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Comparative systems analysis of 
the secretome of the opportunistic 
pathogen Aspergillus fumigatus and 
other Aspergillus species
R. P. Vivek-Ananth1, Karthikeyan Mohanraj1, Muralidharan Vandanashree1, Anupam Jhingran2, 
James P. Craig1 & Areejit Samal   1

Aspergillus fumigatus and multiple other Aspergillus species cause a wide range of lung infections, 
collectively termed aspergillosis. Aspergilli are ubiquitous in environment with healthy immune systems 
routinely eliminating inhaled conidia, however, Aspergilli can become an opportunistic pathogen in 
immune-compromised patients. The aspergillosis mortality rate and emergence of drug-resistance 
reveals an urgent need to identify novel targets. Secreted and cell membrane proteins play a critical 
role in fungal-host interactions and pathogenesis. Using a computational pipeline integrating data 
from high-throughput experiments and bioinformatic predictions, we have identified secreted and cell 
membrane proteins in ten Aspergillus species known to cause aspergillosis. Small secreted and effector-
like proteins similar to agents of fungal-plant pathogenesis were also identified within each secretome. 
A comparison with humans revealed that at least 70% of Aspergillus secretomes have no sequence 
similarity with the human proteome. An analysis of antigenic qualities of Aspergillus proteins revealed 
that the secretome is significantly more antigenic than cell membrane proteins or the complete 
proteome. Finally, overlaying an expression dataset, four A. fumigatus proteins upregulated during 
infection and with available structures, were found to be structurally similar to known drug target 
proteins in other organisms, and were able to dock in silico with the respective drug.

Aspergillosis is an umbrella term for a wide array of infections caused by multiple Aspergillus species. The major-
ity of reported aspergillosis cases originate from ten species: Aspergillus fumigatus, Aspergillus flavus, Aspergillus 
niger, Aspergillus terreus, Aspergillus versicolor, Aspergillus lentulus, Aspergillus nidulans, Aspergillus glau-
cus, Aspergillus oryzae, and Aspergillus ustus1–3. A. fumigatus alone is responsible for over 90% of the reported 
cases, followed by A. flavus, A. niger, A. terreus and A. versicolor2,4,5. The disease is an increasing concern for 
immune-compromised individuals, putting at risk patients with neutropenia, allogenic stem cell transplantation, 
organ transplantation, and acquired immunodeficiency syndrome (AIDS), among others6. High-risk patients can 
see mortality rates between 40–90%7. Compounding the issue is the limited number of drugs available to treat 
aspergillosis, and their widespread use has led to the emergence of drug-resistant strains, creating the pressing 
need for novel drugs, biomarkers and preventive therapies such as vaccines8.

Aspergillosis is caused by an opportunistic pathogen. Under normal conditions, Aspergilli are saprotrophic 
fungi which are present in soil and decaying organic matter, thereby, playing a fundamental role in nitrogen 
and carbon recycling. They have a broad geographical range with colonies typically spread through microscopic 
airborne conidia. As Aspergillus conidia are ubiquitous in the atmosphere, humans often inhale several hundred 
spores daily. While these spores are quickly eliminated by a healthy immune system9, in an immune-compromised 
host, the fungus becomes an opportunistic pathogen and overwhelms the weakened defences. The underlying 
mechanisms behind the successful initiation of pathogenesis by Aspergilli remain unclear. However, studies 
have shown that in immune-compromised hosts, A. fumigatus can reach the respiratory epithelia upon inha-
lation where it secretes proteases and secondary metabolites, specifically gliotoxin, which aids in colonizing 
healthy lung tissue10,11. Proteases secreted by A. fumigatus have also been implicated in establishing infection 
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by morphologically altering respiratory epithelial cells11,12. In addition, A. fumigatus secretes a diverse array of 
catabolic enzymes that enable degradation of macromolecular biopolymers like elastin and collagen, which are 
present in large quantities in lung tissue, for uptake of nutrients13. Apart from secreted proteins, cell membrane 
and cell wall proteins also play a crucial role in interactions with the host immune system and establishing infec-
tion10. Thus, the diverse set of secreted and cell membrane proteins of A. fumigatus and other Aspergillus species 
play a vital role in pathogenesis.

Given the central role played by the secretome and cell membrane proteins of Aspergillus species during 
human pathogenesis, they are potential candidates for identifying new biomarkers, vaccines and druggable tar-
gets. This is especially urgent as prophylactic use of antifungal therapies has led to the emergence of resistance 
in many Aspergillus species to antifungal drugs8,14,15. Prospecting the secretome and cell membrane proteins of 
Aspergillus species for druggable targets is advantageous, since any identified target will be exposed to the extra-
cellular space. In addition, targeting extracellular rather than intracellular proteins will provide fewer mecha-
nisms for resistance to develop in the pathogen.

This study aims to identify and analyze the secretome and cell membrane proteins of A. fumigatus and nine 
other Aspergillus species known to cause aspergillosis, namely, A. flavus, A. niger, A. terreus, A. versicolor, A. 
lentulus, A. nidulans, A. glaucus, A. oryzae, and A. ustus. To our knowledge, this is the first dedicated effort to 
characterize the secretome and cell membrane proteins of Aspergillus species with an aim to understand their 
role in pathogenesis and to analyze them as potential druggable proteins. While previous studies such as FSD16, 
FunSecKB217 and SECRETOOL18 have developed computational pipelines for fungal secretome prediction, they 
rely solely on bioinformatic predictions even though many experimental high-throughput proteomic datasets 
in Aspergillus species are available. Thus, we have designed a computational pipeline which systematically inte-
grates experimental high-throughput proteomic datasets, UniProt19 annotations with experimental evidence, and 
predictions from bioinformatic tools to identify a comprehensive set of secreted extracellular proteins and cell 
membrane proteins in Aspergillus species. Furthermore, small secreted and effector-like proteins20–23 were iden-
tified in Aspergillus species, and the set of secreted and cell membrane proteins were analyzed for the abundance 
of antigenic regions (AAR)24 and similarity to known drug target proteins from DrugBank25. Finally, analysis of a 
published gene expression dataset26 for A. fumigatus, led to identification of secreted and cell membrane proteins 
which are upregulated under pathogenesis and have no human homologs, and such candidates were taken for 
further druggability analysis by computational docking experiments, thereby identifying pre-existing drugs used 
against other pathogens as candidates for repurposing against aspergillosis.

Results and Discussion
Identification of the secretome from high-throughput experimental studies.  An extensive lit-
erature search was undertaken to compile high-throughput experimental studies that have characterized the 
secretome of Aspergillus species. A systematic search led to a comprehensive list of 46 high-throughput pro-
teomic studies27–73 on the secretome of 6 Aspergillus species analyzed here. Note that many high-throughput 
studies report proteins with transmembrane (TM) domains as part of the secretome but a few studies have spe-
cifically identified cell membrane and cell wall associated proteins along with the secretome30,36. Our compila-
tion of high-throughput proteomic studies led to experimentally identified lists of 437, 364, 454, 96, 469 and 
171 secreted proteins in A. fumigatus27–41, A. flavus30,42–45, A. niger30,46–58, A. terreus30,59,60, A. nidulans58,61–65 and  
A. oryzae57,66–73, respectively (Methods; Supplementary Table S1).

Computational pipeline for fungal secretome prediction.  High-throughput experimental studies 
that identify secretomes can be limited by the detection technology used or the small set of experimental con-
ditions assessed. Such secretomic studies mainly focus on identifying the proteins secreted to the extracellular 
matrix and not on proteins incorporated into the cell membrane by the eukaryotic secretion pathway. Since cell 
membrane proteins, including integral proteins, are localized on the cell surface, they can serve as excellent tar-
gets for drugs or vaccines. Here we have designed a computational pipeline to predict both secreted extracellular 
and cell membrane proteins in fungi. Importantly, our pipeline also incorporates and prioritizes available infor-
mation on the experimentally identified secreted and cell membrane proteins. Furthermore, our pipeline subdi-
vides the secretome into two subsets, proteins that follow the classical secretion pathway through the endoplasmic 
reticulum (ER) and those that exit the cell boundary through a non-classical secretion pathway. Figure 1 contains 
a flowchart of our prediction pipeline.

Our pipeline starts from the complete proteome of a fungus. Initially, intracellular proteins based on UniProt19 
annotation with experimental evidence were removed from later analysis. Subsequently, the remaining proteins 
without experimental evidence for intracellular localization were classified into two mutually exclusive categories. 
The first category contained secreted or cell membrane proteins with experimental evidence from a compiled list 
of high-throughput proteomic studies or UniProt, and the second category contained proteins without experi-
mental evidence of secretion to the extracellular matrix or localization to the cell membrane.

The first category of proteins with experimental evidence were assessed for signal peptide, 
Glycosylphosphatidylinositol (GPI) anchor or TM domain, confirming passage through the classical pathway 
(Branch A in Fig. 1; Methods). Next, the presence of GPI anchor or TM domain in proteins sorted by classical 
pathway is used to separate the cell membrane from extracellular proteins. Next, the proteins without a signal 
peptide, GPI anchor and TM domain but with experimental evidence of secretion to extracellular matrix were 
assigned to non-classical pathway (Branch A in Fig. 1).

The second category of proteins without experimental evidence were screened based on predictions from 
computational tools as follows. Firstly, the second category of proteins were screened for signal peptide, GPI 
anchor or TM domain, suggesting translocation into the ER and passage through classical pathway. Next, the 
proteins predicted to have a signal peptide, GPI anchor or TM domain but also with an ER retention signal were 
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removed from later analysis (Branch B in Fig. 1; Methods). Next, the proteins predicted to have GPI anchor or 
TM domain along with subcellular localization as cell membrane were classified as cell membrane proteins, and 
proteins without GPI anchor and TM domain along with subcellular localization as extracellular were classified 
as extracellular proteins sorted by classical pathway (Branch B in Fig. 1).

Lastly, the subset of the second category of proteins which lack signal peptide, GPI anchor and TM domain, 
were assessed for presence of orthologs in the list of secreted proteins with experimental evidence in other fungi 
(Methods; Branch C in Fig. 1). Next, those proteins in the subset which are orthologs of experimentally iden-
tified secreted proteins in other fungi were assessed for an ER retention signal and their predicted subcellu-
lar localization, and those without an ER retention signal and predicted subcellular localization as extracellular 
were classified as extracellular proteins secreted through a non-classical secretion pathway (Branch C in Fig. 1). 
To our knowledge, SecretomeP74,75 is the only prediction tool for non-classical secretion pathway, however, 
SecretomeP74,75 is designed for bacteria and mammals and not for fungi. Still FSD16 has employed SecretomeP74,75 

Figure 1.  Flowchart of the computational prediction pipeline for identifying secreted extracellular proteins 
(secretome) and cell membrane proteins in Aspergillus species. Note that this prediction pipeline can be 
employed to identify secretome and cell membrane proteins in any fungi with sequenced genome.
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to predict approximately 40% of the proteome in several fungi as secreted via a non-classical secretion pathway 
which clearly is an overestimation. For example, FSD predicts 3546 A. fumigatus proteins, which is 35% of the 
proteome, to be secreted by a non-classical pathway. Thus, we employ here an alternate ortholog-based method 
to predict proteins secreted via a non-classical pathway.

Using this pipeline, we identified comprehensive sets of secreted and cell membrane proteins in ten Aspergillus 
species causing aspergillosis; Figure 2 displays the size of each set, Supplementary Table S2 lists the proteins 
in each set, and Supplementary Table S3 gives detailed annotations such as protein family, conserved domain, 
carbohydrate-binding modules and gene ontology (GO) terms for proteins in each set. Additionally, our pipeline 
provides a refined view of the protein sorting mechanisms in Aspergillus species by classifying secreted proteins 
into classical and non-classical pathway. In A. fumigatus, the predicted set of secreted and cell membrane pro-
teins contained 662 and 1129 proteins, respectively, representing 6.7% and 11.5% of the proteome. Among the 
662 proteins in A. fumigatus secretome, 64 were predicted to be secreted by a non-classical pathway. Figure 3 
shows the significantly enriched GO biological processes in the predicted secretome and cell membrane pro-
teins of A. fumigatus. Within the A. fumigatus secretome, 598 proteins sorted by classical pathway have GO 
annotations related to carbohydrate metabolism, proteolysis and cell wall modification, and 64 proteins secreted 
by a non-classical pathway have GO annotations related to carbohydrate metabolism, response to reactive oxy-
gen species (ROS), alcohol degradation and gliotoxin metabolism. Many of the GO processes annotated with 
A. fumigatus proteins secreted by non-classical pathway are associated with virulence. Especially, gliotoxin has 
immunosuppressive properties and is suspected to be an important virulence factor in Aspergillus pathogene-
sis76–79. This suggests that non-classical pathways may be important for the secretion of virulence factors in A. 
fumigatus.

Finally, we also performed an extensive search of the published literature in an attempt to locate experimental 
evidence from detailed low-throughput studies that may validate our predictions on cell membrane proteins 
in Aspergillus species from Branch B of our computational pipeline shown in Fig. 1. Through this exercise, we 
were able to find direct experimental evidence, typically, Green fluorescent protein (GFP) tagged experiments, 
for 17 predicted cell membrane proteins in Aspergillus species of which 3 are in A. fumigatus80,81, 13 in A. nidu-
lans82–94 and 1 in A. oryzae95 (Supplementary Table S4). These findings support predictions from the computa-
tional pipeline.

Small secreted and effector-like proteins.  Within the fungal secretome, small secreted proteins (SSPs) 
with sequence length less than 300 amino acids have been widely studied for their role in fungal-plant patho-
genesis20,21. A few of the SSPs have been found to act as effectors that play a central role in establishing plant 
infection22,23. Typically, fungal effector proteins do not share conserved domains which renders effector pre-
diction a challenge96,97. Still, fungal effectors often share certain sequence characteristics such as size, cysteine 
content, or small motifs identified in fungi and oomycetes96,97. A recent study98 compared the SSPs across eight 
Aspergillus species focusing on plant biomass degradation. However, the role of SSPs and effector-like proteins in 
fungal-human pathogenesis, including aspergillosis, remains largely unanswered99. Thus, we have identified SSPs 
and effector-like proteins within the secretomes of Aspergillus species to enable discovery of potential virulence 
proteins (Supplementary Table S5). Note that effector-like proteins of Aspergillus species were predicted based 
on EffectorP97 predictions or cysteine content of SSPs (Methods). We found that SSPs and effector-like proteins 
account for more than 30% and 10%, respectively, of the secretomes in Aspergillus species (Fig. 2). Specifically, 
96 effector-like proteins were predicted among 210 SSPs in the A. fumigatus secretome, of which, 44 do not have 
conserved Pfam domains and 4 contain one of the known fungal or oomycete effector motifs96, making them 
intriguing candidates for future virulence experiments.

Figure 2.  Number of proteins in the complete proteome, set of cell membrane proteins, set of secreted 
extracellular proteins, set of small secreted proteins (SSPs) and set of effector-like SSPs identified by our 
computational pipeline in Aspergillus species considered here.
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Upregulated secretome and cell membrane proteins in A. fumigatus during pathogenesis.  To 
place the identified secretome and cell membrane proteins of A. fumigatus within the context of aspergillosis, we 
overlaid a previously published gene expression dataset26. Significantly differentially expressed and upregulated 
genes coding for secreted and cell membrane proteins may suggest a vital path or key towards pathogenesis. Note 
that several gene expression studies in A. fumigatus have been published on various cell cultures. However, due 
to the difficulty in obtaining sufficient high-quality RNA directly from sites of infection, gene expression studies 
of A. fumigatus in live animal models are limited. Thus, we selected for our analysis a published microarray data-
set26 from a murine lung model which provided one of the first transcriptional snapshots of A. fumigatus during 
initiation of mammalian infection.

In this dataset26, A. fumigatus genes significantly upregulated over 2-fold during pathogenesis when compared 
to control conditions were selected for further analysis, totaling, 1264 proteins (12.9%) of the proteome. Within 
the predicted A. fumigatus secretome, 121 out of 662 proteins (18.3%) were upregulated over 2-fold during patho-
genesis, indicating that a larger fraction of secretome is employed during pathogenesis. Moreover, 113 out of the 
121 upregulated proteins in the A. fumigatus secretome are secreted via classical pathway and their GO analysis 
revealed involvement in carbohydrate metabolic processes and regulation of host immune response, while the 
remaining 8 are secreted via a non-classical pathway and their GO analysis revealed involvement in response 
to mycotoxin, synthesis of mycotoxin and gliotoxin, and response to oxidative stress apart from carbohydrate 
metabolic processes. Within the cell membrane proteins of A. fumigatus, 151 out of 1129 proteins (13.3%) were 
upregulated during pathogenesis, and GO analysis revealed that many of them are involved in transmembrane 
transport processes. Moreover, 45 SSPs in the A. fumigatus secretome, of which 21 have effector-like features, 
were upregulated over 2-fold during pathogenesis. For example, Afu3g14940 a predicted peptidase inhibitor I78 
family protein which has a known conserved effector motif ([KRHQSA][DENQ]EL) and Afu1g01210 with the 
adhesion fasciclin domain, are among the 21 effector-like SSPs with over 2-fold upregulation during pathogenesis.

Conservation of secretome across Aspergillus species.  The ability of multiple Aspergilli to switch into 
an opportunistic pathogen may be derived from conserved proteins. Conversely, species-specific proteins may 
explain the observed differences in virulence between Aspergilli. To determine the unique and conserved proteins 
across Aspergillus species, OrthoMCL100 was used to identify orthologs between the proteins of nine Aspergillus 
species. As A. ustus has an incomplete genome, it was omitted from this comparative analysis. Figure 4A–C dis-
play for each species the fraction of unique and conserved proteins within the complete proteome, cell membrane 
proteins and secretomes, respectively, across the nine Aspergillus species. In comparison to the cell membrane 
proteins, the secretomes of Aspergillus species have a larger set of unique proteins and a smaller set of conserved 

Figure 3.  Gene ontology (GO) enrichment analysis for (A) cell membrane proteins and (B) secreted 
extracellular proteins in A. fumigatus Af293. In each case, the top 10 significantly enriched biological processes 
are shown along with p-value computed using Benjamini-Hochberg procedure. The GO enrichment analysis 
was performed using FungiFun2147 webserver (Methods).
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proteins across the nine Aspergillus species. Interestingly, 3.6% of the secretome of A. fumigatus is unique, while 
27.3% and 26.9%, respectively, of the secretomes of A. niger and A. glaucus is unique, when compared across the 
nine Aspergillus species. Thus, the secretome of A. fumigatus has among the smallest fraction of unique proteins 
which is in contrast to its position as the most prevalent agent of aspergillosis. The unique and conserved proteins 
identified here across the secretomes of Aspergillus species could lead to a better understanding of the important 
players for virulence and provide potential targets for the development of broad spectrum antifungals.

Figure 4.  Conservation of (A) complete proteome, (B) the set of cell membrane proteins, and (C) the set of 
secreted extracellular proteins across the nine Aspergillus species considered here. The fraction of proteins 
that are unique to a specific Aspergillus species is shaded in orange at the bottom of the stacked bar chart while 
the fraction of proteins conserved across all nine Aspergillus species are shaded in dark violet at the top of the 
stacked bar chart.
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Comparison with the human proteome.  Ideally, antifungals should target fungi-specific proteins to 
prevent cross-toxicity with human proteins. In order to identify fungi-specific druggable targets, BLASTP with 
an E-value cut-off of ≤1e-3 was used to identify Aspergillus proteins without a close homolog in the human 
proteome. We find that more than 70% of the secretomes in Aspergillus species is unique, without a homolog in 
humans (Fig. 5). In contrast to the secretomes, the cell membrane fraction or whole proteome of Aspergillus spe-
cies have a much lower fraction of unique proteins without a homolog in humans (Fig. 5). Specifically, A. fumiga-
tus has 71% of its secretome and 52% of its cell membrane proteins without a homolog to humans, and this offers 
a significant candidate set that may be screened for druggability or biomarker design. The striking difference 
between conservation of whole proteome and secretome of Aspergillus species in humans can likely be attributed 
to the large presence of proteins associated with plant cell wall degradation101 in the Aspergillus secretomes.

Antigenicity of the secretome.  Protein vaccines have been proven successful for several invasive fungi102–104.  
For example, vaccination with the A. fumigatus allergen Aspf3 protected immunosuppressed mice from develop-
ing aspergillosis105. One measure of clinical importance is the number of potential antigenic regions on a protein. 
The more antigenic a protein the more likely it can be used as a biomarker, targeted for immunotherapy, or used 
in vaccinations. To help prioritize Aspergillus proteins, the Abundance of Antigenic Regions (AAR)24 value of 
proteins was calculated using two methods, Kolaskar-Tongaonkar106 and BepiPred 2.0107 (Methods). The lower 
the AAR value the more antigenic the protein24. Interestingly, in each Aspergillus species, the average AAR of the 
secretome is always significantly lower than cell membrane proteins (Fig. 6; Methods). Furthermore, the average 
AAR of the secretome and cell membrane proteins was also found to be significantly lower (p < 0.001) and signif-
icantly higher (p < 0.001), respectively, in comparison to the average AAR of randomly chosen, equally sized sets 
of proteins from the whole proteome (Methods). Note that similar observations on relative AAR of secretome and 
cell membrane proteins were also recently made in tapeworms, Taenia solium24 and Echinococcus multilocularis108,  
and in bacterium Mycobacterium tuberculosis109. Thus, secreted proteins are likely to be more antigenic than 
cell membrane proteins, and while choosing candidates for vaccine development, the secretome may provide a 
more antigenic landscape than cell membrane proteins. While a comparison of the AAR of secretome and cell 
membrane proteins in Aspergillus species provides insight on relative virulence within a proteome, no significant 
difference in the average AAR could be detected between A. fumigatus and the Aspergillus cohort.

Druggability analysis of A. fumigatus secretome and cell membrane proteins upregulated dur-
ing pathogenesis.  Beyond immune-therapy, biomarker, and vaccine development, drugs are often the main 
line of defence against aspergillosis. However, the current arsenal to combat aspergillosis is limited to 7 approved 
drugs. Furthermore, resistance to these few drugs is an ever-emerging threat14. Particularly, fungi are adept at 
developing resistance to drugs that act on intracellular proteins by pumping them back out into the extracellular 
matrix through efflux pumps. However, targeting of secreted proteins and cell membrane proteins could circum-
vent this specific defence mechanism altogether. To expedite the drug discovery pipeline, DrugBank25 provides 
a database of known drugs and their targets, many of which have been successfully repurposed against similar 
protein targets in different pathogens110.

Firstly, the list of 4063 known drug target proteins was compiled from DrugBank25. Secondly, the secreted and cell 
membrane proteins in Aspergillus species with no close human homologs based on BLASTP with an E-value cut-off of 
≤1e-3 were determined. Thereafter, secreted and cell membrane proteins in Aspergillus species with no close human 
homologs but with sequence similarity to known drug target proteins based on BLASTP E-value cut-off of ≤1e-5 were 
determined (Supplementary Table S6). In A. fumigatus, 50 secreted and 16 cell membrane proteins were found to have 
sequence similarity with known drug target proteins. Subsequently, we focused on upregulated genes in a transcrip-
tome dataset26 for A. fumigatus during pathogenesis to identify potential target proteins for drug repurposing.

In the transcriptome dataset26 for A. fumigatus, we found 97 secreted and 101 cell membrane proteins with 
no close human homologs to be significantly upregulated over 2-fold during pathogenesis. These 97 secreted and 
101 cell membrane proteins in A. fumigatus were searched against known target protein sequences for sequence 

Figure 5.  Fraction of the complete proteome, set of cell membrane proteins and set of secreted extracellular 
proteins in Aspergillus species without a close sequence homolog in human proteome.
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similarity to known drug targets. Seven secreted proteins, Afu7g06140, Afu8g01670, Afu2g15160, Afu5g14380, 
Afu6g09740, Afu3g00610 and Afu1g09900, of which three proteins, Afu8g01670, Afu6g09740 and Afu1g09900, 
are secreted via non-classical pathways, and one membrane protein, Afu6g03570, had a significant hit to known 
drug target proteins. After establishing the sequence similarity between A. fumigatus proteins and known drug 
target proteins, structural similarity was probed (Methods). Experimentally identified protein structure was avail-
able only for Afu6g09740, and it was downloaded from the protein data bank111 (PDB). Since a good-quality 
structure model was also unavailable for Afu2g15160, it was omitted from later analysis. For the remaining 
five secreted proteins and one cell membrane protein, structure models were obtained from ModBase112 and 
SWISS-MODEL repository113 and were subsequently checked for their quality (Methods). Thereafter, the com-
piled protein structures were compared to their DrugBank counterparts for structural similarity. Four secreted 
proteins, Afu5g14380, Afu8g01670, Afu1g09900 and Afu6g09740, had significant structural similarity with TM 
scores greater than 0.8 and root-mean-square deviation (RMSD) values lower than 3Å2 (Table 1; Methods). One 
of the proteins, Afu8g01670, is a putative bifunctional catalase-peroxidase which has been shown to be involved 
in virulence114. Afu5g14380 is an α-glucuronidase involved in the hydrolysis of xylan. Afu1g09900 is involved in 
degradation of arabinoxylan. Afu6g09740 is a thioredoxin reductase which is a part of the gene cluster involved 

Figure 6.  Distribution of Abundance of Antigenic Regions (AAR) values for the set of cell membrane proteins 
and secreted extracellular proteins in Aspergillus species considered here. AAR values were computed using two 
different methods: (A) Kolaskar-Tongaonkar106 method and (B) BepiPred 2.0107. In each box plot, the lower end 
of the box represents the first quartile, black line inside the box is the median, brown line is the mean and the 
upper end of the box represents the third quartile of the distribution. In this figure, we also report the p-value 
from the comparison of the distributions of AAR values in the set of cell membrane proteins and in the set of 
secreted proteins for each Aspergillus species performed using Wilcoxon rank-sum test.
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in biosynthesis of gliotoxin in A. fumigatus, and its knockout has been shown to affect the oxidation of gliotoxin 
and render the fungi hypersensitive to exogenous gliotoxin115. Afu6g09740 was also found to be immunogenic in 
humans and a potential biomarker of aspergillosis116.

Given the sequence and structural similarity of these four A. fumigatus proteins, Afu5g14380, Afu8g01670, 
Afu1g09900 and Afu6g09740, to known drug targets, the proteins were subsequently tested whether they could 
bind to their respective drugs (Table 2; Methods). The four proteins were analyzed for the presence of ligand 
binding pockets using metaPocket 2.0117. For each of the four proteins, the top three ligand binding pockets were 
tested for ligand binding affinity using AutoDock Vina118. Table 2 lists the four Aspergillus proteins, the corre-
sponding target proteins in DrugBank with both sequence and structural similarity, their reported approved or 
experimental drugs, and the binding affinity of each drug to the ligand pockets. Using AutoDock Vina118, it was 
found that most of the identified drug candidates have an affinity value of ≤−5.0 kcal/mol for their respective 
Aspergillus proteins which signifies good binding and suggests that the drugs may be able to bind to the upregu-
lated and secreted A. fumigatus proteins (Table 2; Methods). Further experimental validation of these hit mole-
cules is needed to verify whether the drug will act upon the A. fumigatus protein in the same fashion and whether 
the drug will have an impact upon the ability of A. fumigatus to cause aspergillosis.

Comparison of our prediction pipeline with earlier work.  We have designed here a computational predic-
tion pipeline to identify the secretome and cell membrane proteins in Aspergillus species, and the pipeline can be used 
for any fungi. To our knowledge, FSD16 and FunSecKB217 are the only databases on pan-fungi secretome prediction. 
While FSD and FunSecKB2 contain pre-computed secretome predictions for several fungal genomes, SECRETOOL18 
provides an online sever that enables implementation of a computational pipeline to predict secreted proteins among 
user-input protein sequences. In Supplementary Text and Supplementary Table S7, we report a detailed comparison of 
the secretome predictions from our pipeline with those from FSD, FunSecKB2 and SECRETOOL.

Based on this comparative analysis with FSD, FunSecKB2 and SECRETOOL, our pipeline has following addi-
tional features. Firstly, we incorporate available experimental information from high-throughput studies and 
UniProt on secreted proteins (Branch A in Fig. 1). Secondly, we incorporate and prioritize UniProt annotations 
with experimental evidence for presence of signal peptide, GPI anchor or TM domain in a protein sequence 
over bioinformatic prediction tools (Branch B in Fig. 1). Thirdly, we provide a sub-classification of the secreted 
extracellular proteins into those sorted by classical pathway and those transported via non-classical pathways. 
Fourthly, we have used an alternate approach whereby orthologs to secreted proteins with experimental evidence 
in other fungi is used to predict secretion via non-classical pathways (Branch C in Fig. 1). We remark that our 
pipeline predicts a much smaller set of secreted proteins via non-classical pathways (albeit with much higher 
confidence) in comparison to FSD which uses SecretomeP74,75, a tool designed for bacteria and mammals rather 
than fungi. Lastly, to our knowledge, this is the first study to perform a comparative analysis of both secreted and 
cell membrane proteins across Aspergillus species causing aspergillosis.

Conclusions
Aspergillosis is a serious concern among immune-compromised patients worldwide. Fungal secretome and cell mem-
brane proteins are often the first point of contact between fungal-host interactions, and thus are key factors in initiating 
infection or to mounting any defence against the disease. Thus, here, we report a comprehensive set of secreted and cell 
membrane proteins in Aspergillus fumigatus and nine other Aspergillus species that will serve as a valuable resource for 
understanding the pathogenesis of aspergillosis. We also identified protein cohorts that could be further screened and 
targeted for development of novel treatments. To summarize, we have firstly implemented a computational pipeline 
that integrates data from experiments and bioinformatic-based predictions to identify a comprehensive set of secreted 
and cell membrane proteins. Secondly, the identified secretome was analyzed for SSPs and effector-like SSPs for cor-
relating their role during pathogenesis. Thirdly, the antigenicity of the secretome and cell membrane proteins were 

Protein 
identifier Structure Source

PDB identifier 
of template used 
to create protein 
structure models

Log2 fold change 
in transcriptome

UniProt 
identifier of 
drug target 
protein

PDB identifier 
of drug target 
protein

TM 
score

RMSD 
(Å2)

Afu5g14380 SWISS-MODEL 1MQQ A 1.42 Q8VVD2 1L8N 0.98 0.19

Afu8g01670 SWISS-MODEL 5KSN A 2.34
Q939D2 5L05 0.99 0.28

P9WIE5 1SJ2 0.97 0.72

Afu1g09900 SWISS-MODEL 3S2C A 1.10 Q9XBQ3 1PZ3 0.91 0.99

Afu6g09740$ PDB (4NTC) NA 1.27 P66010 4GCM 0.86 2.68

Afu7g06140# SWISS-MODEL 3ZYZ A 7.16 P40406 3BMX 0.73 4.06

Afu6g03570# SWISS-MODEL 5FJJ A 1.30 P40406 3BMX 0.72 3.29

Afu3g00610# ModBase 1GAI A 1.19
P05618 1PAM 0.26 15.24

P26827 1CIU 0.25 19.25

Table 1.  Evaluation of the structural similarity of secreted and cell membrane proteins upregulated in the 
transcriptome of Aspergillus fumigatus Af293 with their close sequence homologs among known drug target 
proteins in DrugBank25. Note that the last three A. fumigatus proteins italicized in this table are not structurally 
similar to their close sequence homologs among known drug target proteins. $An experimentally solved crystal 
structure was available from PDB for this protein. #These three A. fumigatus proteins are not structurally similar 
to their close sequence homologs among known drug target proteins.
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computed to aid in understanding their role in inducing immune responses. Fourthly, the secreted and cell membrane 
proteins without homologs in humans were scanned for similarity with known drug target proteins in DrugBank to 
identify new druggable proteins. Lastly, a systematic representative drug repurposing analysis was performed in A. 
fumigatus responsible for overwhelming majority of the aspergillosis cases. Contextualization of an expression dataset 
for A. fumigatus within its secretome and cell membrane proteins led to identification of potential targets with over 
2-fold upregulation during pathogenesis, and similar to DrugBank target proteins based on both sequence-wise and 
structure-wise comparison, and able to dock with their respective drug. This led to identification of new potential drug 
candidates against aspergillosis from existing drugs. The identified secretome and cell membrane proteins in the ten 
Aspergillus species along with their sub-classification and functional annotations is also hosted at https://cb.imsc.res.in/
aspertome for convenient access and retrieval.

Methods
Protein sequences and associated annotations for Aspergillus species.  The proteomes of A. fumigatus 
Af293, A. niger CBS 513.88, A. terreus NIH2624, A. versicolor CBS 583.65, A. lentulus IFM 54703 T, A. nidulans FGSC 
A4, A. glaucus CBS 516.65 and A. oryzae RIB40 were retrieved from the Aspergillus genome database (AspGD119; http://
www.aspgd.org/). The proteomes of A. flavus NRRL3357 and A. ustus 3.3904 were retrieved from FungiDB120 (http://
fungidb.org/fungidb/) and Ensembl Genomes121 (http://ensemblgenomes.org/), respectively. Note that the A. ustus 
3.3904 genome sequence is still incomplete, and thus, its incomplete proteome was used here for predictions.

Experimentally identified secreted proteins.  We performed an extensive literature search to compile 
46 published high-throughput experimental studies27–73 which have characterized the secretome of 6 Aspergillus 
species studied here (Supplementary Table S1). Note that protein identifiers in these experimental studies for the 
reference strain or other strains of the same Aspergillus species were mapped to standard identifiers in the refer-
ence sequence using OrthoMCL100 (http://orthomcl.org/orthomcl/) with inflation option set at 1.5. In addition to 
high-throughput studies, experimentally verified secreted or cell membrane proteins in Aspergillus species were 
retrieved from UniProt19 (http://www.uniprot.org/) by filtering proteins with subcellular localization as extracel-
lular or cell membrane, respectively, with evidence code of ECO:0000269. Note that ECO:0000269 corresponds to 
manually curated information with published experimental evidence. Similarly, experimentally verified secreted 
proteins in all other fungal species were retrieved from UniProt19 by filtering proteins with subcellular localization 
as extracellular with evidence code of ECO:0000269. OrthoMCL100 with inflation option set at 1.5 was used to 
identify orthologs of experimentally verified secreted proteins in other fungi in Aspergillus species.

Bioinformatic-based predictions.  The following computational tools were employed to predict protein-based 
features in our secretome prediction pipeline. The presence of a signal peptide in the N-terminus was predicted using 
SignalP 4.1122 (http://www.cbs.dtu.dk/services/SignalP/) and Phobius123 (http://phobius.sbc.su.se/). The presence of 
GPI anchor was predicted using PredGPI124 (http://gpcr.biocomp.unibo.it/predgpi/) and big-PI125 (http://mendel.imp.
ac.at/gpi/fungi_server.html). The presence of TM domain was predicted using TMHMM 2.0126 (http://www.cbs.dtu.
dk/services/TMHMM/) and Phobius123. Note that TM domain predictions by TMHMM within the last 70 amino acid 
residues of the N-terminus of a protein sequence were not considered as the tool can sometimes predict signal peptides 
as false-positive TM domains. The presence of ER retention signal was predicted using PS SCAN127 with PROSITE 
(https://prosite.expasy.org/) pattern PS00014128. The subcellular localization of proteins was predicted using WoLF 
PSORT 0.2129 (https://psort.hgc.jp/), TargetP 1.1130 (http://www.cbs.dtu.dk/services/TargetP/) and ProtComp 9131 
(http://www.softberry.com/berry.phtml?topic=protcomp&group=help&subgroup=proloc). Importantly, UniProt19 
annotations with published experimental evidence (ECO:0000269) for the protein-based features were also retrieved 
for Aspergillus proteins. UniProt identifiers for Aspergillus proteins were mapped to reference sequence identifiers using 
pre-existing maps from AspGD119, UniProt19, and in-house python scripts.

Protein 
identifier

Protein identifier 
of drug target 
protein

Drug 
identifier in 
DrugBank Drug name Drug class

Mean binding affinity (kcal/mol)

First pocket Second pocket Third pocket

Afu8g01670
P9WIE5

DB00609 Ethionamide Approved −5.9 ± 0.0 −5.9 ± 0.0 −5 ± 0.0

DB00951 Isoniazid Approved −5.53 ± 0.015 −5.91 ± 0.01 −5.3 ± 0.0

Q939D2 DB08638 2-Amino-3-(1-hydroperoxy-1H-indol-3-yl)propan-1-ol Experimental −7.6 ± 0.033 −7.6 ± 0.0 −5.87 ± 0.015

Afu5g14380 Q8VVD2

DB03156 D-Glucuronic Acid Experimental −5.1 ± 0.0 −6.5 ± 0.0 −5.6 ± 0.0

DB04303 4-O-methyl-alpha-D-glucuronic acid Experimental −5 ± 0.0 −6.3 ± 0.0 −5.3 ± 0.0

DB02722 4-O-methyl-beta-D-glucuronic acid Experimental −5 ± 0.0 −5.8 ± 0.0 −5.11 ± 0.01

Afu6g09740 P66010 DB00548 Azelaic Acid Approved −5.53 ± 0.026 −5.52 ± 0.065 −5.21 ± 0.031

Afu1g09900 Q9XBQ3
DB03196 4-Nitrophenyl-Ara Experimental −6.3 ± 0.0 −6 ± 0.0 −5.54 ± 0.031

DB03870 Ara-Alpha(1,3)-Xyl Experimental −5.51 ± 0.023 −5.54 ± 0.016 −5.62 ± 0.029

Table 2.  Binding affinity of potential drugs against predicted pockets of the four candidate proteins in 
Aspergillus fumigatus. Note that the drug candidates were identified based on sequence and structural similarity 
of the four upregulated proteins in A. fumigatus with known drug target proteins in DrugBank25 database. The 
ligand binding pockets were predicted using metaPocket 2.0117 webserver and binding affinities of drugs to 
proteins were computed using AutoDock Vina118 (Methods).
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While combining information from different sources to decide on the presence of signal peptide or GPI 
anchor or TM domain, a decision is made based on tool predictions using an inclusive rule if UniProt anno-
tation is not available, else decision is made only on UniProt annotation by overriding tool predictions. While 
combining information from different sources to decide on subcellular localization, the decision is made based 
on tool predictions using a majority rule if UniProt annotation is not available, else decision is made only on 
UniProt annotation by overriding tool predictions. Thus, our pipeline gives precedence to published experimen-
tal evidence over bioinformatic-based predictions. Supplementary Table S2 contains tool-based predictions and 
UniProt annotations for secreted and cell membrane proteins in Aspergillus species.

Note that the computational tools used in our secretome prediction pipeline have been widely-used in the 
scientific literature. Sperschneider et al.132 have evaluated five bioinformatic tools employed here for predictions 
in fungi, and have found the sensitivity and specificity of SignalP 4.1122 to be 94.9% and 99.7%, respectively, of 
Phobius123 to be 95.4% and 98.7%, respectively, of WoLF PSORT 0.2129 to be 88% and 99.8%, respectively, of 
TargetP 1.1130 to be 95.1% and 98.3%, respectively, and of ProtComp 9131 to be 63.3% and 97.2%, respectively. In 
addition, Pierleoni et al.124 found the sensitivity and specificity of PredGPI124 to be 77.2% and 99.9%, respectively, 
and of big-PI125 to be 54.5% and 99.7%, respectively. Note that sensitivity measures the fraction of true positive 
predictions while specificity measures the fraction of true negative predictions.

Functional annotation of secreted proteins.  The predicted secretomes in Aspergillus species 
were annotated with information on protein family from Pfam133 database (http://pfam.xfam.org/) and 
carbohydrate-binding modules from CAZy134 (http://www.cazy.org/)134 and dbCAN v5.0135 (http://csbl.bmb.
uga.edu/dbCAN/) databases using hmmpress and hmmscan utilities in HMMER3 (http://hmmer.org/) with 
profile-specific GA (gathering) thresholds. Furthermore, the predicted secretomes in Aspergillus species were 
annotated with protein family and domain information from TIGRFAM136 (http://www.jcvi.org/cgi-bin/
tigrfams/index.cgi), SFLD137 (http://sfld.rbvi.ucsf.edu/django/), SMART138 (http://smart.embl-heidelberg.
de/), CDD139(https://www.ncbi.nlm.nih.gov/cdd), PROSITE128, SUPERFAMILY140 (http://supfam.org/
SUPERFAMILY/), PRINTS141 (http://130.88.97.239/PRINTS/index.php), PANTHER142 (http://www.pant-
herdb.org/), COILS143 (https://embnet.vital-it.ch/software/COILS_form.html) and MobiDB-lite144 (http://pro-
tein.bio.unipd.it/mobidblite/) accessed through InterPro version 64.0 (https://www.ebi.ac.uk/interpro/) using 
InterProScan 5145,146. In addition, the secreted proteins in Aspergillus species were annotated with GO terms using 
FungiFun2147 (https://elbe.hki-jena.de/fungifun/fungifun.php). Supplementary Table S3 contains detailed anno-
tations for secreted and cell membrane proteins in Aspergillus species.

Identification of small secreted and effector-like proteins.  In the predicted secretomes of Aspergillus 
species, SSPs were defined as those with sequence length less than or equal to 300 amino acid residues21,98,148. 
The SSPs were then evaluated for effector-like properties based on their EffectorP97 (http://effectorp.csiro.au/) 
predictions or cysteine-richness. For identifying effector-like SSPs, cysteine-rich sequences are those which con-
tain at least 4 cysteine residues and have greater than 5% of their total amino acid residues as cysteines20,149. The 
predicted SSPs in the secretomes of Aspergillus species were also scanned for known fungal or oomycetes effector 
motifs96 (DEER, RXLR, RXLX[EDQ], [KRHQSA][DENQ]EL, [YW]XC and RSIVEQD) using the FIMO package 
in MEME program suite150 with E-value cut-off of ≤1e-4 (Supplementary Table S5).

Antigenicity of secreted proteins.  Antigenic regions in Aspergillus proteins were predicted using 
Kolaskar-Tongaonkar106 method implemented in EMBOSS package151 with a threshold of 1.0 and BepiPred 2.0107 
(http://www.cbs.dtu.dk/services/BepiPred/index.php) with the default threshold of 0.5. Note that only predicted anti-
genic regions with a length ≥6 amino acids were accounted in the later analysis. For each protein in Aspergillus species, 
the AAR value was computed following the method proposed by Gomez et al.24. The AAR value of a given protein is 
computed by dividing the length of its amino acid sequence by the number of predicted antigenic regions. The average 
AAR value was computed for the set of secreted and cell membrane proteins, respectively, in each of the Aspergillus 
species considered here (Fig. 6). To test whether the computed average AAR values for the set of secreted and cell 
membrane proteins, respectively, were significantly different from the average AAR value for the whole proteome of 
the same species, a p-value was computed by comparing against the average AAR values for 1000 equally-sized sets of 
randomly drawn proteins from the complete proteome of the organism. To test whether the average AAR value for the 
set of secreted proteins is significantly different from that of the set of cell membrane proteins of an Aspergillus species, 
Wilcoxon rank-sum test was performed to compare the two sets of different sizes (Fig. 6).

Identification of candidate drug targets in secreted proteins.  A microarray dataset for A. fumigatus 
Af293 from infected murine lungs26 was obtained from Array Express (Accession number E-TABM-327). The 
microarray dataset from infected murine lungs26 gave a reliable signal for 9121 genes in A. fumigatus Af293 which 
covers more than 90% of the secretome and 88% of the cell membrane proteins in the fungus. Gene expression 
data26 for A. fumigatus Af293 was next analyzed within the context of the predicted secreted and cell mem-
brane proteins to identify differentially expressed proteins with over 2-fold upregulation in each fraction during 
pathogenesis for further analysis. Thereafter, secreted and cell membrane proteins in A. fumigatus Af293 with 
over 2-fold upregulation during pathogenesis and sequence similarity with known drug target proteins from 
DrugBank25 database were identified using BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with E-value 
cut-off of ≤1e-5 (as specified by DrugBank database).

To further ascertain the similarity between the filtered set of A. fumigatus proteins in secretome and cell mem-
brane fraction with over 2-fold upregulation during pathogenesis and with sequence similarity with known drug tar-
get proteins from DrugBank25, the structural similarity between filtered proteins and their sequence-based homologs 
among known drug targets was assessed. Structure of proteins from x-ray diffraction experiments were retrieved 
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from PDB111 (https://www.rcsb.org/pdb/home/home.do). However, experimentally identified protein structures 
are not available for most of the filtered set of secreted and cell membrane proteins in A. fumigatus Af293, and in 
such cases, the protein structure models from ModBase112 (https://modbase.compbio.ucsf.edu/modbase-cgi/index.
cgi) and SWISS-MODEL repository113 (https://swissmodel.expasy.org/repository) were used to evaluate structural 
similarity. Note that only protein structure models which have more than 40% sequence identity with the template 
used to generate the corresponding structure models were selected for subsequent analysis. Further the selected 
protein structure models were checked for their quality using Verify3D152 (http://servicesn.mbi.ucla.edu/Verify3D/) 
and PROCHECK153 (http://servicesn.mbi.ucla.edu/PROCHECK/) (Supplementary Table S8). Thus, good quality 
structure models of filtered proteins in A. fumigatus Af293 were compared to the structure of their corresponding 
sequence-based homolog among the known drug target proteins in DrugBank25 based on TM score computed 
using TM Align154 (https://zhanglab.ccmb.med.umich.edu/TM-align/) and root-mean-square deviation (RMSD) 
value between locally aligned atoms computed using PyMOL (The PyMOL Molecular Graphics System, Version 
1.8 Schrödinger, LLC). Filtered proteins in A. fumigatus Af293 with significant structural similarity to known drug 
target proteins were subsequently tested for binding by the respective drug using molecular protein-ligand docking. 
Molecular docking is a widely used computational approach in structure-based drug design which predicts with 
substantial accuracy the plausible binding poses and binding affinity of a ligand to the binding site in the target pro-
tein of interest155. Here we employ AutoDock Vina to perform rigid docking wherein the target protein of interest is 
kept rigid while the ligand is flexible. The flexibility of the ligand is determined by torsion tree built while the ligand 
is prepared for molecular docking using the prepare_ligand4.py script from AutoDockTools156.

Firstly, three ligand binding pockets for each filtered protein in A. fumigatus Af293 were predicted using meta-
Pocket 2.0117 (http://projects.biotec.tu-dresden.de/metapocket/). Secondly, for docking drugs to the predicted pro-
tein pockets, both protein and drug molecule were prepared by adding explicit hydrogen atoms and cleaned up using 
python scripts from AutoDockTools156, prepare_receptor4.py and prepare_ligand4.py respectively, with the default 
options. Finally, AutoDock Vina118 (http://vina.scripps.edu/) was used for docking the drug against the predicted 
pockets in proteins with the option for exhaustiveness set at 24 to obtain consistent results157. The binding affinity 
results obtained by docking drugs to the protein pockets from AutoDock Vina118 were tabulated (Table 2). We would 
like to note that the docking protocol implemented here is capable of predicting with substantial accuracy the plausi-
ble docked poses with their binding affinities reported against the ligand. However, the docking protocol and chosen 
software have their limitations such as the target protein is kept rigid during our computations and protein structure 
models are used whenever experimental structures for target proteins are unavailable.

Data availability.  All data generated or analyzed during this study is included in this article and its supple-
mentary information.
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