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Abstract

Background: Mendelian randomization studies perform instrumental variable (IV) ana-

lysis using genetic IVs. Results of individual Mendelian randomization studies can be

pooled through meta-analysis. We explored how different variance estimators influence

the meta-analysed IV estimate.

Methods: Two versions of the delta method (IV before or after pooling), four bootstrap es-

timators, a jack-knife estimator and a heteroscedasticity-consistent (HC) variance estimator

were compared using simulation. Two types of meta-analyses were compared, a two-

stage meta-analysis pooling results, and a one-stage meta-analysis pooling datasets.

Results: Using a two-stage meta-analysis, coverage of the point estimate using boot-

strapped estimators deviated from nominal levels at weak instrument settings and/or

outcome probabilities � 0.10. The jack-knife estimator was the least biased resampling

method, the HC estimator often failed at outcome probabilities � 0.50 and overall the

delta method estimators were the least biased. In the presence of between-study hetero-

geneity, the delta method before meta-analysis performed best. Using a one-stage meta-

analysis all methods performed equally well and better than two-stage meta-analysis of

greater or equal size.

Conclusions: In the presence of between-study heterogeneity, two-stage meta-analyses

should preferentially use the delta method before meta-analysis. Weak instrument bias

can be reduced by performing a one-stage meta-analysis.
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Introduction

Despite considerable effort, observational (i.e. nonrandom-

ized) studies are sensitive to confounding bias and reverse

causation.1-4 To overcome these problems, Mendelian ran-

domization (MR) studies have been advocated, using one

or multiple single nucleotide polymorphisms (SNPs) as an

instrument in instrumental variable (IV) analyses.5,6

In this type of Mendelian randomization study, the ef-

fects of an IV on an intermediate phenotype and on an out-

come are estimated and combined to derive the causal

effect of the intermediate on the outcome. This causal ef-

fect is unbiased if (among others) the following three as-

sumptions hold: (i) the IV is associated with phenotype; (ii)

conditional on the phenotype and the (possibly unmeas-

ured) confounders, the IV is independent of the outcome;

and (iii) the IV is independent of confounders.7

Although the performance of the different IV point esti-

mators has previously been explored,8,9 the performance

of the different variance estimators remains unclear. This is

especially important because, to increase precision,

Mendelian randomization studies often meta-analyse re-

sults from multiple studies. Because of this, different vari-

ance estimators not only impact type-1 error rates and

confidence intervals but may also lead to different point

estimates.

Typically, three types of meta-analysis can be defined:

an aggregated meta-analysis combining study specific re-

sults; a two-stage individual patient data meta-analysis, in

which an analysis script is designed and shared prospect-

ively, before pooling study specific results; an one-stage in-

dividual patient data meta-analysis sharing the actual

datasets. Given the usually straightforward analyses in

genetic epidemiology, the differences between aggregated

meta-analysis and two-stage individual patient data meta-

analysis are often small; therefore here we only differenti-

ate between two-stage meta-analyses and one-stage meta-

analyses. A recent review by Boef et al.10 showed that 47

out of 80 meta-analyses of Mendelian randomization per-

formed a two-staged analysis; among those, 10 performed

IV analysis within each study before combining, whereas 9

combined gene-phenotype and gene-outcome associations

separately before performing IV analysis. We note that

gene scores are also used as instruments;11 using aggre-

gated results this can be implemented, for example, by

meta-analysing aggregated results of the gene-biomarker

and the gene-outcome relationships into two estimates12

and applying the ratio estimator (see Methods).

Alternatively, when individual patient data are available,

gene scores can be implemented using the ‘two-stage least

squared like’ estimator (TSLS, see Methods).

In the present study we used simulations to compare

multiple variance estimators. In addition, an empirical ex-

ample on the effect of low-density lipoprotein cholesterol

(LDL-C) on cardiovascular disease (CVD) is included.

Methods

Simulation set-up

Initially we focus on a two-stage meta-analysis where each

study has information on a single SNP (Z), a continuous

phenotype (X) and a dichotomous endpoint (Y). The goal

is to estimate the causal (marginal) odds ratio (OR) of one

unit of increase in phenotype on the outcome.

Data-generating process

J studies were simulated; for the jth study a disease out-

come, a phenotype and an IV were generated for nj inde-

pendent subjects, where j ¼ 1; . . . ; J. To increase

readability, the following notation is presented for one

study with the same process applied to all studies. The IV

variable, Z; counts the number of minor alleles for the

Key messages

• To increase power Mendelian randomization studies frequently combine study results (two-stage meta-analysis) or

study datasets (one-stage meta-analysis). When conducting a two-stage meta-analysis, different variance estimators

may affect not only coverage or type 1 error rates but also point estimates.

• In two-stage meta-analyses of weak instrument or rare diseases, resampling-based variance estimators are expected

to result in biased point estimates with coverage below 0.95. Two-stage meta-analyses using the delta method are ex-

pected to perform better.

• In the presence of between-study heterogeneity, the delta method applied at stage one of the meta-analysis will likely

result in the least biased estimate with relatively good coverage.

• In one-stage meta-analysis scenarios, point estimates are not influenced by the choice of variance estimator and

coverage is generally similar between the variance estimators. One-stage meta-analyses are, however, still affected

by the size and quality of the included studies.
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ith individual. Following a biallelic model, genotypes were

generated from two independent Bernoulli distributions,

resulting in the usual Hardy-Weinberg proportions:

Prob Z ¼ 0; Z ¼ 1; Z ¼ 2ð Þ ¼ q2; 2pq; p2
� �

:

where p represents the probability of the rare allele and q

¼ 1� p the probability of the major allele. Phenotype X

was generated dependent on Z and an unobserved con-

founder C:

xi ¼ a0 þ a1zi þ a2ci þ ei with ei � N 0;1ð Þ; ci

� N 0;1ð Þ:

For the ith individual, the probability of an event was

generated based on X and C:

logit Prob½yi ¼ 1jci; xi�ð Þ ¼ log
Prob½yi ¼ 1jci; xi�

1� Prob½yi ¼ 1jci; xi�

� �
¼ d0þd1 a0 þ a1zi þ a2ci þ eið Þ
þ d2ci ¼ d0 þ d1xi þ d2ci;

the event was sampled from a Bernoulli distribution:

yi � Bernoulli Prob yi ¼ 1jci;xi½ �ð Þ:

Data analyses

Point estimators

Given that the confounder C is unobserved, it is impos-

sible to estimate the causal effect of the phenotype X on

the outcome using regular methods such as logistic regres-

sion. Instead, SNP Z can be used to estimate the causal ef-

fect of the phenotype on the outcome. The ratio estimator

is a relatively straightforward estimator of the logarithm

of the causal odds ratio (logOR), which is the estimand

here

bh ¼ ðbc1 � bd3Þ=ba1: [1]

Where bc1 represents the effect of the SNP on the out-

come measured as the log(OR), bd3 the log(OR) effect of

the SNP on the outcome conditional on the phenotype and

unmeasured confounders and ba1 the mean difference effect

of the SNP on the phenotype (estimated by fitting a linear

regression of the type xi ¼ ba0 þ ba1zi þ ei [2]). If every

confounding variable (C) was measured, bc1 and bd3 could

be estimated by fitting the following (logistic regression)

models: logit Prob½yi ¼ 1jzi�ð Þ ¼ bc0 þbc1zi and logit

Prob½yi ¼ð 1jzi;xi; ci�Þ ¼ bd0 þ bd1xi þ bd2ci þ bd3zi. However,

because it is never known if all confounders are measured

(and correctly specified), this strategy is not feasible.

Instead, following the exclusion restriction (assumption ii

above), we assume that bd3 ¼ 0, and equation 1 reduces

to the ratio of bc1 and ba3. This ratio estimator is typically

used when there is a single instrument or when a multi-

gene score is based on a meta-analysis of aggregated

results.12

Instead of the ratio estimator, the ‘two-stage least

squares like’ point estimator (TSLS), also referred to as the

two-stage predictor substitution estimators,13 is used to es-

timate the IV effect using a (weighted) gene score.8

logitðProb yi ¼ 1jbxi½ �Þ ¼ bb0 þ bhbxi [3]

where bxi represents the fitted value of a linear model re-

gressing xi on zi (i.e. the fitted values from a linear regres-

sion defined in equation 2).

Variance estimators

Following the usual research practice, we will focus on a

two-stage meta-analysis where in the second stage study

specific results are pooled by the inverse of the variance.14

Because results are pooled by the inverse of the variance,

we initially focus on different variance estimators, exclud-

ing methods that directly estimate a confidence interval.

The delta method15,16 (DM) has the closed form

solution:

br2
DM ¼

br2
c1ba1ð Þ2
þ br2

a1

bc1ð Þ
2

ba1ð Þ4
� 2br2

c1;a1

bc1ba1ð Þ3
: [4]

Where br2
c1

represents the estimated variance in bc1, br2
a1

the

variance in ba1 and br2
c1;a1

the estimated covariance betweenbc1 and ba1. Often the delta method is applied to meta-

analysis settings where br2
c1;a1

is set to zero, resulting in a

small overestimation of the variance; this was followed

here. Two versions of the delta method were compared: (i)

calculating the ratio estimator and the br2
DM in each study

followed by meta-analysis of bh (DM1); and (ii) calculatingbh using the ratio estimator and br2
DM after separately meta-

analysing bc1and ba1 (DM2).

Alternatively, by sampling with replacement from the

observed sample, creating a resampled dataset of size n

and repeating this B times, a non-parametric bootstrapped

distribution17 can be constructed. This distribution can be

used to estimate the variance in the IV point estimate [basic

bootstrap (BB)]:

br2
Boot ¼

1

B� 1

XB

b ¼ 1

h
� � bh�b� �2

[5]

with bh�b the IV estimate estimated in the bth bootstrap
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sample and h
�

the mean IV estimate over the B bootstrap

samples; here B ¼ 1; 000:

All bootstrap variance estimators assume symmetry

in bootstrap distribution, due to data sparseness, extreme

values of bh� may occur, overestimating the br2
Boot.

Straightforward solutions that are less sensitive to data

sparseness include a bootstrap stratified for the outcome

[outcome stratified (OS)] or stratified for the SNP status

[SNP stratified (SS)]. A more computer-intensive solution

is to perform a double bootstrap (DB)17 where for every

bth bootstrap sample, R new bootstrap samples of size n

are taken using the bth bootstrap sample as the source

population. For every bth bootstrap sample the variance is

estimated, with the median of these estimates representing

the DB IV variance estimate. In our simulations, R ¼ 50

and BDB ¼ R�5. An jack-knife (JK)17 variance estimator

can also be used:

br2
jack ¼

n � 1

n

Xn
i ¼ 1

hjack � bh�i

� �2

here hjack represents the mean IV estimate over the n

jack-knife estimates and bh�i the IV estimate deleting the ith

observation.

The previous variance estimators were all applied using

the ratio estimator. The robust sandwich (RB)

heteroscedasticity-consistent (HC) variance estimator can

be used for the TSLS IV, in which the variance estimate br2bxy

for bh (equation 3) is replaced by the RB estimate. Here we

used HC1 and note that JK and RB estimators are related

in the sense that the JK approximates the HC3 estimator,

which is a refinement of HC1.18 Note that the HC

estimators are implemented not to adjust for any

heteroscedasticity, but merely to penalize the naive vari-

ance estimator which assumes that the bx in equation 3 is

measured without error.

Simulation scenarios

In all simulations J ¼ 10 studies were generated, with nj

sampled from a uniform distribution (400, 3600) (see

Table 1 for an overview of the simulation parameters). In

scenario I, the minor allele frequency (p) was set to 0.50,

0.10, 0.05, 0.01, and 0.005. The probability of the out-

come was 0.50. To (initially) prevent weak instrument

bias,19 the SNP effect on the phenotype was set to

a1 ¼ 0:50, and the unmeasured confounder effect to

a2 ¼ 1:00. By fixing the SNP-phenotype association and

decreasing p; the explained variance due to the SNP de-

creased, as well as the F-statistic. For example, in scenario

I the average F-statistic was 126, 46, 25, 6 and 5. To simu-

late a large amount of confounding, the log(OR) of the un-

measured confounder effect on the outcome was set to

d2 ¼ 1:50, the phenotype log(OR) was set to d1 ¼ 0:00

(i.e. no causal effect). In scenario II, p was set to 0.15 and

the probability of the outcome was set to 0.10, 0.05, 0.02

and 0.01. Scenarios III and IV differed from II only with re-

spect to p ¼ f0:05; 0:01g.
All simulations were repeated 2000 times and were per-

formed with the statistical package R version 3.1.2 for

Unix.20 The number of replications was chosen to ensure

sufficient precision to detect small deviations from the

nominal coverage rate of 0.95 (the 95% lower and upper

bounds are 0.940 and 0.960).21 Results were pooled using

the inverse variance method following a fixed or random

effects model where appropriate.

Table 1. Simulation scenarios assessing performance of different variance estimators for an instrumental variable analysis

Parameters Scenario I Scenario II Scenario III Scenario IV

Number of studies J 10 10 10 10

Sample size sampled from a uniform

distribution Uða; bÞ
(400, 3600) (400, 3600) (400, 3600) (400, 3600)

Minor allele frequency p {0.50, 0.10, 0.05,

0.01, 0.005}

0.15 0.05 0.01

Effect of SNP on the phenotype a1 0.50 0.50 0.50 0.50

Effect of unobserved confounder

on the phenotype a2

1.00 1.00 1.00 1.00

Intercept a0 0.10 0.10 0.10 0.10

Log(OR) of the phenotype effect

on the outcome d1

0.00 0.00 0.00 0.00

Log(OR) of the unobserved confounder

effect on the outcome d2

1.50 1.50 1.50 1.50

Probability of the outcome 0.50 {0.10, 0.05, 0.02, 0.01} {0.10, 0.05, 0.02, 0.01} {0.10, 0.05, 0.02, 0.01}

Ln(odds) outcome intercept d0 0.00 {-2.20, -2.94, -3.89, -4.60} {-2.20, -2.94, -3.89, -4.60} {-2.20, -2.94, -3.89, -4.60}

Changes from the previous scenario (on the left) are presented in bold. Alphas represent mean differences, betas the natural logarithm of the odds ratio.
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Performance metrics

Results were evaluated using the following metrics. Mean

bias logOR � log½True OR�
� �

, with the first term repre-

senting the mean of the logdOR; mean standard error (SE),

empirical SE (ESE); estimated by taking the standard devi-

ation of the distribution of logdOR. The root mean squared

error RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logOR � log True OR½ �
� �2

þ ESE2

r" #
,

coverage rate, defined as the proportion of times the 95%

confidence interval (CI) included the true OR, and the

number of models that failed to return estimates.

Additional analyses

Obviously, the absolute performance of the methods depends

on the mean sample size per study. To explore the performance

in a larger sample size setting, a ‘medium’-sized meta-analysis

of 60 000 subjects was simulated by repeating scenario I.

Instead of combining study results in a two-stage meta-

analysis, one can also combine datasets in a one-stage

meta-analysis. This was explored by repeating scenario I,

concatenating the studies together in a single file and ad-

justing all analyses for study (i.e. bootstrapped by study or

adding a study covariable). Given that results do not have

to be pooled in a second stage, we only report on a single

DM estimator. We instead report on the bootstrap-based

percentile confidence interval22 which directly estimates

the confidence interval (instead of the variance).

In a third sensitivity analysis, scenario I was repeated

introducing between-study variance of the gene-phenotype

association. This was simulated by replacing a0; a1 and ei

by a0j � Nð0:10; 12Þ, a1j � Nð0:50; 12Þ and eij � Nð0;
12

j Þ with 12
j � Nð1:50; 0:32Þ.

In a fourth sensitivity analysis, we evaluated the per-

formance of (i) using only the first term of the delta

method (the Toby Johnson [TJ] method), and (ii) replacing

the asymptotic variance estimates, br2
c1
; and br2

a1
; in the

delta method (using the first two terms) by bootstrapped

estimates [DM BB]. Both methods were implemented by

applying the algorithms before meta-analysis and after

meta-analysis (i.e, TJ1, TJ2, DM1 BB, and DM2 BB).

Performance was evaluated in scenario I. Additionally, in a

fifth sensitivity analysis, we explored performance for con-

tinuous outcomes; implemented by repeating scenario I

using the parameters of scenario I as mean differences; see

Appendix Figure 1 for a flowchart of the methods eval-

uated (available as Supplementary data at IJE online).

Results

Figure 1 depicts the performance of the IV variance estima-

tors under different minor allele frequencies (MAF) or

instrument strengths (F-statistic). Unless explicitly stated,

all results pertain to the two-stage meta-analysis. At a

MAF of 0.50, pooled odds ratio (OR) estimates of all

methods were unbiased, but differences between the esti-

mators increased as MAF decreased to 0.005 (or F-statistic

went towards zero). Coverage of both the DM estimators

increased towards 1.00 as MAF decreased; the RMSE was

equal for both DM estimators, and smaller than the RMSE

of other methods (Figure 1). JK and RB coverage deterio-

rated towards 0.80 at lower MAFs. Coverage of the boot-

strap methods decreased below 0.95 at a MAF of 0.10/F-

statistic 25, recovering to 0.95 at lower MAFs using the

BB, SS and DB methods. This unexpected behaviour in

coverage was due to the bias in SE (i.e. difference between

mean SE and ESE, see Figure 1; Appendix table 1, available

as Supplementary data at IJE online) trailing behind the

bias in OR. Generally the mean SE and ESE agreed well

for the DM.

In scenarios II-IV the outcome incidence varied from

0.10 to 0.01 and the MAF was set to 0.15, 0.05 or 0.01, re-

spectively (Appendix Tables 2-4, available as

Supplementary data at IJE online). At lower outcome

probabilities, bias in both DM1 and DM2 was similar, and

lower than bias of other methods. For example, in scenario

IV at an outcome probability of 0.05, the mean OR was 1.

339 and 1.572 for DM1 and DM2, respectively. Coverage

of DM1 and DM2 differed substantially at lower outcome

probabilities; for example in scenario IV with an outcome

probability of 0.01, coverage was 0.793 and 0.550, re-

spectively. Differences between ESE and mean SE were

similar however (DM1: -5.729 and DM2: -5.404, respect-

ively), as were the RMSE estimates (DM1: 3.268 and

DM2: 3.670, respectively). Coverage of the JK and boot-

strap methods was similar and decreased below 0.95 at

lower outcome probabilities. RMSE was also similar for

all resampling methods, and higher than the DM methods.

RB estimates were the most biased, with the lowest cover-

age and highest RMSE; this coincided with frequent failure

of this method to return estimates.

Repeating scenario I with a larger sample size (60 000

subjects) showed a comparable relative pattern as before

(Figure 2; Appendix Table 5, available as Supplementary

data at IJE online). Repeating scenario I using a one-stage

meta-analysis (20 000 subjects) improved performance.

There was no difference between the methods in mean OR,

bias or RMSE (Appendix Table 6, available as

Supplementary data at IJE online); even in extreme set-

tings, bias was low at -0.016 (MAF of 0.005 or F-statistic

of 4). Coverage (Figure 3) was generally close to 0.95 or

slightly larger, and agreement between mean SE and ESE

was generally good, only deviating at a MAF of 0.005 or

an F-statistic of 4. A non-parametric bootstrap percentile
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confidence interval was evaluated, performing similarly to

other methods (coverage � 0.95). Repeating scenario I

with between-study variance showed similar performance

as in the original fixed effect scenario (Appendix Table 7,

available as Supplementary data at IJE online), except for

more conservative coverage rates and DM2 being the most

biased estimator at MAF � 0.01, e.g. -0.257 mean bias at

MAF 0.005, which coincided with a coverage rate of al-

most 1, and a RMSE of 10.289. DM1 performed better

than other methods with a coverage of 0.981 and an

RMSE of 0.127, at a MAF of 0.005.

The Toby Johnson [TJ] variance estimator performed

comparably to the DM1 or DM2 in scenario I with only

slightly lower coverage (Appendix Table 8, available as

Supplementary data at IJE online). Implementing the delta

method by replacing the asymptotic variance estimators

with bootstrapped estimators [DM BB] performed simi-

larly to the BB method (Appendix Table 8). Repeating

scenario I with a continuous outcome revealed a com-

parable relative performance of the variance estimators

(Appendix Table 9, available as Supplementary data at IJE

online).

The LDL-C effect on CVD

Table 2 shows empirical results of two different IVs in a

six-study meta-analysis to estimate the effect of LDL-C on

CVD (see Appendix at IJE online for a description of the

data sources, and baseline data). Using SNP rs11591147 as

an IV (mean F-statistic ¼ 13.42) in a two-stage meta-ana-

lysis showed that the bootstrap methods had the largest

standard errors and their point estimates not only dis-

agreed with results from the remaining variance estimators

but also between themselves. As expected, using a one-

stage meta-analysis increased precision and decreased dif-

ferences between methods, resulting in an IV estimate of

0.93 (95% CI 0.50;1.72). Results from the weak instru-

ment rs2965101 (mean F-statistic ¼ 1.34) revealed large

differences between the bootstrap estimators and the re-

maining estimators; the minimal bootstrap SE estimate

Figure 1. Simulation results from scenarios I comparing different IV variance estimators. *Solid line with a square symbol, delta method followed by

meta-analysis [DM1]; solid line with a circle symbol, basic bootstrap [BB]; solid line with triangle symbol, outcome-stratified bootstrap [OS]; solid line

with a plus symbol, SNP-stratified bootstrap [SS]; solid line with a filled-out square symbol, double bootstrap [DB]; solid line with a filled-out circle

symbol, jack-knife estimator [JK]; solid line with a filled-out triangle symbol, robust variance estimator [RB]; solid line with a rhombus (diamond)

symbol, meta-analysis followed by delta method [DM2]. The DB y-value of 2.071 is not depicted for an MAF of 0.005 on the bottom left graph.
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was 13.19, compared with an SE of 1.49 using DM2.

Precision increased using a one-stage meta-analysis, how-

ever the bootstrapped SE were still comparatively large.

Given that one-stage meta-analyses are analysed by a single

analyst, it becomes practical to explore the bootstrap dis-

tributions (Figure 4). After omitting a number of outliers,

the bootstrap became relatively symmetrical and the SE es-

timates were: 1.27 (BB), 1.29 (OS), 1.33 (SS) and 3.51

(DB). The large SE of the DB and its truncated distribution

show that 50 times 250 repetitions were insufficient in this

setting.

Discussion

This study showed that, depending on the strength of the

IV and/or the outcome incidence, there is considerable dif-

ference in the performance of instrumental variable (IV)

variance estimators in two-stage meta-analysis. The delta

method (DM) showed the least amount of bias and the

best coverage, with the delta method implemented before

meta-analysis performing better in the presence of be-

tween-study variance. Bootstrap and robust variance esti-

mators (RB) produced extreme estimates in two-stage

meta-analysis. Differences between methods were minimal

using a one-stage meta-analysis, all providing unbiased es-

timates and appropriate coverage. An empirical example

on the LDL-C effect on CVD incidence confirmed that

these issues also occur in applied settings. Relative per-

formance of the variance estimators was similar when

using a continuous outcome instead of a binary endpoint.

At lower MAF/F-statistic values or lower outcome proba-

bilities, the RB estimators often failed to converge, making

it difficult to evaluate whether the underperformance of RB

was due to the estimator itself or to informative failures.

Looking at the JK (which failed in less than 1% of the simu-

lations, and which is an approximation of the HC3; which

is a refinement of the HC1 used in the RB), it seems that to

some extent this underperformance of the RB may be ex-

plained by computational problems in the R sandwich pack-

age.23 Following the usual practice in applied Mendelian

Figure 2. Sensitivity analysis repeating simulation I comparing different IV variance estimators with an average of 60 000 subjects. *Solid line with a

square symbol, delta method followed by meta-analysis [DM1]; solid line with a circle symbol, basic bootstrap [BB]; solid line with triangle symbol,

outcome-stratified bootstrap [OS]; solid line with a plus symbol, SNP-stratified bootstrap [SS]; solid line with a filled-out square symbol, double boot-

strap [DB]; solid line with a filled-out circle symbol, jack-knife estimator [JK]; solid line with a filled-out triangle symbol, robust variance estimator

[RB]; solid line with a rhombus (diamond) symbol, meta-analysis followed by delta method [DM2].
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Figure 3. Sensitivity analysis repeating simulation I comparing different IV variance estimators using a one-stage meta-analysis design with an aver-

age of 20 000 subjects. *Solid line with a square symbol, delta method followed by meta-analysis [DM1]; solid line with a circle symbol, basic boot-

strap [BB]; solid line with triangle symbol, outcome-stratified bootstrap [OS]; solid line with a plus symbol, SNP-stratified bootstrap [SS]; solid line

with a filled-out square symbol, double bootstrap [DB]; solid line with a filled-out circle symbol, jack-knife estimator [JK]; solid line with a filled-out tri-

angle symbol, robust variance estimator [RB]; solid line with a star symbol, bootstrapped percentile method. The BB y-value of -13.463 is not depicted

for an MAF of 0.005 on the right graph.

Figure 4. Bootstrap distributions for IV rs2965101 for the relation of LDL-C and CVD. *Solid grey lines indicate the non-parametric density (only pre-

sented in the second row), with dashed grey lines indicating the expected density given a normal distribution (not presented for the double

bootstrap).
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randomization analyses, the ratio and the TSLS point esti-

mators were used. Additionally to the usual three IV as-

sumptions, these point estimators also assume the

phenotype to be normally distributed conditional on the

SNP and confounders and homogeneity of the phenotype

(X) effect on the outcome.24 In our simulations these as-

sumptions held; however in applied settings this is not neces-

sarily the case, given that confounders are often unmeasured

these assumptions are also impossible to evaluate. Instead of

making these assumptions, different estimators or estimands

may be considered in empirical settings. For example, struc-

tural mean models, or generalized method of moments point

estimators or the risk difference estimand8,24 make fewer

assumptions.

Our results underline the difficulty of using the

observed F-statistic7 as a measure of expected bias due to a

weak instrument. We observed an increased performance

in a one-stage meta-analysis with on average 20 000 sub-

jects and a ‘weak’ instrument (MAF 0.05, mean F-statistic

5.97), compared with a two-stage meta-analysis with on

average 60 000 subjects and a ‘strong’ instrument (MAF

0.05, mean F-statistic 15.98). When conducting a one-

stage meta-analysis, results do not have to be pooled by the

inverse of an estimated study-specific variance. Therefore

in this scenario, point estimates, precision (ESE) and

RMSEs were not influenced by the choice of variance esti-

mators. The choice of variance estimator did influence

coverage, which was nevertheless markedly improved over

a two-stage design.

The underperformance of the bootstrap estimators in

the two-stage meta-analysis may come as a surprise to

some; however, the improved performance (over for ex-

ample a Wald-based confidence interval) shown in the lit-

erature mostly holds for bootstrap confidence intervals

such as the bias corrected and accelerated bootstrapped

confidence interval.17,22,25 Because of the need for a vari-

ance estimate in the second stage of a two-stage meta-ana-

lysis, the bootstrap can only be used to estimate the

standard error of the IV estimate, which implicitly assumes

symmetry of the bootstrap distribution.17,22,25 We did

however evaluate the percentile method to directly esti-

mate the confidence interval when we replicated scenario I

using a one-stage meta-analysis. Results indeed showed

proper coverage; however, this was similar to the increased

performance of all other estimators. We evaluated a delta

method estimator replacing the asymptotic variance esti-

mates by bootstrapped variance estimates; this approach

performed worse than the regular delta method (DM1 or

DM2). These results show that even though the asymptotic

approximations of br 2
c1

and br2
a1

do not strictly hold, these

estimates are better approximations (in such situations)

than bootstrapped alternatives.

The simulations presented here are naturally limited

and the following points merit discussion. First, different

simulation parameters will result in different absolute per-

formance. Instead, we focused on relative (i.e. between

methods) performance which we expect to be more robust.

Second, by fixing the effect of the instrument (the SNP) on

the phenotype, the instrument strength decreases with

MAF; hence our results include analyses with F-statistics

below 10. These are analyses, some might argue, an

applied researcher would not perform due to violation of

IV assumption 1. We showed, however, that despite the

‘weak’ instrument, valid estimates can be derived. Third,

although it seems logical to increase the number of boot-

straps as the data become sparser (or the IV becomes

weaker), we kept the number fixed to preserve comparabil-

ity between scenarios. Fourth, for simplicity we focused on

scenarios with a single SNP instrument whereas, to prevent

weak-instrument bias, most Mendelian randomization

studies use multiple SNPs. Nevertheless, relevant informa-

tion for these multiple SNP approaches can be found in

our analyses by focusing on strong-instrument settings.

Fifth, we only explored performance under the null [i.e.

OR¼ 1] because (i) coverage was often too low, making

comparisons on power pointless, and (ii) we wished to pre-

vent influence of non-collapsibility.26 Sixth, the small ORs

observed in low-frequency scenarios were most likely due

to the outcome being constant for a certain allele number

(i.e. perfect separation). In these settings, penalized models,

using for example a Firth27,28 or Lasso29 penalization, are

expected to perform better.30 Finally, random effects or

fixed effect analysis models were used depending on

whether the simulation scenario included between-study

variance or not.31 In empirical analyses, the choice be-

tween random effects and fixed effect models typically de-

pends on a heterogeneity measure.32 However, bias in

point and variance estimates will influence the observed

heterogeneity, resulting in different modelling choices de-

pending on the performance of the estimator. This would

make between-methods comparisons difficult. Therefore,

the choice of model was based on the true, rather than the

observed, between-study variance.

In conclusion, the choice of variance estimator in instru-

mental variable analyses using a two-stage meta-analysis is

important. Simulations showed that the delta method

applied at stage one of the two-stage meta-analysis

performed best. If resampling variance estimators are used,

we suggest always checking study-specific plots of these

distributions for outliers. This is especially important if the

outcome and/or SNPs are rare or if the instrument is weak.

Out of all the resampling methods, the jack-knife estimator

performed best. However, in such a scenario an even bet-

ter alternative, when possible, is to perform a one-stage

1984 International Journal of Epidemiology, 2016, Vol. 45, No. 6



meta-analysis making the choice of variance estimator less

influential. If a one-stage design is used, resampling tech-

niques can be used to directly estimate confidence intervals

for which methods exist that do not assume a symmetrical

distribution (e.g. the percentile method).

Supplementary Data

Supplementary data are available at IJE online.
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