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ABSTRACT Picochlorum celeri is a fast-growing marine microalga with high biomass
productivity. Here, we report the use of PacBio sequencing to assemble the phased
diploid genome of P. celeri.

Picochlorum celeri (Chlorophyceae) is an algal species that is of commercial interest
due to its high photoautotrophic reproductive rates and biomass productivity (1).

Various Picochlorum species have been studied for potential application in biomass
production (1–5), aquaculture feedstock (6, 7), and wastewater remediation (8). In
recent years, several Picochlorum genome assemblies have been published (2, 9–11)
and some of these are proposed to be diploid (10). Here, we report the first fully phased
diploid Picochlorum genome assembly published to date (the organism has two copies
of each chromosome; we represent the linked differences between them consistently
along each scaffold).

P. celeri was isolated from the Gulf Coast of Texas in June 2015 and grown in
enriched Instant Ocean seawater medium (1). For PacBio and Illumina sequencing, cell
lysis of duplicate biological samples was accomplished through bead beating for 3 min
in a Mini-BeadBeater (Biospec Products, Inc.) with 1-mm beads from OPS Diagnostics
(PFAW 1000-100-21). Following lysis, total DNA was extracted using the Qiagen DNeasy
PowerPlant Pro kit according to the manufacturer’s instructions. PacBio libraries were
made using the SMRTbell template preparation kit with a molecular size cutoff of 10 kb.
Illumina libraries were prepared using the TruSeq DNA LT sample preparation kit with
a standard molecular size of 350 bp.

We obtained long reads from one single-molecule real-time (SMRT) cell on the
Sequel instrument (Pacific Biosciences, Menlo Park, CA, USA) and short reads from the
Illumina NextSeq system. The short reads were subsampled to 100� coverage and used
only with GenomeScope (version 1.0.0) (12) for ploidy estimation; two kmer lengths (21
and 27) and two samples of reads gave heterozygosity estimates between 0.91% and
0.96%, indicating a diploid genome. The long reads were assembled with FALCON-
Unzip (version 1.1.4, included in the pb-assembly conda recipe downloaded in Decem-
ber 2018) (13). In all, we gathered 273,487 long reads, with a mean insert length of
6,407 bp and an N50 of 9,250 bp. We worked with Phase Genomics (Seattle, WA, USA)
to prepare a Hi-C library using a Phase Genomics Proximo Hi-C Plant kit, which is a
commercially available version of the Hi-C protocol (14). Following the manufacturer’s
instructions for the kit, intact cells from two samples were cross-linked using a form-
aldehyde solution, digested using the Sau3AI restriction enzyme, and proximity ligated
with biotinylated nucleotides to create chimeric molecules composed of fragments
from different regions of the genome that were physically proximal in vivo but not
necessarily genomically proximal. Continuing with the manufacturer’s protocol, mole-
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cules were precipitated with streptavidin beads and processed into an Illumina-
compatible sequencing library. Quality control for the library was performed by se-
quencing a small number of read pairs (556,109 read pairs) on an Illumina iSeq system
and then aligning the reads using BWA-MEM (version 0.7.17) (15) with the -5SP and -t
8 options specified. The alignment was assessed for true Hi-C pairs in which forward
and reverse reads were not found genetically proximal. Notably, the percentage of
high-quality read pairs that aligned �10 kb apart on contigs longer than 10 kb was
13.93% (expected, 1 to 15%), the percentage of intercontig high-quality read pairs on
contigs longer than 10 kb was 35.79% (expected, 10 to 60%), and the percentage of
same-strand high-quality read pairs was 9.78% (expected, 2 to 50%). Sequencing was
performed on an Illumina HiSeq 4000 system, generating a total of 164,537,658 PE150
read pairs.

FALCON-Phase (version 2) (16) was run using default parameters to correct likely
phase-switching errors in the primary contigs and alternate haplotigs from FALCON-
Unzip and output its results in pseudohap format, creating one complete set of contigs
for each phase. Hi-C reads were then aligned to phase 0 contigs following the
manufacturer’s recommendations (17). Briefly, reads were aligned using BWA-MEM with
the -5SP and -t 8 options specified (all other options, default). SAMBLASTER (version
0.1.24) (18) was used to flag PCR duplicates, which were later excluded from analysis.
Alignments were then filtered with SAMtools (version 1.9) (19) using the -F 2304
filtering flag to remove nonprimary and secondary alignments.

The Phase Genomics Proximo (version hash d33cacdd) Hi-C genome scaffolding
platform was used to create chromosome-scale scaffolds from the FALCON-Phase
phase 0 assembly, following the same single-phase scaffolding procedure described by
Bickhart et al. (20). As in the LACHESIS method (21), this process computes a contact
frequency matrix from the aligned Hi-C read pairs, normalized to the number of Sau3AI
restriction sites (GATC) on each contig, and constructs scaffolds in such a way as to
optimize expected contact frequency and other statistical patterns in the Hi-C data.
Approximately 120,000 separate Proximo runs were performed to optimize the number
of scaffolds and scaffold construction in order to make the scaffolds as concordant with
the observed Hi-C data as possible. This process resulted in a set of 5 preliminary
chromosome-scale scaffolds containing 13.5 Mbp of sequence (98.5% of the input
assembly).

Juicebox (version 1.9.8) (22, 23) was then used to correct scaffolding errors, resulting
in a total of 12 chromosome-scale scaffolds. FALCON-Phase was run a second time to
detect and correct phase-switching errors that were not detectable at the contig level
but were detectable at the chromosome-scale scaffold level. Metadata generated by
FALCON-Phase for scaffold phasing were used to generate matching .assembly files (a
file format used by Juicebox) for each phase and subsequently used to produce a
diploid, fully phased, chromosome-scale set of scaffolds using a purpose-built script
(https://github.com/phasegenomics/juicebox_scripts).

We polished the diploid assembly twice sequentially with the long reads, aligning
with pbmm2 (version 1.0.0) and polishing with Arrow (version 2.3.3) (both available at
https://github.com/PacificBiosciences/pbbioconda). Long-read polishing was stopped
after two rounds when the consensus quality was estimated to be better than Q40 (a
third round with Arrow suggested fewer than 1 in 10,000 changes). Short-read polish-
ing was not done due to the risk of incorrectly merging the two phases of the genome
(Shawn Sullivan, Phase Genomics, personal communication). The final phased and
scaffolded genome consists of two phases totaling 27.43 Mbp spread across two pairs
of 15 scaffolds each, with a scaffold N50 of 1.151 Mbp and an overall G�C content of
46%. The two phases of the genome were aligned and analyzed with the nucmer and
dnadiff programs from the MUMmer4 suite (version 4.0.0.beta2) (24), finding a total
of 112,875 single-nucleotide polymorphisms (SNPs) between the two phases (SNP
heterozygosity, 0.8%). Assemblytics software (version available on 15 August 2016, git
commit hash c937e96d) (25) was used to analyze the structural variation of the two
phases of the genome and found 16,794 indels and larger structural variants affecting
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558.74 kb. Default parameters were used for all software unless otherwise specified.
This phased assembly will enable future studies to better understand the photosyn-
thetic efficiency of P. celeri.

Data availability. This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number JAACMV000000000. The raw data
are available under the accession number PRJNA598876.
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