associated decline in cognitive and motor function, including delay in
learning in simple or precision-based tasks relative to younger animals has been measured
in naturally ageing baboons (~20 years old) [154]. Thus, it is possible that the translation of
the measures of behavioral changes in other neuroinflammatory disorders such as MS or
even healthy ageing may have some utility in assessing SIV-induced cognitive impairment.

6. Targeting SIV Reservoirs and Chronic Inflammation in the Brain

One major benefit of utilizing NHP models of SIV/SHIV infection is the flexibility to
perform intervention studies to target SIV brain infection and/or inflammation. Reactivat-
ing latent HIV in circulating CD4+ T cells as part of ‘shock and kill’ strategies have been
tested in vitro and in vivo in NHPs. However, comparatively little is known regarding
targeting reservoirs in the brains of SIV-infected animals.

The treatment of SIV-infected animals with the second mitochondria-derived activator
of caspases (SMAC) mimetic AZD5582 induced reactivation of viral reservoirs in the blood
and tissue of ART-treated animals [155]. Whilst brain tissue was not assessed from these
animals, related experiments in rodent models supported viral reactivation in the CNS,
potentially supporting the efficacy of these treatments in NHPs. As a complementary
therapy, HSC-derived, virus-targeting CAR-T cells that traffic to, and persist within, the
brain may offer an opportunity to target reactivating cells; as a recent study by Barber-
Axthelm shows, this therapeutic modality shows significant promise in targeting brain-



Viruses 2022, 14, 1997 12 of 20

and CNS-resident reservoirs, in addition to reservoirs located within classic peripheral
lymphoid sites [156].

Another cutting-edge technique that highlights the necessity of using NHP models for
developing novel R&D is a recent proof-of-concept for utilizing CRISPR/Cas9 to reduce
the amount of proviral DNA present within the brain and CNS (among other sites; [157]).
With efficiencies reaching up to 100% in select sites within the CNS and brain, including
the frontal lobe, CRISPR/Cas9 shows promise in reducing the symptoms/progression
of HANDs stemming from local inflammation as a result of the limited reactivation of
replication-competent SIV/HIV, especially when considered in combination with treat-
ments targeting other sources of neuroinflammation (below).

Treatments selectively targeting neuroinflammation and oxidative stress in the brain
have had some benefit in SIV-infected NHPs. Meulendyke and colleagues identified
fluconazole and paroxetine (FluPar) as protective compounds against gp120 and tat neu-
rotoxicity (Figure 1). This treatment commenced during early acute infection to pigtail
macaques infected with accelerated neurovirulent SIV. Interestingly, FluPar treatment
provided neuroprotection, as measured by CSF neurofilament light chain and frontal cor-
tex CaMKIIα, despite unchanged levels of neuroinflammation [158]. Treatment with the
monoamine oxidase inhibitor, deprenyl, also showed some benefit in reducing peripheral
and CNS inflammation when administered during acute SIV infection [159]. Specifically,
deprenyl treatment decreased both peripheral and CNS inflammation isolated from frontal
grey matter, caudate, hippocampus, and spleen tissue. Although no changes in viral load
were detected with deprenyl treatment, the downregulation of inflammatory genes was
only observed in SIV-infected animals, indicating a specific response to SIV-associated
neuroinflammation [159]. Other repurposed drugs, such as Dimethyl fumerate, used in MS
treatment, were found to decrease brain oxidative injury and inflammation in SIV-infected
RMs [160].

Finally, targeting systemic inflammation, characteristic of chronic HIV/SIV infection,
may also be of benefit in improving neuroSIV pathogenesis. The treatment of SIV-infected
animals with drugs designed to target microbial translocation via controlling microbes
or gut inflammation (rifaximin and sulfasalazine, respectively) showed benefit in lower-
ing systemic immune activation and microbial translocation during acute infection [161];
however, the effects on chronic inflammation or neuroinflammation are unclear. Further un-
derstanding the role of chronic systemic inflammation on neuroinflammation and cognitive
dysfunction are required.

7. Conclusions

The mechanisms contributing to viral persistence, neuroinflammation, and cognitive
disorders in PWH remain a tangled web that is difficult to delineate in human ex vivo
studies alone. Thus, clinically and physiologically relevant NHP models are essential
tools required to define the relationship between mild neurocognitive disorders, CNS
viral burden, systemic inflammation, and immune activation in the brain. Understanding
the roles and contributions of each element to ongoing brain disease will guide further
therapeutic interventions with translational capacity for people living with chronic HIV
and HANDs.
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