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Abstract
Fabry disease is caused by deficient activity of α-galactosidase A (GLA) and characterized

by systemic accumulation of glycosphingolipids, substrates of the enzyme. To gain insight

into the pathogenesis of Fabry disease based on accumulated substrates, we examined

the tissue and plasma distributions of globotriaosylceramide (Gb3) isoforms, and globotriao-

sylsphingosine (lyso-Gb3) and its analogues in aGLA knockout mouse, a model of Fabry

disease, by means of liquid chromatography-mass spectrometry and nano-liquid chroma-

tography-tandem mass spectrometry, respectively. The results revealed that the contents

of these substrates in the liver, kidneys, heart, and plasma ofGLA knockout mice were

apparently higher than in those of wild-type ones, and organ specificity in the accumulation

of Gb3 isoforms was found. Especially in the kidneys, accumulation of a large amount of

Gb3 isoforms including hydroxylated residues was found. In theGLA knockout mice, the

proportion of hydrophobic Gb3 isoforms was apparently higher than that in the wild-type

mice. On the other hand, hydrophilic residues were abundant in plasma. Unlike that of Gb3,

the concentration of lyso-Gb3 was high in the liver, and the lyso-Gb3/Gb3 ratio in plasma

was significantly higher than those in the organs. The concentration of lyso-Gb3 was appar-

ently higher than those of its analogues in the organs and plasma from both the GLA knock-

out and wild-type mice. This information will be useful for elucidating the basis of Fabry

disease.

Introduction
Fabry disease (OMIM 301500) is characterized by storage of glycosphingolipids in organs and
tissues throughout the body, resulting from deficient activity of α-galactosidase A (GLA, EC
3.2.1.22) [1,2]. This lysosomal hydrolase encoded by the GLA gene (locus: Xq22.1) catalyzes
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the removal of terminal α-linked galactosyl residues from glycosphingolipids, predominantly
globotriaosylceramide (Gb3). Patients with Fabry disease show progressive accumulation of
Gb3 and related glycosphingolipids in the peripheral nerves, skin, eyes, intestine, kidneys, and
heart and vascular systems, leading to systemic disorders, although they exhibit heterogeneous
manifestations due to harbored gene mutations and gender [1,2]. Gb3 consists of a sugar chain
(galactoseα1-4galactoseβ1-4glucose) linked with a ceramide moiety that is composed of sphin-
gosine and various fatty acids. Therefore, it is predicted that there are many Gb3 isoforms in
organs and tissues due to the respective metabolic pathways.

Recent studies revealed that the deacylated form of Gb3, globotriaosylsphingosine (lyso-
Gb3), also accumulated in plasma and urine of Fabry patients, and lyso-Gb3 is expected to be a
biomarker of this disease for diagnosis, monitoring of disease progression and assessment of
therapeutic efficacy [3–6]. Lyso-Gb3 analogues having various sphingosine modifications are
also reported to be biomarkers of the disease [7,8] (Fig 1A).

Considering the above, it is thought that such glycosphingolipid accumulation is deeply asso-
ciated with the pathogenesis of Fabry disease. Although Gb3 itself is a cell component, its exces-
sive accumulation causes endothelial dysfunction [9–11] and nephropathy through increased
expression of cytokines [12]. Increased lyso-Gb3 also leads to injury to glomerular podocytes
[13] and sensory neurons [14], and also causes proliferation of smooth muscle cells, which may
be related to the vascular defect in Fabry disease [3]. However, there remained many problems
to be solved for understanding the pathogenesis of Fabry disease, i.e., differences in species of
glycosphingolipids accumulated in organs, and their influence in each organ and tissue.

Recent development of sensitive assay methods enabled us to detect Gb3 isoforms due to
heterogeneous fatty acids with various sphingosine moieties (Fig 1B), and to measure small
amounts of lyso-Gb3 and its analogues by means of liquid chromatography-mass spectrometry
(LC-MS) [15] and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/
MS) [16], respectively.

So far, at least two strains of GLA knockout mice have been established [17,18], and which
are widely used as animal models of Fabry disease [19–25]. In this study, we examined the dis-
tributions of Gb3 isoforms, and lyso-Gb3 and its analogues in GLA knockout mice using
LC-MS and nano-LC-MS/MS to obtain information for an insight into the pathogenesis of
Fabry disease.

Materials and Methods

Animals
The C57BL/6 GLA knockout mice [17,26] were denoted by A.B. Kulkarni and T. Oshima
(National Institutes of Health, Bethesda, MD), and a colony was maintained at Meiji Pharma-
ceutical University. In this study, 8-month-old GLA(-/0) males and GLA(-/-) females were used.
Given the genetic background of the Fabry mouse colony, 8-month-old C57BL/6 wild-type
mice were used as controls. Mice were housed two to three per cage (size: 15cm×25cm×12.5cm)
with woodchips bedding, and food and water were provided ad libitum. Blood samples were col-
lected from the orbital venous plexus under anesthesia with diethyl ether. Then, the mice were
sacrificed under pentobarbital-anesthesia, and their kidneys, liver, and heart were harvested for
the biochemical analysis. The study involving mice was approved by the Animal Care and Use
Committee of Meiji Pharmaceutical University.

Reagents
Gb3 (mixture of various isoforms), Gb3(C16:0), Gb3(C17:0), and lyso-Gb3 were purchased
fromMatreya, LLC (Pleasant Gap, PA, USA). Stable-isotope labeled lyso-Gb3 (lyso-Gb3-IS), as
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an internal standard (IS), was synthesized according to a previous report [16] at Nard Institute,
Ltd. (Kobe, Japan). Two stable-isotope labeled chemicals were used for lyso-Gb3-IS synthesis:
L-Serine-1-13C (isotopic purity, 99%; Cambridge Isotope Labolatories, Inc., Tewksbury, MA,
USA) and palmitoic acid-CD3 (isotopic purity, 99%; ISOTEC, Inc., Miamisburg, OH, USA).
Therefore, lyso-Gb3-IS has one 13C and three deuteriums. For sample preparation and LC-MS/
MS analysis, LC-MS grade isopropyl alcohol (IPA) and ammonium formate were purchased
from Sigma-Aldrich Co., LLC (St. Louis, MO, USA). Phosphoric acid (H3PO4), LC-MS grade
methanol (MeOH), and acetonitrile (ACN) were purchased from Kanto Chemical Co., Inc.
(Tokyo, Japan), and chloroform and LC-MS grade formic acid (FA) fromWako Pure Chemical
Industries, Ltd. (Osaka, Japan).

Sample preparation
Gb3 isoforms were extracted from three organs (liver, kidneys and heart), and plasma of the
wild-type (three males and three females) and GLA knockout mice (six males and six females).
The organ tissues (20–100 mg) were homogenized in methanol using 3 mm Zr beads with a
homogenizer (Micro Smash MS-100R; TOMY DIGITAL BIOLOGY CO., LTD., Tokyo,
Japan). Each homogenate including 5 mg tissue was diluted with 600 μl of methanol containing
500 ng Gb3(C17:0), as an internal standard. Then, 300 μl of chloroform and 100 μl of water
were added, and the crude lipids were extracted. In the case of extraction from plasma, 50 μl of
plasma was diluted with 100 μl of water, and then 600 μl of methanol containing 500 ng Gb3

Fig 1. Lyso-Gb3 analogues and Gb3 Isoforms. (A) Chemical structure of Lyso-Gb3 and sphingosine modification of lyso-Gb3 analogues. (B) Chemical
structure of Gb3(d18:1-C16:0) and ceramide modification of Gb3 isoforms having various fatty acids linked with various sphingosine moieties corresponding
to lyso-Gb3 and four analogues.

doi:10.1371/journal.pone.0144958.g001
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(C17:0) and 300 μl of chloroform were added and mixed. Each mixture was centrifuged for 10
min at 14,000g, and then the supernatant was dried in an evaporator. Each residue was recon-
stituted in 200 μl of methanol and then used for conventional LC-MS/MS analysis. As standard
samples, 100 μl of 0 to 100 μg/mL Gb3 (mixture of Gb3(C16:0) and Gb3 (various isoforms) =
1/1) in methanol was extracted following the same procedure.

Lyso-Gb3 and its analogues were also extracted from the organs and plasma of the wild-type
(three males and three females) and GLA knockout mice (six males and six females). The
homogenates including 5 mg tissue were diluted with 600 μl of methanol containing 1 ng lyso-
Gb3-IS. Then, 300 μl of chloroform and 100 μl of water were added and mixed, and then the
crude lipids were extracted. For extraction of the crude lipids in plasma, 20 μl aliquots of plasma
samples were diluted with 100 μl of water. Then, 600 μl of methanol containing 1 ng lyso-
Gb3-IS and 300 μl of chloroform were added and mixed. Each extract was centrifuged for 10
min at 14,000g, and then the supernatant was dried in an evaporator. Each residue was reconsti-
tuted with 1% H3PO4/MeOH, followed by transfer to an OASIS MCX cartridge (30mg, 60mm;
Waters Corp., Milford, MA, USA). Extraction of lyso-Gb3 and its analogues by OASIS MCX
was performed by the method described in our previous report [16]. As standard samples,
100 μl of 0 to 1500 ng/mL of lyso-Gb3 in methanol was extracted following the same procedure.

Measurement of Gb3 isoforms by means of LC-MS/MS
For measurement of Gb3 isoforms, LC-MS/MS analysis was performed according to a previous
report [27]. For conventional-LC, an Ultimate 3000 (Thermo Fisher Scientific, Inc., Waltham,
MA, USA) was used. Hypersil Gold (150 mm x 4.6mm, 3um particles; Thermo Fisher Scien-
tific) was used for reversed phase based chromatographic separation. Five micro liters aliquots
of samples were injected. The column oven was set at 40°C. Solvent A consisted of ACN/
MeOH/water (19/19/2), 20 mM ammonium formate and 5 mM formic acid, and Solvent B of
IPA/water (100/1), 20 mM ammonium formate and 5 mM formic acid. A mobile-phase gradi-
ent was produced during a 35 min run: 0 min, 10% B; 25 min, 25% B; 25.1 min, 95% B; 30 min,
95% B; 30.1 min, 10% B; and 35 min, 10% B. The flow rate was 0.5 mL/min. A Q-Exactive mass
spectrometer (Thermo Fisher Scientific) was used for the detection of Gb3 isoforms. Instru-
ment calibration was performed before each analysis. The samples were injected into the mass
spectrometer from 2 to 25 min by a switching valve. The targeted MS/MS analysis (HRPS)
mode was selected for quantification of Gb3 isoforms. The ion spray voltage was set at 2500V
in the positive ion mode. The first quadrupole was operated at 1.0 FWHM and the Orbitrap
spectrometer at 70,000 FWHM. The AGC target value was set at 2E5, with a maximum injec-
tion time of 100 ms. The collision energy value was 40% for all the compounds of interest. The
theoretical masses of Gb3 isoforms, which had various fatty acids linked with various sphingo-
sine moieties corresponding to lyso-Gb3 and four analogues (Fig 1B), were targeted. The target
masses and acquisition times are shown in Table 1. The precursor ions of Gb3 isoforms were
sodium adducts. Fragment ions due to neutral loss of a single galactosyl fragment (162.05 Da)
from the precursor ion were selected for quantification of Gb3 isoforms with our instrument
(Table 1). The calculation for measurement of Gb3 isoforms was performed using the Quan
Browser software (Thermo Fisher Scientific). The total Gb3 concentration was calculated from
the sum of all the Gb3 isoforms we had detected.

Measurement of lyso-Gb3 and its analogues by means of nano-LC-MS/
MS
For sensitive quantification of lyso-Gb3 and its analogues, we used a nano-LC-MS/MS assay
system comprising an Ultimate 3000RSLCnano (Thermo Fisher Scientific, Inc., Waltham, MA,

Distributions of Gb3 Isoforms and Lyso-Gb3 Analogues in a Fabry Mouse

PLOS ONE | DOI:10.1371/journal.pone.0144958 December 14, 2015 4 / 11



USA) and a PAL HTS XT-CTC autosampler (CTC Analytics AG, Zwingen, Switzerland)
according to a previous report [16]. The samples were injected via a 1 μL nanoViper Loop
(Thermo Fisher Scientific). A Zorbax 300SB-C18 nano column (150 mm x 0.1mm, 3 mm parti-
cles; Agilent Technology, Inc., Santa Clara, CA, USA) was used for chromatographic separation
of lyso-Gb3 and its analogues. Solvent A comprised 0.2% FA/5% ACN and Solvent B 0.2% FA/
ACN. A mobile-phase gradient was produced during a 25 min run: 0 min, 1% B; 10 min, 99%
B; 16 min, 99% B; 16.1 min, 1% B; and 25 min, 1% B. The flow rate was 0.5 μL/min. A Q-Exac-
tive mass spectrometer (Thermo Fisher Scientific) was used for the detection of lyso-Gb3 and

Table 1. The target masses and acquisition times of Gb3 Isoforms.

No. Formula Sphingosine modification Fatty acid moiety Targeted Mass [m/z] Start [min] End [min] Quantification Mass [m/z]

1 C52H95NO18 - H2 C16:0 1044.64 7 10.3 882.59

2 C52H99NO20 + H2O2 C16:0 1080.66 7 10.7 918.61

3 C52H99NO19 + H2O C16:0 1064.67 7 10.9 902.62

4 C52H97NO19 + O C16:0 1062.65 7 11.6 900.6

5 C52H97NO18 N/A C16:0 1046.66 7 12 884.61

6 C54H99NO18 - H2 C18:0 1072.67 7 12 910.62

7 C54H103NO20 + H2O2 C18:0 1108.7 7 12.4 946.65

8 C54H103NO19 + H2O C18:0 1092.7 7 12.7 930.65

9 C54H101NO19 + O C18:0 1090.69 7 13.6 928.64

10 C54H101NO18 N/A C18:0 1074.69 10.3 13.8 912.64

11 C56H103NO18 - H2 C20:0 1100.71 10.7 14 938.66

12 C58H105NO18 - H2 C22:1 1126.72 10.9 14.2 964.67

13 C56H107NO20 + H2O2 C20:0 1136.73 11.6 14.6 974.68

14 C58H109NO20 + H2O2 C22:1 1162.74 12 14.6 1000.69

15 C56H107NO19 + H2O C20:0 1120.73 12 15 958.68

16 C58H109NO19 + H2O C22:1 1146.75 12.4 15 984.7

17 C56H105NO19 + O C20:0 1118.72 12.7 15.8 956.67

18 C58H107NO19 - H2 C22:0-OH 1144.73 13 16.3 982.68

19 C56H105NO18 N/A C20:0 1102.72 13.6 16.5 940.67

20 C58H107NO18 N/A C22:1 1128.74 13.8 16.8 966.69

21 C60H109NO18 - H2 C24:1 1154.75 14 16.9 992.7

22 C58H111NO21 + H2O2 C22:0-OH 1180.75 14.2 17.4 1018.7

23 C58H111NO20 + H2O C22:0-OH 1164.76 14.6 17.7 1002.71

24 C60H113NO20 + H2O2 C24:1 1190.77 14.6 17.8 1028.72

25 C58H111NO19 + H2O C22:0 1148.76 15 18 986.71

26 C60H113NO19 + H2O C24:1 1174.78 15 18 1012.73

27 C58H109NO20 + O C22:0-OH 1162.74 15.8 18.6 1000.69

28 C60H111NO19 - H2 C24:0-OH 1172.76 16.3 25 1010.71

29 C58H109NO19 N/A C22:0-OH 1146.75 16.5 25 984.7

30 C58H109NO18 N/A C22:0 1130.75 16.8 25 968.7

31 C60H111NO18 N/A C24:1 1156.77 16.9 25 994.72

32 C60H115NO21 + H2O2 C24:0-OH 1208.78 17.4 25 1046.73

33 C60H115NO20 + H2O C24:0-OH 1192.79 17.7 25 1030.74

34 C60H115NO19 + H2O C24:0 1176.8 17.8 25 1014.75

35 C60H113NO20 + O C24:0-OH 1190.77 18 25 1028.72

36 C60H113NO19 N/A C24:0-OH 1174.78 18 25 1012.73

37 C60H113NO18 N/A C24:0 1158.78 18.6 25 996.73

IS C53H99NO18 N/A C17:0 1060.67 7 13 898.63

doi:10.1371/journal.pone.0144958.t001
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its analogues. Instrument calibration was performed before each analysis. The targeted MS/MS
analysis (HRPS) mode was selected for quantification of lyso-Gb3 and its analogues. The first
quadrupole was operated at 1.0 FWHM and the Orbitrap spectrometer at 17,500 FWHM. The
AGC target value was set at 1E5, with a maximum injection time of 100 ms. The collision
energy value was 25% for all the compounds of interest. The target masses were m/z 786.4482
for lyso-Gb3 and m/z 790.470 for lyso-Gb3-IS. In the case of measurement of lyso-Gb3 ana-
logues, m/z 758.417 for lyso-Gb3(-28), m/z 774.412 for lyso-Gb3(-12), m/z 784.433 for lyso-
Gb3(-2), m/z 800.427 for lyso-Gb3(+14), m/z 802.443 for lyso-Gb3(+16), m/z 804.459 for lyso-
Gb3(+18), m/z 820.454 for lyso-Gb3(+34), and m/z 836.449 for lyso-Gb3(+50) were used for
the targeted MS/MS analysis. The calculation was performed using Quan Browser software
(Thermo Fisher Scientific). Higher intensive fragment ions were selected for quantification,
i.e., m/z 282.278 for lyso-Gb3, m/z 286.301 for lyso-Gb3-IS, m/z 254.248 for lyso-Gb3(-28), m/
z 270.243 for lyso-Gb3(-12), m/z 280.263 for lyso-Gb3(-2), m/z 278.248 for lyso-Gb3(+14), m/
z 280.263 for lyso-Gb3(+16), m/z 318.300 for lyso-Gb3(+18), m/z 334.295 for lyso-Gb3(+34),
and m/z 350.290 for lyso-Gb3(+50).

Statistical Analysis
The statistical significance test was performed with Stat Preclinica SAS 9.2 (Takumi Informa-
tion Technology Inc., Tokyo, Japan). Data are expressed as means ± standard deviation. The
differences in the Gb3 and lyso-Gb3 levels in organs and plasma between the GLA knockout
mice and the wild-type ones were assessed by means of Student’s t test.

Results

Identification of MS peaks
The theoretical masses of Gb3 isoforms, having various fatty acids linked with various sphingo-
sine moieties corresponding to lyso-Gb3 and its four major analogues (lyso-Gb3(-2), lyso-Gb3
(+16), lyso-Gb3(+18) and lyso-Gb3(+34)) [16], were targeted (Fig 1B). Fragment ions due to
neutral loss of a single galactosyl fragment (162.05 Da) from the precursor ion, not fragment
ions from a ceramide moiety, were mainly observed with our instrument. Thus, we used them
for quantification of Gb3 isoforms. We found that the ceramide moiety of Gb3 isoforms influ-
enced the elution order of different molecular species, i.e., the molecules having short, unsatu-
rated and hydroxylated fatty acids linked with sphingosine were eluted earlier (S1 Fig). From
this, we determined the elution time corresponding to the MS peak of each Gb3 isoform. We
set the acquisition time window for each compound of interest so as to obtain enough data
points. The target masses and acquisition times are shown in Table 1. Some peaks were consid-
ered to be mixtures of two or more structural isomers having the same molecular mass.

Contents of total Gb3 and its isoforms in organs and plasma
As shown in Table 2, the concentration of Gb3 in the kidneys was apparently higher than those
in the heart and liver in both the wild-type and GLA knockout mice. The mean Gb3 concentra-
tions in all the organs and plasma of the GLA knockout mice were significantly higher than
those in the wild-type mice (p<0.01).

The distributions of Gb3 isoforms differs from organ to organ. Various Gb3 isoforms were
observed especially in the kidneys (Fig 2), and kidney-specific Gb3 isoforms were hydroxylated.
In the GLA knockout mice, the concentrations of hydrophobic isoforms (e.g., Gb3(d18:1-C24:0))
in the organs were higher than those of hydrophilic Gb3 isoforms (e.g., Gb3(d18:1-C16:0)).
However, in the plasma, the concentrations of hydrophobic Gb3 isoforms were not much higher
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than those of hydrophilic Gb3 isoforms. On the other hand, in the wild-type mice, the concentra-
tions of hydrophilic isoforms were apparently high in the plasma.

Contents of lyso-Gb3 and its analogues in organs and plasma
The lyso-Gb3 concentration was measured by means of nano-LC-MS/MS. Lyso-Gb3 in all the
organs and plasma of the wild-type mice was successfully detected by means of this sensitive
method (Table 2). Unlike that of Gb3, the concentration of lyso-Gb3 was high in the liver but
not in the kidneys. The mean lyso-Gb3 concentrations in all the organs and plasma of the GLA
knockout mice were significantly higher than those in the wild-type mice (all, p<0.01). The
lyso-Gb3 to Gb3 ratio in the plasma was higher than those in the organs in both the wild-type
and GLA knockout mice. The concentration of lyso-Gb3 was higher than those of its analogues
in all the organs and plasma from both the wild-type and GLA knockout mice. Among the
lyso-Gb3 analogues, the concentrations of lyso-Gb3(-2) and lyso-Gb3 (+18) were higher than
those of the others (Fig 3).

Discussion
To elucidate the basis of Fabry disease based on accumulated substrates of GLA, we examined
the distributions of Gb3 isoforms and lyso-Gb3 and its analogues in the liver, kidneys, heart
and plasma of 8-month-old GLA knockout mice and compared them with in the case of wild-
type ones. It is reported that the Gb3 level of the organs in GLA knockout mouse increases up
to 20-weeks of age and is stable after 20 weeks of age [26]. Therefore, 8-month-old GLA knock-
out mouse is well-suited for examining the glycosphingolipids distribution in the stationary
phase. The results revealed that the contents of these substrates in the organs and plasma from
the GLA knockout mice were apparently higher than those in the wild-type ones. Especially in
the kidneys, which is one of the most affected organs in this disease, the accumulation of a
large amount of Gb3 was found.

As to the distributions of Gb3 isoforms, organ specificity was found. In the kidneys, various
kinds of hydroxylated residues were found in both the wild-type and GLA knockout mice.

Table 2. Gb3 and lyso-Gb3 concentrations in the wild-type andGLA knockout mice.

Samples Gb3 Wild-Type
(N = 3)

Gb3 GLA KO
(N = 6)

Lyso-Gb3 Wild-Type
(N = 3)

Lyso-Gb3 GLA
KO (N = 6)

Lyso-Gb3/Gb3 (x1,000)
Wild-Type (N = 3)

Lyso-Gb3/Gb3
(x1,000) GLA KO

(N = 6)

Heart (ng/mg
tissue) Males

0.86 ± 0.21 970 ± 230 0.00059 ± 0.00026 0.57 ± 0.08 0.75 ± 0.4 0.62 ± 0.20

Heart (ng/mg
tissue) Females

1.0 ± 0.3 1300 ± 200 0.00051 ± 0.00016 0.93 ± 0.17 0.60 ± 0.43 0.69 ± 0.11

Kidney (ng/mg
tissue) Males

120 ± 20 9800 ± 2800 0.0028 ± 0.0007 1.7 ± 0.1 0.025 ± 0.007 0.20 ± 0.09

Kidney (ng/mg
tissue) Females

70 ± 29 14000 ± 4000 0.0018 ± 0.0005 3.3 ± 0.1 0.029 ± 0.009 0.25 ± 0.08

Liver (ng/mg
tissue) Males

1.2 ± 0.4 5000 ± 1500 0.011 ± 0.002 6.3 ± 0.5 9.0 ± 1.1 1.3 ± 0.3

Liver (ng/mg
tissue) Females

1.8 ± 1.4 6800 ± 1800 0.0084 ± 0.0009 10 ± 1 6.6 ± 3.8 1.6 ± 0.5

Plasma (ng/μL)
Males

0.016 ± 0.004 4.4 ± 1.6 0.00067 ± 0.00012 0.19 ± 0.01 42 ± 3 52 ± 21

Plasma (ng/μL)
Females

0.018 ± 0.002 2.8 ± 0.5 0.00045 ± 0.00007 0.24 ± 0.01 25 ± 5 81 ± 9

doi:10.1371/journal.pone.0144958.t002
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Such a characteristic distribution of Gb3 isoforms in the kidneys may be due to the organ-spe-
cific biosynthetic pathway for Gb3.

In the organs of the GLA knockout mice, the proportion of hydrophobic Gb3 isoforms was
apparently higher than that in the wild-type mice, suggesting that excessive accumulation of
such hydrophobic Gb3 isomers affects the organ and tissues. On the other hand, in plasma, the

Fig 2. The distributions of Gb3 isoforms in organs and plasma of the wild-type andGLA knockout mice.Numbers along the x-axis are elution orders
from the RP column and correspond to numbers in Table 1.

doi:10.1371/journal.pone.0144958.g002
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content of hydrophilic residues was high. The lyso-Gb3 to Gb3 ratio in plasma was also higher
than those in organs. It is known that a part of Gb3 synthesized in the liver is transported to
the plasma in combination with low-density and high-density lipoproteins [1]. The results of
this study suggest that hydrophilic molecules are liable to leak from the liver into the plasma.

The concentration of lyso-Gb3 was apparently higher than those of its analogues in the
organs and plasma from both the wild-type and GLA knockout mice. Our previous study
revealed that the levels of lyso-Gb3(-2) and lyso-Gb3(+34) were higher than those of the other

Fig 3. The relative abundance of lyso-Gb3 analogues as to lyso-Gb3 in organs and plasma of the wild-type andGLA knockout mice.

doi:10.1371/journal.pone.0144958.g003
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lyso-Gb3 analogues in plasma from Fabry patients [16]. However, the present study revealed
that, in the GLA knockout mice, the concentrations of lyso-Gb3(-2) and lyso-Gb3(+18) were
higher than those of the other lyso-Gb3 analogues. This would be due to a difference between
humans and mice.

In this study, we elucidated the distributions of Gb3 isoforms and lyso-Gb3 and its ana-
logues in wild-type and GLA knockout mice. This information will be useful for elucidating the
basis of Fabry disease.

Supporting Information
S1 Fig. MS peaks of Gb3 isoforms. Peak numbers correspond to analytes in Table 1. Some
peaks were considered to be mixtures of two or more structural isomers, e.g., Gb3
(d18:1-C22:1) and Gb3(d18:2-C22:0).
(TIF)
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