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Summary paragraph

Our perceptual experiences are accompanied by a subjective sense of certainty. These 

confidence judgements typically correlate meaningfully with the probability that the relevant 

decision is correct1–6, bolstering prevailing opinion that both perceptual decisions and 

confidence optimally reflect the probability of having made a correct decision6–13. However, 

recent behavioral reports suggest that confidence computations overemphasize information 

supporting a decision, while selectively down-weighting evidence for other possible 

choices14–19. This view remains controversial, and supporting neurobiological evidence has 

been lacking. Here we use intracranial electrophysiological recordings in humans and 

machine learning techniques to demonstrate that perceptual decisions and confidence rely on 

spatiotemporally separable neural representations in a face/house discrimination task. We 

then use normative computational models to show that confidence overly relies on evidence 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence should be addressed to: Megan A. K. Peters, 1285 Franz Hall, Box 951563, University of California, Los Angeles, 
Los Angeles, CA 90095, (323) 596-1093, meganakpeters@ucla.edu.
*these authors contributed equally to this work

Author Contributions
M.A.K.P. & H.L. together developed the key theoretical ideas behind the project, analyzed the data, and wrote the paper. H.L., T.T., 
E.H., & M.D. designed the behavioral paradigm and initiated project planning. T.T. & M.D. were primarily responsible for data 
collection. B.M., Y.D.K., & M.D. contributed to data analysis. W.D., R.K., & O.D. contributed to facilitating data collection and 
overcoming various logistical challenges. T.T. oversaw all the logistical issues and planning involved in the entire project.

Competing Interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Hum Behav. Author manuscript; available in PMC 2018 January 10.

Published in final edited form as:
Nat Hum Behav. 2017 ; 1: . doi:10.1038/s41562-017-0139.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



supporting a decision (e.g., face evidence for a ‘face’ decision), even while decisions 

themselves reflect the optimal balance of all evidence (e.g., both face and house evidence). 

Thus, confidence may not reflect a readout of the probability of being correct; instead, 

observers may sacrifice optimality in favor of self-consistency20 in the face of limited neural 

and computational resources. While seemingly suboptimal, this strategy may reflect the 

inference problem that perceptual systems are evolutionarily optimized to solve.

Results

We recorded cortical electrophysiological signals (ECoG) from epilepsy patients with 

surgically implanted intracranial electrodes as they distinguished degraded faces from 

houses at two contrast levels and provided binary confidence judgments by pressing buttons 

on a keyboard (Figure 1a). Subjects performed at an intermediate level of accuracy in their 

perceptual decisions (81.0% correct), as expected from performance thresholding 

procedures, which provided the opportunity to analyze and compare correct and incorrect 

decisions at different levels of subjective confidence.

Subjects rated confidence meaningfully, tracking their own decision accuracy rather than just 

stimulus contrast (Figure 1b), and had faster reaction times for high- versus low-confidence 

responses (μhigh = 1059ms, μlow = 1439ms, t(5) = 4.32, p = .007) but not for high-versus 

low-contrast trials (μhigh = 1096ms, μlow = 1132ms, t(5) = 1.96, p = .11). Subjects also 

showed little response bias to respond ‘face’ versus ‘house’ (Figure 1b).

Following previous work which has shown that activity in the high-gamma frequency range 

(80–120 Hz) reflects the most relevant neuronal activity21–27 specifically regarding 

perceptual processes28–32, we focused further analyses on this frequency range. Indeed, the 

mean time-frequency spectrum averaged over all subjects, electrodes, and trials was most 

salient in this high-gamma range, centered around 250–400ms after stimulus onset 

(Supplementary Figure 1), congruent with previous reports33–36. Because we confirmed that 

including a much wider range of frequency bands did not alter the qualitative pattern of the 

main results (and only very slightly altered them quantitatively; see Supplementary Results: 

Frequencies outside 80–120 Hz), this focus also helps to keep the computational demands 

for decoding analysis manageable and to avoid overfitting.

We used machine learning classification (support vector machine; SVM) to decode two 

behavioral factors: perceptual Decision (face/house) and Confidence (high/low). Features for 

SVM decoding were defined as each electrode’s normalized power at a particular frequency 

band and particular timepoint in the peri-stimulus window (Supplementary Methods: 

Support vector machine decoding).

We were able to decode both behavioral factors above chance at different time bins after 

stimulus onset (Figure 2a). Chance level was defined with permutation tests (see 

Supplementary Methods: Support vector machine decoding), and was found to be 0.5001, 

justifying our use of 0.5 as chance level decodability. Decision decoding reached above-

chance levels for at least half of subjects beginning at 250ms, but Confidence decodability 

did not reach significance for half of subjects until 450ms (Supplementary Table 3). 
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Importantly, both factors were able to be decoded above chance well before any movement 

onset (mean RT = 1136ms), suggesting that decoding is not based on movement (finger 

movement preparation can typically be decoded only up to ~200ms before movement onset 

with ECoG37; see also Supplementary Results: Motor preparation and neuroanatomical 

localization results, below).

The above results suggest that Decision and Confidence behaviors may reflect different 

evidence at different time points. One could argue that this dissociation may be trivial, since 

it is generally accepted that metacognitive representations arise later than those underlying 

perceptual decisions38,39 and may decay over time40. Although in our experiment subjects 

made both the Decision and Confidence responses simultaneously via a single button press, 

one could argue that in their minds they might have done it sequentially because it would be 

natural to do so.

Therefore, we also directly assessed the representation correlates’ spatial separation41–45. 

We quantified each electrode’s contribution to decodability by calculating a normalized 

contribution index (C) (Supplementary Methods: Equations S1 & S2), which we projected 

onto its MNI coordinates averaged across coarse 200ms time bins to reveal broad patterns 

(see Supplementary Methods: Neuroanatomical localization of representations) (Figure 2b). 

We also averaged C across electrodes within the four neocortical lobes – frontal (36.0% of 

all electrodes), parietal (24.2%), temporal (33.8%), and occipital (6.0%) – and plotted C for 

each lobe as a function of time after stimulus onset (Figure 2c) (see also Supplementary 

Figures 6–8, and Supplementary Tables 4 & 5).

Occipital regions showed localized contributions to Decision starting at 200–400ms despite 

their sparsity in electrode numbers, but Confidence appears to be more neuroanatomically 

distributed (significant main effects of lobe for Decision (F(3,870) = 7.748, p < .001) but not 

Confidence (F(3,870) = 1.896, p = .129); Supplementary Results: Representational overlap) 

with marked contributions from parietal6 and frontal areas2,46–49 (Figures 2b & 2c). Note 

that the separability of Decision and Confidence representations does not mean that there is 

completely no overlap. In terms of simple response level (rather than decodability), there are 

individual electrodes that showed some sensitivity to both Decisions and Confidence 

judgments, although they did so in ways also congruent with our central hypotheses 

(Supplementary Results: Representational overlap; Supplementary Figure 9). Overall, this 

analysis of separable contributions to Decision and Confidence confirms that our measure of 

decoding contribution by lobe is not due to trivial overrepresentation of electrodes: if a 

lobe’s decoding contribution were statistically biased due to electrode density, then denser 

regions (frontal and temporal) should have shown the highest decoding contributions and 

occipital the lowest. This analysis also provides additional evidence that Decision and 

Confidence decoding was likely not due to trivial decoding of movement: if estimators 

decoded movement preparation only, one should not expect strong and early contributions of 

occipital electrodes.

The dissociations in spatial representation correlates and decodability timecourse for 

Decisions and Confidence suggest that Confidence computations may not rely on the same 

internal evidence as Decisions. One possible hypothesis14–19 is that Decisions are based on 
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the ‘Balance of Evidence’ between Decision-Congruent and Decision-Incongruent Evidence 

on each trial, but Confidence relies on Decision-Congruent Evidence only14–19. For 

example, if subjects indicate a ‘face’ Decision, their Confidence judgment will reflect the 

strength of the neural Evidence for ‘face’ but will be largely insensitive to the (lack of) 

Evidence for ‘house’. While this hypothesis has received some support from behavioral 

studies14–19, it remains controversial, with a number of researchers arguing that confidence 

judgments reflect an optimal readout of the same information that led to the decision1–13. 

Moreover, whereas previous studies concerned whether subjects may ignore Decision-

Incongruent Evidence provided by the physical stimuli, here we addressed the intriguing 

possibility that such Evidence may be available in the brain at the time of the Confidence 

computation, and yet the relevant neural mechanisms fail to make use of such information.

To evaluate this hypothesis, we trained an additional neural decoder on the stimulus 

presented on each trial and extracted the ‘weights’ assigned to each Feature (i.e., electrode-

frequency-timepoint; Supplementary Methods: Support vector machine decoding). We 

combined these weights with each Feature’s power to define ‘Evidence’ -- i.e., how much 

the neural code reflected both the stimulus’ ‘face-ness’ and ‘house-ness’ on each trial 

(Methods: Choice probability analysis, Equations 1 & 2) -- and categorized Evidence 

depending on the subject’s Decisions: Face Evidence is Decision-Congruent on trials when 

subjects responded ‘face’ but Decision-Incongruent when they responded ‘house’, and vice 

versa for House Evidence.

We then computed the choice probability (CP)50 for the Balance-Of-Evidence versus 

Decision-Congruent-Only rules: on a trial-by-trial basis for each subject, we assigned 

Decisions and Confidence judgments as hits and false alarms according to standard Receiver 

Operating Characteristic (ROC) methods51, and calculated the area under the curve to obtain 

CP values. The degree to which CP > 0.5 therefore indicates how well a given rule (Balance-

Of-Evidence or Decision-Congruent-Only) can be used to correctly predict the relevant 

behavior (Decision or Confidence), based on the neural Evidence (Methods: Choice 

probability analysis).

CP was significantly above chance for both Decision and Confidence (Supplementary Table 

6) for both computation rules, but statistical tests also revealed an interaction between 

Decision/Confidence and computation rule (2 (Predictor: Decision, Confidence) x 2 

(Evidence: Balance, Decision-Congruent) repeated-measures ANOVA: no main effect for 

Predictor (F(1,5) = 4.538, p = .086), main effect for Evidence (F(1,5) = 9.665, p = .027), and 

significant interaction between Predictor and Evidence (F(1,5) = 6.961, p = .046)) (Figure 3a 

& 3b). This interaction occurred because, as hypothesized, subjects used Balance-Of-

Evidence to compute Decision, but Balance-Of-Evidence and Decision-Congruent-Only CPs 

were indistinguishable when computing Confidence (paired two-tailed t-tests; Decision: t(5) 

= 17.7044, p < .001; Confidence: t(5) = 0.6719, p = 0.531) (Figure 3a & 3b). This means 

that taking into account Decision-Incongruent Evidence does not help to better predict 

Confidence rating behavior even though it had exactly this effect for Decisions, as if subjects 

relied nearly exclusively on Decision-Congruent Evidence alone when judging Confidence 

even though they incorporated Decision-Incongruent Evidence to calculate their Decisions.
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The CP analyses provide support for the hypothesis that Confidence computations 

disproportionately ignore Decision-Incongruent Evidence, in agreement with the finding that 

electrodes’ simple response level also reflects confidence in a Decision-Congruent manner 

(Supplementary Figure 9). However, one could argue that the lack of improvement in 

predicting Confidence via including Decision-Incongruent Evidence is essentially a null 

result. In principle, the significant interaction between computation rule and Decision/

Confidence addresses this concern, but perhaps Confidence is supported by a more complex 

process than Decision, and therefore it is more difficult to achieve high CP given the 

noisiness of data; we might have reached the noise ceiling for Confidence, which would lead 

to the false appearance of a lack of improvement when Decision-Incongruent Evidence was 

also included.

To address this concern, we used the simple framework of signal detection theory51,52 to 

build a normative forward model, and to formally assess the noise ceiling stipulated by the 

decodability of the data. Assuming subjects are Bayesian ideal observers, their Confidence 

should be monotonically related to Accuracy4, i.e. it should optimally reflect the probability 

of a Decision’s being correct on a trial-by-trial basis7–12 (Figure 4a; Methods: Signal 

detection theoretic forward model). Therefore, both trial-by-trial Accuracy and Confidence 

should depend on similar calculations; they can both be thought of as the distance of some 

internal decision variable x from a decision criterion (Figure 4a). With this simple model, we 

can thus formally relate the decodability of the Decision response, Accuracy, and 

Confidence, and compare the observed data to the model.

The fact that we cannot decode Decision at 100% accuracy means there must be noise 

inherent in the data, the measurement and decoding technique, etc. We empirically assessed 

this noise level, αdecoding, for each subject based on Decision decodability, which would be 

100% if αdecoding = 0 according to signal detection theory (Figure 4a). Based on the 

observed level of decoding noise (αdecoding), we estimated the theoretically maximal 

expected decodability for both Accuracy and Confidence (Figure 4b; Methods: Signal 

detection theoretic forward model). We then compared this expected maximum to actual 

data (i.e., decodability of Accuracy and Confidence via the forward model, based on all 

available Features).

Indeed, statistical tests confirmed that Accuracy decodability achieved via the model was 

indistinguishable from the theoretical maximum given noise (αdecoding), but Confidence 

decodability was significantly worse than the theoretical maximum (Figure 4c & 4d). This 

finding indicates that the computation of Confidence must differ in efficiency from the 

computation of the Decision8,11, and therefore cannot optimally reflect the probability of 

being correct (Accuracy)8–12. Crucially, that there was no problem in predicting Accuracy 

optimally given the observed noise level means the Decision-Incongruent Evidence was 

available in the brain, and yet under-utilized in the computation of Confidence.

One may worry that the detection theoretic model failed because of the different timecourses 

of information flow for Decision (Type 1) and Confidence (Type 2) judgments38,39. We 

addressed this concern by conducting temporal generalization analysis53, which evaluates 

whether the Decision estimator trained at time t can decode Confidence at some other time t′ 
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(especially after t). However, we saw no evidence for temporal dissociations that could have 

led to the model’s failure (Supplementary Results: Lag in predicting from Decision to 

Confidence?; Supplementary Figure 11). This analysis demonstrates the informativeness of 

neural signals in evaluating the model; without neural information, it would have been 

difficult to ensure that the model’s failure was not due to differences in processing 

timecourse between Decision and Confidence.

Finally, one might argue that although the decoding noise ceiling was reached, the CP 

analysis still failed to demonstrate that the Decision-Congruent-Only rule can predict 

Confidence better than the Balance-Of-Evidence rule. To formally address this concern, we 

capitalized on Bayesian generative model simulations to directly compare how well a 

Balance-Of-Evidence ideal observer54 and Decision-Congruent-Only heuristic observer16 

could predict subjects’ Confidence (Supplementary Methods: Generative Bayesian models). 

We fed the trial-by-trial Evidence (Equations 1 & 2) as two-dimensional data points x = 

[EvidenceFace, EvidenceHouse] to two Bayesian observers, one implementing the Balance-

Of-Evidence rule and one implementing the Decision-Congruent-Only rule for Confidence. 

We then computed the percent of cases in which the Decision-Congruent-Only produced 

higher CP for Confidence than the Balance-Of-Evidence rule for each subjects, which gives 

the exceedance probability of the Decision-Congruent-Only rule (the likelihood that it 

predicted subjects’ behavior better than the Balance-Of-Evidence rule).

This direct model comparison revealed that the Decision-Congruent-Only rule is not just 

equivalent but superior in predicting Confidence, with exceedance probability of 72.8% 

(chance is 50%). This result demonstrates that Confidence is in fact better predicted by 

Decision-Congruent Evidence alone than by a Balance-Of-Evidence rule (see also 

Supplementary Results: Generative Bayesian models).

Discussion

Our results demonstrate not only that neural representations (correlates) and computations 

underlying Decisions and Confidence are dissociable, but also that Confidence selectively 

reflects the magnitude of Decision-Congruent Evidence. This interpretation helps to explain 

previous findings in the literature regarding dissociations between Accuracy and Confidence, 

including cases where changes in Accuracy are not accompanied by appropriate changes in 

Confidence55, where inactivation of cortical or subcortical structures affects Confidence but 

not Accuracy56,57, and where Confidence disproportionately tracks Decision-Congruent 

Evidence magnitude even when this strategy reduces metacognitive sensitivity16. Our 

findings are also in keeping with previous studies showing that when noise is added to a 

stimulus58 or observer’s internal representation7,59,60, Confidence increases while Accuracy 

stays constant or decreases. This occurs because increased fluctuation in neural Evidence 

favoring both stimulus alternatives is symmetric around a decision criterion (at zero; Figure 

4a), but can only increase the average magnitude of Decision-Congruent Evidence (as it is 

by definition an absolute value; Figure 4a). Thus, Confidence rises even as Accuracy 

remains unchanged or even decreases. Our results provide an account of how these 

dissociations between behavioral Accuracy and Confidence may arise from differences in 

computations at the neural level.
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That Decision-Congruent Evidence magnitude directly influences Confidence has important 

implications for the possible neural substrates underlying probabilistic Confidence 

computations12,61–66. Specifically, why would the system elect to compute confidence in 

this seemingly suboptimal way? The answer may have to do with the types of tasks the 

perceptual system must solve in the real world. Most laboratory tasks present an artificial 

scenario in which an observer must decide between two known categories (e.g., face/house, 

left/right): in the real world you would never know for sure that an object exists but not 

know what it is. In contrast, in an ecologically valid setting, the task is not to categorize a 

stimulus into category A vs. B, but to identify the stimulus, i.e. to ask, “Is there something 

there, and if so, what is it?” Once a categorical decision has been made, the observer may 

have very little Decision-Incongruent Evidence due to the numerous possible alternative 

categories; the categories about which the observer has the most information are the face 

category itself, and some (presumably known) ‘nothingness’ category. Thus, perhaps the 

detectability of a stimulus itself is a primary contributor to Confidence16,54. In other words, 

in the actual environment, objects that are more detectable are generally more discriminable: 

if you can see it well, you can probably tell what it is very well. This implies that the neural 

circuitry developed for stimulus detection may be recruited for Confidence despite their 

conceptual differences67,68, and perhaps even that the optimal solution to a laboratory-based 

discrimination task may not be the same as the optimal solution (or a heuristic-based 

approximation) in an ecologically valid setting. From an evolutionary perspective, this 

recruitment of detection circuitry seems reasonable: when an organism must judge both what 
is out there in the environment and if there is something out there (simultaneous 

identification and detection), reliance on Decision-Congruent Evidence magnitude might 

very well lead to adaptive behavior.

The observation that Decision-Incongruent Evidence is discarded in certain types of post-

Decision judgments is not unique to Confidence: several authors have reported biases in 

continuous stimulus estimation69, especially following a categorical decision70, that seem to 

follow a similar pattern20,71. In one study, once subjects had made a categorical motion 

direction discrimination, their subsequent estimations of motion direction indicated that they 

assumed any motion direction on the “wrong” (unchosen) side of the reference criterion to 

be impossible20. Stocker and Simoncelli explain these biases as maximizing “self-

consistency” to maintain stable interpretations of the environment, and their Bayesian model 

is conceptually akin to our Decision-Congruent Evidence Bayesian heuristic model20. Both 

models have the advantage of reducing costly storage and computation requirements in 

maintaining the full posterior probability distribution over many unchosen alternatives; in 

many real-life scenarios, this factor may overcome the need to minimize error in the 

expected estimation of motion direction, Confidence, or other similar judgments. 

Additionally, despite reports that memory confidence appears to reflect the balance of 

evidence at the single neuron level72, it has also been suggested that similar Decision-

Congruent Evidence dependence may underlie memory confidence in a task specifically 

designed to compare the two computational approaches73, as we did here.

Here, motivated by previous studies15–18, we tested the hypothesis that perceptual decisions 

and confidence judgments may involve dissociable mechanisms. Our findings go beyond 

previous behavioral results to reveal that decision-incongruent evidence can indeed be read 
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out from neural representations at the time of the confidence judgment, is used in the 

computation of the decision, and yet is discarded or ignored in the confidence computation. 

Specifically, this heuristical account provided better fit to empirical data than a normative 

optimal model, as supported by our formal computational analysis. This over-emphasis on 

decision-congruent evidence is unlikely to be an ad-hoc explanation, but rather appears to be 

the general strategy employed by the brain in producing confidence reports in perceptual 

decisions. Future studies using similar neural decoding approaches may provide insight into 

use of neural evidence under other task conditions in which confidence judgments appear 

optimal at the behavioral level54. Also, it may be beneficial to apply this approach to other 

datasets with more comprehensive spatial coverage, as well as to directly assess the complex 

relationship between high gamma power, spiking activity, and lower frequency field 

potentials (see Supplementary Results: Frequencies outside 80–120 Hz, and Supplementary 

Notes). These may help to further test whether self-consistency is truly a general principle 

contributing to an organism’s evaluation of its own internal uncertainty. Since it has been 

speculated that this strategy may account for a wide range of high-level social phenomenon 

including cognitive dissonance reduction20, future investigation may be able to address the 

intriguing question of whether these mechanisms are common across species, or whether 

they might be uniquely human.

Methods

Details of the behavioral methods, electrocorticography (ECoG) data acquisition and 

preprocessing, support vector machine decoding, signal localization, and generative 

Bayesian models can be found in the Supplementary Methods.

Choice probability analysis

Definition of evidence—In two-class linear support vector machine (SVM) analysis, the 

result of SVM training an estimator is a hyperplane that separates the two classes; one can 

take the dot product of the support vector coefficients (coefficients of the vector orthogonal 

to the hyperplane) and the support vectors themselves to determine the weights on each 

Feature. We then define whether a given Feature provides evidence towards classifying the 

stimulus in a given trial as a face versus a house as the sign of its Feature weight based on an 

SVM estimator trained on the trial-by-trial stimulus (‘Stimulus’ estimator). Thus, 

mathematically, we define Evidence for each timepoint t as

(1)

where

(2)
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Here, Es(n, t) represents the overall evidence value for a given stimulus type s (face/house) 

and timepoint t in trial n, es
*(t) represents the set of electrode-frequency Features forming 

evidence for stimulus type s at timepoint t, |es
*(t)| represents the cardinality of es

*(t) (i.e. the 

number of elements in the set), wi represents the weight (described above) assigned to 

electrode-frequency Feature i by the Stimulus SVM estimator, gn,t,i represents the high-

gamma power in trial n at time point t for electrode-frequency Feature i, and Ii is an 

indicator function such that Ii = 1 if the sign of wi matches the sign of the Stimulus category 

s and 0 otherwise. Importantly, this definition of Evidence maximizes the independence of 

Face Evidence and House Evidence, so their contributions to Decisions and Confidence can 

be independently evaluated.

Definition of Balance-of-Evidence and Response-Congruent-Only rules—We 

evaluated two rules for predicting subjects’ trial-by-trial Decisions and Confidence 

judgments: the Balance of Evidence favoring the Decision versus that against the Decision 

(Balance-Of-Evidence), and the Evidence favoring the Decision alone (Decision-Congruent-

Only). Behavioral Decisions and Confidence for each subject were assigned as hits and false 

alarms according to standard Receiver Operating Characteristic (ROC) methods51, and the 

AUC was calculated as before to obtain CP values for each subject for each rule. 

Conceptually, these hit and false alarm assignments were similar across both Decision and 

Confidence ROC analyses. Specifically, ROC methods sweep a criterion c through the 

decision value space, categorizing trials on the basis of whether their ‘scores’ (decision 

values, i.e. the result of a particular classification rule) fall above or below c. For Decisions, 

scores for the Balance-Of-Evidence rule were defined as trial-by-trial Face Evidence minus 

House Evidence, leading to a ‘hit’ being defined as Face Evidence - House Evidence > c 
(‘face’ response anticipated) and the subject responded ‘face’, and a ‘false alarm’ being 

defined as Face Evidence - House Evidence > c (‘face’ response anticipated) but the subject 

responded ‘house’. The Decision-Congruent-Only rule for Decisions was defined as the 

average of the ROC curves and CPs for Face Evidence alone (on both Face and House trials) 

and House Evidence alone (on both Face and House trials) (Figure 3a). For Confidence, a 

Balance-Of-Evidence ‘hit’ was defined as Response-Congruent Evidence - Response-

Incongruent Evidence > c (‘high confidence’ anticipated) and the subject responded ‘high 

confidence’, and a ‘false alarm’ defined as Response-Congruent Evidence - Response-

Incongruent Evidence > c (‘high confidence’ anticipated) but the subject responded ‘low 

confidence’.

These CP values were used to assess the relative contribution of each type of Evidence to 

Decision and Confidence over the analyzed time period; note that a CP value of over 0.5 

indicates that a given classifier is informative with regard to trial outcome (either Decision 

or Confidence), as this means that hits rise more rapidly than false alarms. We evaluated 

whether the CPs were significantly different from chance (CP = 0.5) using two-tailed t-tests, 

as well as inspecting differences in the CP performance of the Balance-Of-Evidence versus 

Decision-Congruent-Only rules for predicting Decision and Confidence using a 2 (rule) x 2 

(behavior) repeated-measures ANOVA.
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Signal detection theoretic forward model: In standard signal detection theory (SDT), on a 

given trial the internal evidence available to a system can be represented as x, a sample 

drawn from one of two distributions representing stimulus alternatives in a discrimination 

task (e.g. face/house, Figure 4a). For an unbiased observer, the sign of x dictates which 

category the observer will choose, such that positive x leads to a ‘face’ Decision and 

negative x to a ‘house’ Decision. Likewise, x’s magnitude, or its distance from the decision 

criterion at zero, indicates how strongly it indicates a ‘face’ or ‘house’ choice, and thus 

dictates Accuracy (probability of being correct). A normative observer should also rate 

Confidence according to this same absolute magnitude: because the farther x is from zero 

the more likely a Decision is to be correct, the more confident observers should be in their 

categorization choices (Figure 4a).

Two-class linear SVM classification provides exactly such a ‘sample’ x in the form of the 

decision value (the trial-by-trial estimates ŷ; see Supplementary Methods) for each trial, 

such that positive ŷ predict the trial belongs to one group, and negative ŷ the other 

(assuming no intercept bias). Following the normative framework, machine learning 

methods such as SVM explicitly assume that the farther ŷ is from the decision hyperplane, 

the more confident the classifier should be about its classification performance76. We 

therefore apply this forward model logic to the SVM decision values ŷ to predict from 

Decision to Accuracy and Confidence: we use the absolute value of the SVM ŷ values for 

the Decision estimator as inputs to the ROC analysis indexing classifier accuracy for 

Accuracy and Confidence on a trial-by-trial basis (see Supplementary Methods for more 

details). We tested this forward model’s power to predict from Decision→ Accuracy and 

Decision→Confidence. All analyses and simulations were completed through custom-

written software in MATLAB R2013a (MathWorks; Natuck, MA).

Evaluation of model—It would be unrealistic to assume that these SVM decision values 

ŷ for the Decision estimator represent a lossless readout of the internal decision variable x 
for each subject’s face/house Decision on each trial. If they represented a lossless readout, 

we would be able to decode all subjects’ Decisions (i.e., face/house button presses) with 

100% accuracy with the SVM approach. Because decoding of Decision does not reach this 

ceiling, we must instead assume that these ŷ for the Decision estimator are corrupted by 

some decoding noise with respect to the true internal decision variables x which dictate 

whether a subject said ‘face’ or ‘house’ (Figure 4b). It is important to estimate this decoding 

noise empirically in order to validate the forward model. Essentially, this noise can be 

thought of as, “What is the signal degradation or noise that exists between the subject’s 
access to his own neural representations, and our ability to access those neural 

representations through ECoG and an SVM decoder?” We estimated this decoding noise, 

αdecoding, for each subject by building a simulated observer as follows. (Note that αdecoding 

will also therefore account for decoding noise due to subjects’ errors, e.g. a subject meant to 

indicate ‘face’ but erroneously pressed the ‘house’ button, as well as any degradation of 

signal due to limited spatial coverage with ECoG.)

Each subject’s d′ (objective performance capacity51,52) was first calculated from their 

behavioral data. Next, for each subject, using Monte Carlo simulations, we drew 1000 

samples x, representing the internal decision values, from each of two Gaussian distributions 
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representing ‘face’ and ‘house’ centered at ±d′/2 with standard deviation 1. Samples were 

classified according to the simple rule that x > 0 means ‘face’ and x < 0 means ‘house’ to 

provide the normative observer’s Decision (face/house), and subsequently classified as 

correct or incorrect according to the distribution that had generated them. We then used x to 

compute the Decision ROC according to standard methods51 to calculate the area under the 

curve (AUCDecision). Following the above discussion, we then computed AUCAccuracy via 

the same method on |x|, the absolute value of x. To find the confidence criterion c used by 

each subject to separate Confidence responses into ‘high’ versus ‘low’ (Figure 4a), we swept 

through possible values for c from 0 to 5 in steps of .01, classifying |x| > c as ‘high’ 

confidence and |x| < c as ‘low’ confidence, to find the value of c that would provide a match 

to the proportion of ‘high’ and ‘low’ Confidence responses given by each subject. Finally, 

we computed AUCConfidence on these |x| values also according to the same methods as used 

for Accuracy.

By utilizing each subject’s behavioral sensitivity and confidence criterion, this process 

provides a theoretical maximum for decodability of Decision, Accuracy, and Confidence. 

However, this theoretical maximum will in practice also be dictated by noise (αdecoding) in 

the decoding process that corrupts our ability to access a subject’s internal decision variable 

via an SVM decoder. To estimate αdecoding for each subject -- i.e., how “bad” the SVM is at 

extracting the decision values that the subjects have access to in their own brains -- we 

assume the following simple relationship between the SVM decision values ŷ and the true 

internal decision variable x:

(3)

with ε ~ N(0, αdecoding). Because ROC analyses do not depend on the actual values of x, 

only the shape of their distribution, we ignore the scaling factor  and define a proxy for ŷ 
in simulation space:

(4)

We fit αdecoding at each timepoint in the peri-stimulus window by minimizing the sum of 

squared error between AUCDecision calculated on ŷ (i.e., the true decoding accuracy for the 

Decision estimator at that timepoint) and AUCDecision calculated on x* under increasing 

αdecoding noise at each timepoint in the peri-stimulus window for each subject. These best-

fitting values for αdecoding were then used to predict the noisy theoretical maxima for 

AUCAccuracy and AUCConfidence given decoding noise, again at each timepoint in the peri-

stimulus window for each subject.

It should be noted that the theoretical maxima for AUCAccuracy and AUCConfidence differ 

from one another due to the mathematical relationship among trial-by-trial Accuracy, trial-

by-trial Confidence, and trial-by-trial decision values x. According to signal detection theory 

and other optimal models, Confidence is defined as the magnitude of the difference between 
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the internal decision variable for Decision and the decision criterion5,9,11. As a result, 

Confidence can be predicted almost perfectly from the internal decision variable for 

Decision: the farther away it is from the decision criterion, the more confident one should be 

(Figure 4a). On the other hand, for near-threshold psychophysics experiments such as the 

present one, predicting Accuracy based on the magnitude of the internal decision variable is 

somewhat less trivial, though also mathematically clearly defined. Specifically, when the 

internal decision variable for Decision is near the criterion, one does not always make errors; 

because of chance, one in fact makes a good portion of correct responses even in this range 

(Figure 4a). Despite this, one should always be “low confidence” in such near-criterion 

cases. As such, the theoretical bounds for how much one can decode Confidence and 

Accuracy are intrinsically different, with Confidence theoretically easier to decode than 

Accuracy from the magnitude of the internal decision variable under a given level of noise.

Therefore, if the forward model is true, and Confidence is decoded from the same internal 

evidence as Decision, then both Accuracy and Confidence decodability resulting from the 

rectified SVM decision values should reach these theoretical maxima. If, in contrast, 

Confidence depends on information other than the magnitude of the internal decision 

variable for Decision (i.e., does not depend solely on the balance of evidence for face versus 

house), then Accuracy decoding -- defined by the trial-by-trial Decision -- should reach the 

theoretical maximum but Confidence decoding should not. We tested whether the theoretical 

maximum for Accuracy and Confidence decoding had been reached via this forward model 

by using two paired t-tests to compare the mean decoding accuracy for Accuracy and 

Confidence from the SVM Features to this theoretical maximum across the peri-stimulus 

time window. As before, to reveal global trends as a function of time, we smoothed the data 

using a 5-point moving average (window size 50ms).

Data availability

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Behavioral task and results. (a) Subjects discriminated noisy stimuli as faces/houses and 

indicated their confidence (high vs low) with a single button press; responses were all made 

with one hand. (b) As expected, subjects showed higher accuracy for high versus low 

contrast stimuli, and for high confidence versus low confidence responses (2 (contrast: high/

low) x 2 (confidence: high/low) repeated measures ANOVA: F(1,5)confidence = 8.418, p = .

034; F(1,5)contrast = 1.783, p = .239; F(1,5)confidenceXcontrast = 0.502, p = .10), but showed 

negligible bias to respond ‘face’ more often than ‘house’ (t(5) = 0.316, p = 0.765). Error 

bars represent the standard error of the mean across subjects.
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Figure 2. 
Spatiotemporal dissociation between Decision and Confidence decoding. (a) Decoder 

accuracy for both estimators (Decision and Confidence) rises just around 200ms post 

stimulus onset. However, decodability for Decision rises more quickly and peaks earlier than 

for Confidence. Shaded regions indicate the standard error of the mean. Lower bars denote 

50ms post-stimulus time bins in which decodability was above chance for some proportion 

of participants. (b) To localize factors contributing to decoding performance, we projected 

each electrode’s contribution index C (see Supplementary Methods: Neuroanatomical 

localization of representations) onto its MNI coordinates across all subjects, averaged across 

coarse time bins of 200ms. C < 0 (dark blue) indicates the electrode contributed very little, 

whereas C > 0 (red) indicates the electrode contributes more to decoding. (c) We calculated 

average C within four broadly-defined regions of interests by lobe, and plotted it as a 

function of time after stimulus onset. Decision shows strong contributions from occipital 

electrodes around 200–700ms, while Confidence occupies a more distributed spatial 

representation.
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Figure 3. 
Choice probability analyses show Confidence computations were insensitive to Decision-

Incongruent Evidence. (a) Differences in Decision versus Confidence representations 

mapped onto differential use of Decision-Congruent Evidence versus Decision-Incongruent 

Evidence for Decision and Confidence computations. (b) Decision and Confidence were 

predicted differentially by the Balance-Of-Evidence rule than by the Decision-Congruent-

Only rule: Decision was significantly better predicted by Balance-Of-Evidence, but 

Confidence showed no difference between Balance-Of-Evidence and Decision-Congruent-

Only computation rules. This indicates that the computation of Confidence overly relied on 

the magnitude of Decision-Congruent Evidence, and did not appear to utilize Decision-

Incongruent Evidence.
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Figure 4. 
Violations of the normative model for Confidence but not Accuracy. (a) In signal detection 

theory, on a given trial the internal evidence available to a system can be represented as x, a 

sample drawn from one of two distributions representing stimulus categories in a 

discrimination task. The sign of x dictates which category an unbiased observer will choose, 

such that positive x (above the decision criterion at zero) leads to a ‘face’ Decision and 

negative x (below the decision criterion) to a ‘house’ Decision. Likewise, x’s magnitude, or 

its distance from the decision criterion at zero, indicates how strongly it indicates a ‘face’ or 

‘house’ choice: the farther x is from zero, the more likely observers are to be correct, and so 

the more confident they should be in their categorization choices. Thus, the absolute value of 

x predicts both the trial-by-trial Accuracy (trial-by-trial correct choices/errors) and 

Confidence in a Decision. (b) We fitted the assumed decoding noise in the signal detection 

theoretic model, αdecoding, to each subject by degrading the predicted Decision decodability 

(based on subjects’ performance and the stimulus decoder; see Methods: Signal detection 

theoretic forward model) to match the observed Decision decodability. Incorporating this 

noise, we then used the model to predict the theoretical maximum for Accuracy and 

Confidence decodability for each subject. (c) Given the presence of observed decoding 

noise, the model predicts that the theoretically expected maximal level of decodability for 

Confidence will be above that for Accuracy. (d) We compared the actual Accuracy and 

Confidence decodability achieved via the model to the theoretical maxima predicted by the 

model. While mean Accuracy decodability reached the theoretical maximum (t(5) = 1.58, p 

= .173), Confidence decodability was significantly worse (t(5) = 2.868, p = .035). This 
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indicates that Confidence cannot depend purely on the same internal information as Decision 

and Accuracy. Shaded regions indicate the standard error of the mean.
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