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Abstract. Gout is a heterogeneous disease caused by the 
deposition of monosodium urate crystals in joints, but its 
pathogenesis is currently poorly understood. The discovery 
of novel biomarkers is necessary for the early detection and 
diagnosis of gout. The present study aimed to characterize the 
metabolic profile of patients with gout using metabolomics, 
and to uncover the underlying pathological mechanisms 
leading to gout development. Serum samples were collected 
from 49 healthy participants and 47 patients with gout. Using 
ultra‑high‑performance liquid chromatography Orbitrap 
Exploris mass spectrometer non‑target metabolomics 
technology, with a variable importance in the projection >1 
and a false discovery rate adjusted P<0.05 was used, while 
a biomarker panel was screened using receiver operating 
characteristic (ROC) analysis. The potential differentially 
expressed markers related to gout were identified by ROC 
analysis, and the erythrocyte sedimentation rate, uric acid, 
alanine transaminase, aspartate aminotransferase, creatinine, 
triglyceride, total cholesterol, high‑density lipoprotein and 
low‑density lipoprotein levels were significantly different in 

the group of patients with gout compared with those in healthy 
individuals. A total of 186 differentially expressed metabolites 
were identified, with 156 differential metabolites upregulated 
and 30 downregulated in the patients with gout compared 
with healthy individuals. Pathway analysis demonstrated that 
D‑glutamine and D‑glutamate metabolism may serve key 
roles in gout. Compared with healthy people, the indolelactic 
acid (ILA) level of patients with gout was significantly higher. 
ILA may serve as a potential biomarker for the diagnosis of 
gout and could be used to detect or predict gout progression 
in the future.

Introduction

Gout is a chronic inflammatory disease caused by monosodium 
urate (MSU) crystal deposition. The clinical manifestations 
of gout are paroxysmal single joint synovitis, severe pain, 
swelling and fever, but these symptoms are self‑limiting (1). 
Although acute gout symptoms may subside within a few 
days, the long‑term deposition of MSU crystals can lead to the 
formation of tophi, leading to bone destruction (2).

Epidemiological surveys report that the prevalence of 
gout among all age groups in the United States was 3.9% 
from 2007‑2016 (3). The prevalence of gout in Australia 
in 2015 was 6.8% (4) and 3.8% in Canada in 2012 (5). 
The prevalence of gout in South Korea increased over 
2007‑2015 from 0.35‑0.76% and is expected to reach 1.66% 
by 2025 (6). In China, the prevalence of gout is 1.1%, and 
the prevalence of gout in men (1.5%) is higher than that in 
women (0.9%) (7). Measurement of serum urate levels can 
be used for the clinical diagnosis of gout in symptomatic 
individuals, but this may not be feasible, as certain patients 
with hyperuricemia do not have gout, since the increase of 
blood uric acid level may not necessarily lead to gout, but 
hyperuricemia is the most important biochemical basis of 
gout, and urate crystal deposition is the result of hyperuri‑
cemia; therefore, more reliable biomarkers are needed to 
improve the diagnosis of gout.

Gout is a metabolic disease associated with a perma‑
nent imbalance of certain metabolites (8). Non‑targeted 
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metabolomics is the hypothesis‑generating, global unbiased 
analysis of all small‑molecule metabolites present within 
a biological system, under a given set of conditions (9). 
Liquid chromatography‑mass spectrometry (LC‑MS) is the 
main technical platform used for metabolic analysis (10). 
Metabolomics has been used in disease diagnosis and detec‑
tion, and it is important for the early diagnosis and treatment 
of disease (11,12). Therefore, there is an urgent need to use 
metabolomics to identify novel biomarkers related to the 
occurrence and development of gout to prevent acute attacks 
and joint destruction in patients with gouty arthritis.

A number of studies have reported metabolic differences 
between patients with gout and healthy subjects and have 
shown that amino acid metabolism is important for regulating 
serum uric acid (UA) levels (13,14). In the pathogenesis of 
gout, a large number of amino acids are consumed, and among 
19 amino acids, the levels of 10 amino acids (alanine, glycine, 
isoleucine, leucine, methionine, phenylalanine, proline, 
serine, tryptophan, valine) differed significantly in one study, 
which suggests that amino acids may serve an important role 
in gout pathogenesis (14). The purine metabolic pathway 
is also closely related to the occurrence of gout. UA is the 
final product of purine metabolism. When purine nucleo‑
tide synthesis is disrupted, the serum concentration of UA 
increases (15). Furthermore, urate crystals are formed, causing 
gouty inflammation (16).

To date, the systematic analysis of nontargeted metabolo‑
mics features to determine potential biomarkers for predicting 
or diagnosing gout in human cohorts has not commonly been 
performed. The present study objectives were as follows: 
i) To explore serum metabolic changes in patients with gout 
and healthy subjects and capture metabolic changes associ‑
ated with gout progression; ii) to screen potential metabolic 
biomarker groups in patients with gout; and iii) to screen 
potential pathways for the treatment of gout.

Materials and methods

Participants and study design. A total of 47 patients 
with gout who met the classification criteria approved by 
The European League Against Rheumatism Executive 
Committee and from the outpatient ward of the Affiliated 
Hospital of Nanjing University of Traditional Chinese 
Medicine (Nanjing, China) from June 2020 to January 
2023 (17). A total of 49 healthy volunteers without rheu‑
matic diseases, were recruited from the Health Counseling 
and Physical Examination Center of the Affiliated Hospital 
of Nanjing University of Traditional Chinese Medicine at 
the same time. The patients with gout and healthy subjects 
were randomly assigned to the discovery set (34 healthy 
individuals and 32 patients with gout) and the validation 
set (15 healthy individuals and 15 patients with gout), 
respectively, at a 7:3 ratio based on previously published 
literature (18,19). The present study was approved by the 
Ethics Committee of the Affiliated Hospital of Nanjing 
University of Traditional Chinese Medicine (approval 
no. 2019NL‑129‑02; Nanjing). Written informed consent 
was obtained from the participants, who abided by the 
principle of privacy protection. The patients with gout and 
the healthy individuals were aged 18‑70 years, were male 

or female, did not suffer from other rheumatic diseases 
and had not used long‑term drugs or treatments, such as 
anti‑inflammatory drugs, for 3 months. LC‑MS/MS tech‑
nology was used to analyze the peripheral blood of the two 
groups of patients and potential differential markers related 
to gout were identified (Fig. 1). Logistic regression and 
receiver operating characteristic (ROC) analyses were used. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
MetaboAnalyst databases (https://www.metaboanalyst.ca/)  
were used to analyze the pathways associated with the 
differentially expressed metabolites and identify the 
metabolic pathways of patients with gout.

Sample preparation and metabolomics profiling. A Vanquish 
ultrahigh‑performance liquid chromatograph (Thermo Fisher 
Scientific, Inc.) was used to separate the target compounds 
using a Waters ACQUITY UPLC HSS T3 (2.1x100 mm; 
1.8 µm) liquid chromatography column. The Orbitrap 
Exploris 120 mass spectrometer, which can perform primary 
and secondary mass spectrometry data acquisition, was also 
used (Xcalibur; version 4.4; Thermo Fisher Scientific, Inc.). 
LC‑MS/MS analyses were performed using an UHPLC 
system (Vanquish; Thermo Fisher Scientific, Inc.) with a 
UPLC HSS T3 column (2.1x100 mm; 1.8 µm) coupled to 
an Orbitrap Exploris 120 mass spectrometer (Orbitrap MS; 
Thermo Fisher Scientific, Inc.). The mobile phase consisted 
of 5 mmol/l acetate and 5 mmol/l acetic acid in water (A) 
and acetonitrile (B). The auto‑sampler temperature was 4˚C, 
and the injection volume was 2 µl. The Orbitrap Exploris 120 
mass spectrometer was used for its ability to acquire MS/MS 
spectra on information‑dependent acquisition mode in the 
control of the acquisition software (Xcalibur; Thermo Fisher 
Scientific, Inc.). In this mode, the acquisition software contin‑
uously evaluates the full scan MS spectrum. The ESI source 
conditions were set as following: Sheath gas flow rate, 50 Arb; 
Aux gas flow rate, 15 Arb; capillary temperature, 320˚C; full 
MS resolution, 60,000; MS/MS resolution, 15,000; collision 
energy, 10/30/60 in NCE mode; and spray voltage, 3.8 kV 
(positive) or ‑3.4 kV (negative).

Data processing and normalization. After the original data 
were converted into the mzXML format using ProteoWizard 
(http://www.proteowizard.org/index.html), the peak recogni‑
tion, peak extraction, peak alignment and integrals were 
processed using the self‑written R package (Kernel XCMS). 
To reduce the influence of detection system errors on the 
results and ensure that the results better highlighted the 
biological significance, a series of data management steps 
were performed using the original data. This approach 
included the following steps: i) Deviation value filtering 
where a single peak was filtered to remove the noise and the 
deviation values were filtered based on the relative standard 
deviation and coefficient of variation; ii) missing value 
filtering where a single peak was filtered and only peak area 
data with a single set of null values ≤50% or all group null 
values ≤50% were retained; iii) missing value filling where 
the missing values in the original data were simulated and 
the numerical simulation method filled half of the minimum 
value; and iv) data normalization where a mixed isotope 
internal standard [succinic acid‑2,2,3,3‑d4,L‑leucine‑5,5,5‑d3, 
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(RING‑2H5)‑L‑phenylalanine,2‑chloro‑L‑phenylalanine] was 
used for normalization.

Statistical analysis. The significance of each metabolite 
was analyzed using the Mann‑Whitney Wilcoxon test and 
the false discovery rate (FDR) was used for data correction. 
P<0.05 was considered to indicate a statistically significant 
difference. Then, the standardized data were imported into 
SIMCA‑P (version 14.1; Sweden Umetrics) for principal 
component analysis (PCA) to observe the aggregation of 
samples. Orthogonal partial least squares discriminant anal‑
ysis (OPLS‑DA) was further used to assess the difference 
between the patients with gout and the healthy control group. 
The processed data were subjected to MetaboAnalyst (version 
5.0; http://www.metaboanalyst.ca/). All data in this article 
were analyzed by one‑way ANOVA using GraphPad Prism 
(version 9.5.1; Dotmatics), followed by ROC and correlation 
analysis. Correlation analysis and mapping were performed 
using SPSS (version 27.0; IBM Corp.) and Origin (version 
2022; OriginLab Corporation). Endogenous biomarkers 
were identified using the Human Metabolomics Database 
(http://www.hmdb.ca/). KEGG (http://www.genome.jp/) and 
metabolic analysis were used to identify related metabolic 
pathways.

Results

Clinical characteristics of the enrolled participants. Patient 
age, C‑reactive protein, erythrocyte sedimentation rate, uric 
acid, alanine transaminase, aspartate aminotransferase, creati‑
nine, triglycerides, total cholesterol and low‑density lipoprotein 
(LDL) cholesterol were significantly increased in the patients 
with gout compared with those in the healthy control group, 
while high‑density lipoprotein cholesterol was decreased. 
The changes in total protein, albumin and globulin were not 
statistically significant (Table I). Although subjects with other 

metabolic diseases were excluded to minimize confounding 
factors, the aforementioned differences still existed, indicating 
that these indicators may change during the onset of gout.

Nontargeted metabolomics study for healthy subjects and 
patients with gout. Nontargeted metabolomics analysis was 
performed using an LC‑MS/MS system quadrupole‑elec‑
trostatic field orbital trap Orbitrap mass spectrometer, and 
26,854 peaks were detected in positive and negative ioniza‑
tion modes. After data collation and standardization, 991 
metabolites were identified. Through the Mann‑Whitney 
Wilcoxon test combined with FDR correlation analysis, 
295/991 compounds showed significant differences in 
metabolic characteristics. Of these compounds, 207 were 
significantly more abundant in patients with gout compared 
with healthy subjects, while 88 of these compounds were 
significantly less abundant (Fig. 2). Unsupervised PCA was 
used to compare the metabolic profiles between patients with 
gout and healthy individuals to assess the difference between 
the two groups of patients, and then OPLS‑DA was used to 
demonstrate that there was a significant overall separation 
between patients with gout and healthy individuals. The 
PCA plot indicated that there was a significant metabolic 
difference between patients with gout and healthy subjects 
at the molecular level (Fig. 3A). The cumulative R2Y and 
Q2 of the discovery set were 0.962 and 0.801, respectively 
(Fig. 3B), which also indicated that there was a significant 
metabolic difference, consistent with the results shown in 
the PCA plot. The OPLS model was verified using a permu‑
tation test. These results demonstrated that the Y intercept of 
R2 was 0.803 and the Y intercept of Q2 was 0.391 (Fig. 3C), 
which indicated that the model significantly differed 
between patients with gout and healthy subjects, and was 
reliable. The difference between the group of patients with 
gout and the healthy group was also obvious and the model 
was more reliable in the validation set than the discovery set 
(Fig. 3D‑F). These observations were used to further explore 
metabolites that could potentially be used to identify the 
development of gout.

According to the parameters of VIP ≥1.0, P<0.05 and 
adjusted P≤0.05, 186 differentially expressed metabolites 
were identified (Table SI). A visual cluster analysis of the 186 
differentially expressed metabolites was performed using a 
heatmap and the top 20 differentially expressed metabolites 
were selected for further analysis. The metabolites which 
were significantly different between the group of patients with 
gout compared with the healthy control group were separated 
according to the heatmap, which provided a visual display of 
the overall distribution of metabolic differences between the 
groups (Fig. 4A).

Biomarker panel for the diagnosis of patients with gout 
compared with healthy. participants. The group of biomarkers 
for the diagnosis of patients with gout were screened 
according to the area under the ROC curve (AUC). The top 
10 endogenous metabolites with the highest diagnostic rates 
were UA, L‑glutamic acid, benzaldehyde, indolelactic acid 
(ILA), 2‑methylbutyroylcarnitine and 2‑hydroxy‑3‑methyl‑
butyric acid, D‑glutamic acid, isobutyrylglycine, eugenol and 
3‑(3,4,5‑trimethoxyphenyl)propanoic acid, which had AUC 

Figure 1. Study schematic of the analysis of biomarkers in patients with 
gout and healthy subjects. PCA, principal component analysis; OPLS‑DA, 
discriminative orthogonal projection to latent structure‑discriminant 
analysis; ROC, receiver operating characteristic.
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values of 0.9511, 0.9467, 0.9422, 0.9378, 0.9289, 0.9244, 
0.9156, 0.9156, 0.9067 and 0.9022, respectively (Fig. S1). 
Among these biomarkers, ILA could be used to successfully 
distinguish between the patients with gout and the healthy 
group when used as a diagnostic marker. The AUC value in 
the discovery set reached 0.9378, the sensitivity was 86.67%, 
the specificity was 86.67% and the 95% CI was 0.8580‑1.000 
(Fig. 4B).

Biomarker correlation analysis. Spearman correlation 
analysis was performed between the top 10 differentially 
abundant metabolites and clinical indicators revealed that 
triglycerides, creatinine, cholesterol, LDL‑cholesterol and 
UA were significantly correlated with differentially abundant 
metabolites. Among the metabolites, L‑glutamic acid and 
D‑glutamic acid were the most related to clinical indicators. 
The correlations of UA, ILA, 2‑methylbutyroylcarnitine 

and 2‑hydroxy‑3‑methylbutyric acid were also positive, 
followed by benzaldehyde, isobutyrylglycine, eugenol and 
3‑(3,4,5‑trimethoxyphenyl)propanoic acid (Fig. 4C). A 
correlation heatmap was produced to represent the different 
markers between patients with gout and healthy individuals 
(Fig. 4D). Each small square represented the correlation 
coefficient between the metabolites and the red color repre‑
sented a positive correlation, whereas blue represented a 
negative correlation. The darker the color, the more related 
the compound is to gout. The correlations between the 10 
endogenous compounds demonstrated that the levels of ILA 
and the other nine metabolic compounds were closely related 
and significant.

Pathway analysis. Pathway enrichment analysis demonstrated 
that the aforementioned metabolites were involved in 29 
metabolic pathways. The identified metabolites were signifi‑
cantly enriched in pathways such as the malate‑aspartate 
shuttle, beta‑alanine metabolism and aspartate metabolism 
(Fig. S2). Pathway bubble diagram analysis demonstrated that 
six pathways, namely, histidine metabolism, D‑glutamine and 
D‑glutamate metabolism, alanine, aspartate and glutamate 
metabolism, steroid hormone biosynthesis, glycerophospho‑
lipid metabolism and arginine biosynthesis, were significantly 
differentially expressed between the patients with gout and 
the healthy group. Among these pathways, D‑glutamine and 
D‑glutamate metabolism were identified as the key nodes 
(Fig. 5).

Discussion

According to the results of the present study, UA was demon‑
strated to be the metabolite with the highest AUC, which 
suggested that UA may have the potential to distinguish 
patients with gout compared with healthy individuals, a 

Table I. Baseline clinical characteristics of patients with gout compared with healthy subjects.

Clinical characteristic Healthy subjects (n=49) Patients with gout (n=23‑47)

Age, years 36.22 (8.73; 24.00, 60.00) 44.85 (15.49; 18.0, 72.00)a,b

C‑reactive protein, mg/l 2.59 (1.98; 1.00, 11.40) 20.45 (29.67; 1.80, 138.00)c,d

Erythrocyte sedimentation rate, mm/60 min 10.43 (9.92; 2, 47) 25.79 (24.71; 2.00, 103.00)c,e

Uric acid, µmol/l 296.39 (68.18; 186.00, 438.00) 549.81 (126.55; 303.00, 812.00)b,c

Alanine aminotransferase, U/l 15.61 (5.34; 8.00, 29.00) 36.29 (29.47; 7.00, 144.00)c,f

Aspartate aminotransferase, U/l 16.47 (2.72; 11.00, 25.00) 23.47 (13.50; 9.00, 75.00)c,f

Total protein, g/l 73.44 (3.32; 66.87, 82.52) 70.75 (10.62; 11.86, 86.62)f

Albumin, g/l 47.18 (2.63; 42.70, 53.40) 46.38 (4.94; 29.20, 55.00)f

Globulin, g/l 26.40 (2.86; 19.30, 31.80) 26.61 (5.73; 19.00, 55.40)f

Creatinine, µmol/l 67.80 (14.37; 48.60, 106.20) 93.84 (27.56; 60.50, 235.50)c,d

Triglyceride, mmol/l 1.04 (0.44; 0.48, 2.24) 1.89 (0.92; 0.94, 4.59)c,g

Total cholesterol, mmol/l 4.40 (0.44; 3.39, 5.65) 5.00 (0.90; 3.45, 6.63)c,h

High‑density lipoprotein, mmol/l 1.56 (0.24; 1.02, 2.07) 1.26 (0.30; 0.72, 1.86)c,i

Low‑density lipoprotein, mmol/l 2.40 (0.33; 1.76, 3.36) 3.10 (0.68; 2.05, 4.69)c,i

Data are expressed as the mean (standard deviation; minimum, maximum). aP<0.01. b(n=47). cP<0.001 vs. healthy subjects. d(n=44). e(n=43). 
f(n=45). g(n=24). h(n=23). i(n=25).

Figure 2. Cloud plot of all data. A total of 295 metabolites with P<0.05 
and 696 features with P>0.05 were identified, of which 207 metabolites 
in patients with gout showed significantly increased expression compared 
with those of healthy subjects, while 88 metabolites showed significantly 
decreased expression in patients with gout compared with healthy subjects. 
FDR, false discovery rate; FC, fold change.
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Figure 3. Liquid chromatography‑mass spectrometry‑based nontargeted metabolomics for comparison of healthy subjects with patients with gout in the 
discovery and validation datasets. (A) PCA and (B) OPLS‑DA score plot of healthy subjects compared with patients with gout in the discovery set. (C) A total 
of 200 permutation tests were performed on the discovery set. (D) PCA and (E) OPLS‑DA score plots of healthy subjects with patients with gout in the valida‑
tion set. (F) A total of 200 permutation tests were performed on the validation set. PCA, principal component analysis; OPLS‑DA, discriminative orthogonal 
projection to latent structure‑discriminant analysis. G, gout group; C, healthy group; R2X, the cumulative interpretation rate of the model to the X matrix 
(the square of the percentage of the original data information retained in the X‑axis direction); R2Y, the cumulative interpretation rate of the model to the Y 
matrix (the square of the percentage of the original data information retained in the Y‑axis direction); Q2, the cumulative prediction ability of the model; t[1], 
the first coordinate axis, which represents the change interval of new variables obtained by some transformation of multiple variables in the original data; t[2], 
the second coordinate axis represents the change interval of the second new variable obtained by some transformation of multiple variables in the original data; 
Cum, the cumulative results of several principal components.

Figure 4. A total of 186 differentially expressed metabolites were analyzed in patients with gout compared with healthy subjects. (A) A total of 25 of the 
first differentially expressed metabolites with good performance were screened using a heatmap. (B) Area under the receiver operating characteristic curve 
comparing asymptomatic gout patients and healthy subjects using indolelactic acid in the validation set. (C) Correlation analysis between the top 10 differ‑
ential endogenous metabolites and clinical characteristic indexes. (D) Correlation analysis heatmap of differentially expressed endogenous metabolites. Red 
represented a positive correlation and blue represented a negative correlation. *P<0.05, **P<0.01, ***P<0.001. AUC, area under the curve.
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finding which has been previously reported (20). However, 
considering the recurrence and irregularity of gout, UA is 
not sufficient as a single differential marker for the clinical 
diagnosis of gout.

The differentially abundant metabolite with an AUC 
second to that of UA was L‑glutamic acid. Mahbub et al (14) 
reported a positive correlation between alanine, isoleucine, 
leucine, phenylalanine, tryptophan and valine levels with 
gout, and glycine and serine levels were negatively correlated 
with gout. As early as 1969, Pagliara and Goodman reported 
that fasting plasma glutamate concentrations in patients 
with gout were greater than those compared with healthy 
people. The increase in glutamate may be causally related 
to the overproduction of purines in gout (21). Glutamate is 
an essential amino acid required for the de novo synthesis of 
purines, therefore, the content changes in amino acids may 
affect UA production.

ILA is a metabolite of tryptophan breakdown and it 
has been reported that plasma levels of this marker are 
reduced in patients with cachexia (22), which can also be 
used as a different marker in the cord serum of newborns 
with preeclampsia (23). The association between tryptophan 
and gout has been previously reported (24), but the associa‑
tion between ILA and patients with gout has not yet been 
reported.

The differential marker 2‑methylbutyroylcarnitine has 
been reported to be important in diseases related to meta‑
bolic disorders induced by a high fat diet and childhood 
obesity‑related traits in Mexican‑American children (25,26). 
Huang et al (27) reported that the levels of 2‑methylbutyroyl‑
carnitine in the serum of patients with gout were significantly 
greater compared with that of healthy people.

Isobutyrylglycine was reported to be a potential biomarker 
for the diagnosis of ulcerative colitis and acquired pneu‑
monia (28,29). Abnormal increase of isobutyrylglycine in 
urine can cause the production of glutaric aciduria type II (30). 
Organic acidemia is an amino acid metabolic disorder that 
disrupts normal amino acid metabolism causing a build‑up 
of branched‑chain amino acids, which is consistent with the 
metabolic pathway of gout development (31). However, no 

studies to date have reported an association of isobutyrylg‑
lycine and 2‑hydroxy‑3‑methylbutyric acid with gout, which 
requires further exploration in the future.

Eugenol is biosynthesized from tyrosine and has anti‑
oxidant and antiproliferative effects (32). Anti‑inflammatory 
activities have potential roles in preventing cancer and inflam‑
matory reactions (33,34). Eugenol may have a potential role in 
the treatment of gouty arthritis.

Another differentially expressed metabolite in the 
serum of patients with gout and healthy people was 
3‑(3,4,5‑trimethoxyphenyl)propanoic acid (27,35).

In summary, LC‑MS‑based nontargeted metabolomics 
was used to detect serum changes in healthy people and 
patients with gout. These results demonstrated significant 
metabolomic differences between healthy subjects and 
patients with gout. ILA may potentially serve as a poten‑
tial biomarker for diagnosing gout and could be used for 
the early detection or prediction of gout progression. The 
present study has several limitations. First, due to the 
demographics of the patients with gout, a large number of 
the patients included in the study were younger than the 
healthy subjects and the majority of patients with gout were 
men, therefore, the two groups were not comparable in age 
or sex. Second, the small sample size is a limitation of the 
present study. The limitations of the results of the present 
study are with regard to age, which was increased due to 
selection bias. The lack of data for patient height, weight 
and BMI were also a limitation of the present study. Due 
to the two groups not being randomized or matched, there 
was a high risk of selection bias in the present study. The 
ratio of 2:1 or 7:3 was used to divide individuals into groups 
in previous studies (18,19). However, when processing the 
data in the early stage of the present study, it was found 
that the samples after 2:1 distribution were scattered, so the 
ratio of 7:3 was selected to randomly distribute the samples. 
In the future, longitudinal studies should be carried out in 
combination with other omics studies, including proteomics 
and genomics, or machine learning to identify additional 
potential biomarkers and pathways involved in gout (36). In 
conclusion, the present study demonstrated that ILA may 
serve as a potential biomarker for diagnosing gout and could 
be used for the early detection or prediction of gout progres‑
sion in the future.
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