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The Chinese giant salamander, Andrias davidianus, is the largest amphibian species in the
world; it is thus an economically and ecologically important species. The skin of A. davidi-
anus exhibits complex adaptive structural and functional adaptations to facilitate survival in
aquatic and terrestrial ecosystems. Here, we report the first full-length amphibian transcrip-
tome from the dorsal skin of A. davidianus, which was assembled using hybrid sequencing
and the PacBio and Illumina platforms. A total of 153,038 transcripts were hybrid assembled
(mean length of 2039 bp and N50 of 2172 bp), and 133,794 were annotated in at least one
database (nr, Swiss-Prot, KEGG, KOGs, GO, and nt). A total of 58,732, 68,742, and 115,876
transcripts were classified into 24 KOG categories, 1903 GO term categories, and 46 KEGG
pathways (level 2), respectively. A total of 207,627 protein-coding regions, 785 transcription
factors, 27,237 potential long non-coding RNAs, and 8299 simple sequence repeats were
also identified. The hybrid-assembled transcriptome recovered more full-length transcripts,
had a higher N50 contig length, and a higher annotation rate of unique genes compared
with that assembled in previous studies using next-generation sequencing. The high-quality
full-length reference gene set generated in this study will help elucidate the genetic charac-
teristics of A. davidianus skin and aid the identification of functional skin proteins.

Introduction
Amphibian skin has evolved diverse functions to facilitate adaptation to the external environment [1].
The granular glands of amphibian skin produce four types of biologically active compounds [2–4]: (1)
biogenic amines, (2) bufadienolides (bufogenins), (3) alkaloids and steroids, and (4) peptides and proteins
[2]. Functional research of these substances aids the protection of giant salamanders and the development
of medicinal materials, such as antimicrobial peptides and collagen. Upon contact with an external stim-
ulus, the skin granular glands of the Chinese giant salamander (Andrias davidianus) secrete transparent
viscous substances. However, the structure of these secretions remains unclear, largely because these secre-
tions cannot be dissolved in conventional solvents such as acetic acid, ethanol, and acetone. Transcriptome
sequencing of the skin can be used to determine the protein sequences of skin-secreted proteins, but this
requires obtaining high-quality skin transcripts of A. davidianus.

To date, several transcriptomes of A. davidianus have been sequenced and published. A total of 147
transcripts have been shown to be involved in the immune responses and inflammatory reactions based
on transcriptomes of spleen and skin tissue [5]. A transcriptome analysis has been conducted on the spleen
tissue of A. davidianus during the host response to iridovirus infection [6]. A differential transcriptome
analysis has been conducted on the spleen, heart, and liver tissues of the giant salamander in response to
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Aeromonas hydrophila [7]. A transcriptome analysis was performed on the spleen tissues of A. davidianus [8].
RNA sequencing (RNA-seq) data were obtained from a pool of A. davidianus tissues including spleen, liver, mus-
cle, kidney, skin, testis, gut, and heart [9,10]. The transcriptome has been sequenced and assembled from multiple
tissues (abdominal skin, dorsal skin, lateral skin, lung, heart, kidney, liver, pancreas, small intestine, spleen, stomach,
brain, spinal cord, cartilage, eye, fingertip, long bone, maxillary, skull, muscle, ovary, fat, tail fat, and blood) [11]. A
comparative transcriptomic analysis revealed the genetic basis underlying the immune function of the skin in three
amphibians [12]. A high-coverage reference transcriptome was generated from gill, lung, and skin tissues of metamor-
phosing juvenile A. davidianus [13]. The transcriptomic responses of species have been shown to vary in response to
ranavirus infection [14]. A comparative transcriptomic analysis of the ovaries and testes revealed genes that facilitate
adaptation to the environment as well as important sex-biased genes in A. davidianus [15,16]. An RNA-seq analysis
from different parts of the skin has provided insight into the molecular adaptations of A. davidianus [17].

Andrias davidianus not only is the largest amphibian species in the world but also has a large and complex genome
(up to 50 Gbp; 2n = 60) [18,19], making de novo genome assembly for this species impractical using current se-
quencing technologies. Transcriptome sequencing is needed to study the transcriptional regulation of A. davidianus.
However, errors often occur in the assembly of short reads produced by next-generation sequencing (NGS), and these
errors cannot be corrected by the genome. Despite the remarkable developments in sequencing methodologies, there
is a need to develop novel tools that facilitate comprehensive analyses of large quantities of sequence data and that can
generate high-quality full-length reads from long-read sequencing data for analyses of short sequence reads [20,21].

Here, we used single-molecule real-time long-read technology to sequence the transcriptome of A. davidianus
(which lacks a complete genome) using the PacBio Sequel platform. The aims of the present study were to produce
an accurate full-length skin transcriptome of A. davidianus, which was used as a reference dataset along with the
proteome and metabolome to explore the functional protein and gene families on the skin.

Materials and methods
Animal materials
A healthy female A. davidianus (body length, 70 cm; weight, approximately 3 kg; age, 4 years) was obtained from a
farm in Guiding County, Guizhou Province, China. In the Collaborative Innovation Center of Sustainable Utilization
of Giant Salamander, A. davidianus was stunned by a 100-V electric shock on the head; its body was then placed
ventral side up, and its throat was cut with a knife. Dorsal skin tissues were immediately dissected from the giant
salamanders and washed in sterile PBS. Animal tissue samples for RNA extraction were snap-frozen in liquid nitrogen
and stored at −80◦C until analyses.

RNA preparation
Total RNA was prepared by grinding tissue in TRIzol reagent (Invitrogen 15596026) on dry ice and processed per the
manufacturer’s protocol. Precipitated RNA was stored at –20◦C until analysis.

PacBio library preparation, sequencing, and data processing
The Iso-Seq library was prepared per the Isoform Sequencing protocol (Iso-Seq) using a Clontech SMARTer PCR
cDNA Synthesis Kit (Catalog No. 634925). We constructed two size-fractionated libraries (0.5–4 kb and >4 kb) using
the BluePippin Size Selection System and the protocol described by Pacific Biosciences (PN 100-092-800-03). The li-
brary preparations were sequenced on the PacBio Sequel platform (Pacific Biosciences, Inc., Menlo Park, CA, U.S.A.).
Sequence data were processed using SMRT link 5.0 software (https://github.com/PacificBiosciences/SMRT-Link).
Circular consensus sequences (CCSs) were generated from subread BAM files with the following parameters:
min length 200, max drop fraction 0.8, no polish TRUE, min zscore -999, min passes 1, min predicted accuracy
0.8, and max length 18000. CCS.BAM files were output and then classified into full-length and non-full-length reads
using pbclassify.py (https://github.com/PacificBiosciences/pbtranscript/blob/master/pbtranscript/tasks/classify.py)
with the following parameters: ignorepolyA false and minSeqLength 200. Non-full-length and full-length FASTA
files were then fed into the cluster step for isoform-level clustering, followed by final polishing, using the following
parameters: hq quiver min accuracy 0.99, bin by primer false, bin size kb 1, qv trim 5p 100, and qv trim 3p 30. We
combined the two size-fractionated libraries using Cd-Hit software with a similarity threshold of 99%.

Illumina library preparation, sequencing, and data processing
Three-microgram RNA samples were used for RNA sample preparation. A sequencing library was generated us-
ing NEBNext Ultra™ RNA Library Prep Kit for Illumina (NEB, U.S.A.) per the manufacturer’s recommendations.
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Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was car-
ried out using divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5×).
First-strand cDNA was synthesized using random hexamer primers and M-MuLV Reverse Transcriptase (RNase H).
Second-strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. Remaining over-
hangs were converted into blunt ends via exonuclease/polymerase activities. After adenylation of the 3′ ends of DNA
fragments, NEBNext Adaptors with hairpin loop structure were ligated in preparation for hybridization. To select
cDNA fragments 350 bp in length, the library fragments were purified with an AMPure XP system (Beckman Coul-
ter, Beverly, U.S.A.). Next, 3 μl of USER Enzyme (NEB, U.S.A.) was used with size-selected, adaptor-ligated cDNA
at 37◦C for 15 min, followed by 5 min at 95◦C before PCR. PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers, and Index (X) Primer. PCR products were purified (AMPure XP system), and
library quality was assessed on an Agilent Bioanalyzer 2100 system. The clustering of the index-coded samples was
performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumina, Inc., San Diego,
CA, U.S.A.) per the manufacturer’s instructions. After cluster generation, the library preparations were sequenced
on the Illumina NovaSeq 6000 platform (Illumina, Inc., San Diego, CA, U.S.A.), and 150-bp paired-end reads were
generated. Raw data (raw reads) in FASTQ format were first processed through in-house perl scripts. Clean data
(clean reads) were obtained by removing reads containing adapters, reads containing poly-N, and low-quality reads
from raw data. Q20, Q30, and the GC content of the clean data were calculated. All downstream analyses were based
on clean data with high quality. The resulting high-quality cleaned reads were assembled de novo into contigs using
Trinity v2.4.0 [22] with “min kmer cov” set to 2. Corset v1.05 [23] was used to hierarchically cluster transcripts and
obtain unigenes by comparing the number of reads and the expression patterns of transcripts. Short reads from the
Illumina platform were aligned to transcripts using Bowtie2 version 2.2.5 [24] with a mismatch of 0.

Correction, functional annotation, and analysis of transcripts
Polished consensus sequences from the PacBio platform were corrected using short reads from the Illumina platform
by LoRDEC software [25] with 23 k-mers and a solidity abundance threshold of 3 for k-mers. To obtain annotation
information, corrected transcripts were screened against the following databases using BLAST software version 2.2.28
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) [26,27]: NCBI non-redundant protein sequences (nr); NCBI non-redundant
nucleotide sequences (nt); KOGs (eukaryotic orthologous groups) [28]; Swiss-Prot, a manually annotated and re-
viewed protein sequence database [29]; KEGG Ortholog database (KO) [30]; and Gene Ontology (GO) [31]. For the
nr, nt, KOGs, KEGG, GO, and Swiss-Prot databases, the E-value threshold was 1 × 10−5. Searches of protein se-
quences in the public database Pfam (Protein family) [32] were conducted using HMMER 3.1b2 (http://hmmer.org/)
[33].

Prediction of coding regions (CDSs), transcription factors (TFs), and
simple sequence repeats (SSRs)
The ANGLE 2.4 software pipeline [34], a long-read implementation of ANGLE, is an error-tolerant method that was
used to determine the protein-coding sequences from cDNAs. We used protein sequences from closely related species
for ANGEL training and then ran ANGEL prediction using the polished consensus sequences. Andrias davidianus
TFs were identified using the animalTFDB 2.0 database [35] with default values. SSRs (also known as microsatellite
DNA) were identified in the transcriptome using the MIcroSAtellite identification tool (MISA) version:1.0 [36] (http:
//pgrc.ipk-gatersleben.de/misa/) with default values.

Prediction of long non-coding RNAs (lncRNAs)
We used Coding-Non-Coding-Index (CNCI) version:2 [37] with default parameters and profiles adjoining nucleotide
triplets to classify non-coding transcripts independent of known annotations. We used the NCBI eukaryotic protein
database for Coding Potential Calculator (CPC) (Version: cpc-0.9-r2) [38] training; non-coding sequences were dis-
criminated from coding transcripts using an e-value of 1e-10. We translated each transcript in all three possible frames
and used Pfam Scan [33] with default parameters to identify known protein family domains in the Pfam database.
Any transcript with a Pfam hit was excluded from subsequent steps. We also filtered out transcripts containing CDSs
predicted by ANGLE to obtain non-coding sequences predicted by the three bioinformatics tools.
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Table 1 Summary of transcript assembly information

Library 0.5–4 kb >4 kb after clustering after correction

Total transcripts 219,021 98,405 153,038 153,038

Flnc transcripts 202,602 (92.5%) 77,445 (78.7%) 147,243 (96.2%) 147,243 (96.2%)

non-Fl transcripts 16,419 (7.5%) 20,960 (21.3%) 5795 (3.8%) 5795 (3.8%)

GC% 48.20% 53.22% 49.17% 49.17%

Total length (bp) 446,609,747 451,427,874 402,093,303 402,093,303

Mean length (bp) 2039.1 4587.4 2627.4 2627.4

N50 (bp) 2172 4739 3432 3432

Results
Sequencing of the A. davidianus dorsal skin transcriptome using the
PacBio sequel system
To obtain the maximum possible number of unigenes and explore the molecular function of A. davidianus skin,
high-quality RNA was extracted from dorsal skin samples from one animal housed at a farm in Guiding County,
Guizhou Province, China. Given the small-fragment sequence bias of the PacBio Sequel System, we constructed two
size-fractionated libraries (0.5–4 kb and >4 kb) using the BluePippin Size Selection System to ensure comprehensive
coverage of the entire transcriptome. Combined SMRTbell libraries were sequenced on the PacBio Sequel System
using four SMRT cells.

PacBio data processing using SMRTlink
The 0.5–4 kb and >4 kb size-fractionated libraries produced 12.27 and 9.09 GB subreads, respectively; 11.86 GB
containing 7,201,899 subreads with an N50 of 1915 bp and 8.79 GB containing 3,693,583 subreads with an N50 of
4589 bp were obtained after removal of SMRTbell adapters and low-quality regions, respectively. To reduce the error
rate, all subreads were used to produce CCS reads, which upon further processing generated 219,021 and 98,405
transcripts from the 0.5–4 kb and >4 kb size-fractionated libraries, respectively (Table 1). A total of 153,038 transcripts
was generated by combining the two libraries using CD-HIT software [39], including 147,243 (96.2%) full-length
non-chimeric (Flnc) transcripts and 5795 (3.8%) non-full-length (non-Fl) transcripts, with unique transcript lengths
ranging from 167 to 17,552 bp (Table 1), an N50 of 3432, and an N75 of 1898; the detailed length distribution is shown
in Figure 1.

Illumina sequencing and error correction
To obtain accurate long reads, RNA was fragmented to build a cDNA library with an insert size of 350 bp that was
sequenced (paired-end, 2 × 150 bp) using an Illumina HiSeq 6000 (Illumina, Inc., San Diego, CA, U.S.A.). We ob-
tained approximately 24.011 Gb of raw data from 160,079,152 reads, of which 23.447 Gb (97.65%) were high-quality;
clean data from 156,316,976 reads were used in subsequent analyses. Polished consensus sequences from the PacBio
platform were corrected using clean short reads from the Illumina platform by LoRDEC software [25] with 23 k-mers
and a solidity abundance threshold of 3 for k-mers.

Functional annotation of transcripts
Unique A. davidianus transcripts were first annotated using BLAST software [26,40] through homology searches
against different protein and nucleotide databases (E-value threshold of ≤1e-5). A total of 116,825 (76.34%), 109,361
(71.46%), 115,876 (75.72%), 58,732 (38.38%), 68,741 (44.92%), and 94,770 (61.93%) unique transcripts generated
significant hits in the nr, Swiss-Prot, KEGG, KOGs, GO, and nt databases, respectively (Supplementary Material S1).
Unique A. davidianus transcripts were further annotated with HMMER 3.1b2 [33] using data in the Pfam database
[32]. A total of 68,741 unique transcripts (44.92%) were assigned using this database. A total of 19,244 transcripts
(12.57%) were not identified; 133,794 transcripts (87.43%) were identified in at least one database; and 11,640 tran-
scripts (7.61%) were identified in all databases (Figure 1). The distribution of the top Blastx hits indicated that putative
proteins were similar to those of the amphibians Xenopus laevis and Nanorana parkeri (Figure 2), which suggested
that the A. davidianus transcriptome was well-assembled.
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Figure 1. Length distribution of assembled and annotated transcripts

Prediction of potential CDSs
CDSs were predicted using ANGLE software [34] via an error-tolerant method. A total of 207,627 CDS were obtained
from 113,646 unique transcripts (Figure 3). A total of 58,053 transcripts had only one CDS, 33,451 transcripts had
two, 13,547 transcripts had three, and all other transcripts had more than three CDS, which likely stemmed from
sequencing errors in the PacBio sequencing system. The results of BLAST searches showed that the mean length of
CDSs was 539.1 bp, the mean GC content was 53.69%, and the maximum and minimum length of CDSs was 7895
and 294 bp, respectively.

Identification of possible TFs and candidate lncRNAs
We analyzed TFs and lncRNAs to identify regulatory genes for further studies. We identified and annotated a total
of 785 TFs from 47 different families using the animalTFDB 2.0 database [35] (Supplementary Material S2). The top
29 out of 47 TF families are shown in Figure 4. The largest group of TFs was the zf-C2H2 family (241 transcripts;
30.7%), followed by the CSD (180 transcripts; 22.9%), TF bZIP (89 transcripts; 11.3%), bHLH (40 transcripts; 5.1%),
HMG (32 transcripts, 4.1%), ZBTB (24 transcripts, 3.1%), and Homeobox (20 transcripts, 2.5%) families. Together,
these seven families represented approximately 80% of the TFs identified among unique A. davidianus genes, with
the zf-C2H2 and CSD families alone accounting for approximately half.

Non-coding RNAs include tRNAs, small RNAs, microRNAs, rRNAs, and lncRNAs. Our analyses only included
lncRNAs containing poly (A) tails identified in the PacBio datasets. Because of the large number of non-coding se-
quences in the de novo dataset, distinguishing non-coding RNA from coding RNA was difficult. We used CNCI [37],
CPC [38], and Pfam Scan [33] to predict candidate lncRNAs and then filtered transcripts containing CDSs predicted
by ANGLE [34] and transcripts ≤300 bp to identify non-coding sequences generated by the three bioinformatics
tools. A total of 27,237 potential lncRNAs were identified with lengths ranging from 300 to 12,850 bp (Supplemen-
tary Material S3).
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Figure 2. Length distribution of assembled and annotated transcripts

SSR analysis
SSRs (microsatellites) are stretches of short tandemly repeated sequences of DNA (1–6 bp) [36]. In this study, we
identified 8299 SSR motifs in 49,996 transcripts (32.67%) using MISA software [36] (Figure 5), which comprised 820
simple motifs and 7,479 complex motifs. The longest mono-, di-, tri-, tetra-, penta-, and hexa-nucleotide SSR repeats
were A (509), AC (62), TAT (20), ATAG (21), ATGCC (7) and TGGCA (7), and GTTCCA (5), respectively.

Analysis of eukaryotic orthologous groups (KOGs)
To identify orthologous protein sets and characterize the functional distribution characteristics of the A. davidianus
skin transcriptome, a total of 58,732 transcripts were classified into 24 KOG categories (Figure 6). The percentage of
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Figure 3. Distribution of CDS length

Figure 4. Top 29 out of the 47 TF families
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Figure 5. Distribution of SSR motifs

annotated unigenes in the “Extracellular structures” (“W” term) category was far higher than that in the other cate-
gories (20,868 [13.64%] of the total 153,038 transcripts), and this term was enriched in both size-fractionated libraries
(0.5–4 kb and >4 kb). The “R” term category “General function prediction only” containing 5952 transcripts (3.89%)
was also enriched in the two libraries. The “O” term category “Posttranslational modification, protein turnover, chap-
erones” containing 9086 transcripts (5.94%) was primarily enriched in the >4 kb library, and the “Z” term category
“Cytoskeleton” containing 6,411 transcripts (4.19%) was mainly enriched in the 0.5–4 kb library.

GO analysis
To identify the functional distribution of unique genes expressed in A. davidianus skin, a total of 68,742 tran-
scripts were classified into 1903 GO term categories in the three main classes (GO level 1): biological process, cel-
lular component, and molecular function (Figure 7). The largest numbers of annotated transcripts were in cellular
component; among these, the highest proportion of unigenes were enriched in the terms “cell” (14.27%), “cell part”
(14.27%), “organelle” (13.61%), “organelle part” (13.05%), and “supramolecular complex” (12.61%). In biological pro-
cess, transcripts were mainly enriched in the terms “cellular process” (14.56%), “single-organism process” (13.19%),
and “metabolic process” (12.71%). In molecular function, the term “binding” (42.23%) was dominant, followed by
the term “catalytic activity” (30.05%). Both cellular component and molecular function were enriched in the >4 kb
library.
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Figure 6. KOG classification of A. davidianus transcripts

(A) RNA processing and modification; (B) Chromatin structure and dynamics; (C) Energy production and conversion; (D) Cell

cycle control, cell division, chromosome partitioning; (E) Amino acid transport and metabolism; (F) Nucleotide transport and

metabolism; (G) Carbohydrate transport and metabolism; (H) Coenzyme transport and metabolism; (I) Lipid transport and

metabolism; (J) Translation, ribosomal structure and biogenesis; (K) Transcription; (L) Replication, recombination and repair; (M)

Cell wall/membrane/envelope biogenesis; (N) Cell motility; (O) Posttranslational modification, protein turnover, chaperones; (P) In-

organic ion transport and metabolism; (Q) Secondary metabolites biosynthesis, transport and catabolism; (R) General function

prediction only; (S) Function unknown; (T) Signal transduction mechanisms; (U) Intracellular trafficking, secretion, and vesicular

transport; (V) Defense mechanisms; (W) Extracellular structures; (X) Unnamed protein; (Y) Nuclear structure; (Z) Cytoskeleton.
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Figure 7. GO classification of unigenes
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Table 2 Summary of transcript assembly information

Sequencing
technology

Hybrid
(This study)

Illumina
(This study) Illumina [9,10] Illumina [12] Illumina [11] Illumina [5]

Total transcripts 153,038 127,992 132,912 167,064 93,366 87,297

GC% 49.17% 47.96% 49.85% NA 47.96% NA

Max length (bp) 17,552 15,158 16,067 NA 128,777 NA

Mean length (bp) 2627.4 1176 690 647.84 1326 734.80

N50 (bp) 3432 2076 1263 956 2409 1216

N90 (bp) 1559 476 262 NA 502 NA

Annotated rate 87.43% 48.50% 29.85% 33.93% 44.85% 40.06%

Annotated rate: Percentage of unigenes annotated in each database, including nr, Swiss-Prot, KEGG, KOGs, GO, and nt databases. NA: not available.

Table 3 Mapping rate of Illumina short reads

Transcripts
SRX4453287
(This study) SRR5344016 [12] SRR4449143 [11] SRR4449153 [11] SRR4449117 [11] SRR1609131 [5]

Transcripts by
hybrid sequencing

(This study)

80.32% 81.4% 81.41% 65.4% 71.72% 80.73%

Unigenes by Illumina
(This study)

78.07% 77.85% 79.6% 68.16% 72.36% 81.64%

CGS All
Unigene filter.fa [11]

77.39% 80.43% 82.64% 79.58% 81.18% 81.50%

SRX4453287 was from dorsal skin tissue; SRR5344016 was from skin tissue; SRR4449143 was from dorsal skin tissue; SRR4449153 was from lateral
skin tissue; SRR4449153 was from abdominal skin tissue; and SRR1609131 was from skin tissue. Transcripts were hybrid assembled, and unigenes
were assembled using Illumina short reads. CGS All Unigene filter.fa was downloaded from Xiaofang Geng et al. [11] (http://gigadb.org/dataset/100277),
which was assembled from more than 20 tissues [11].

KO analysis
KO analysis provided additional information on the molecular-level functions of A. davidianus skin transcripts,
including the metabolic pathways that each transcript isoform contributes to, as one unigene can be assigned to more
than one GO term [41]. We investigated 115,876 of the 153,038 transcripts (75.72%), which were enriched in 46 level
2 KEGG pathways (Figure 8); 10,141 transcripts were involved in metabolic pathways. The “signal transduction”
pathway was the largest functional pathway (level 2), and a lot of transcript isoforms in both libraries were annotated
to “signal transduction” pathways.

Discussion
We compared hybrid sequencing with NGS in this study. Trinity software [22] assembled all clean reads from the Il-
lumina platform and produced 265,177 transcripts that were hierarchically clustered by Corset [23] to obtain 127,992
unigenes. Differences between hybrid sequencing and NGS were observed (Table 2); specifically, the max length,
mean length, N50, N90, and annotated rate were higher for hybrid sequencing than for NGS. According to the anno-
tated results, the gene length distribution was uniform.

To ensure the robustness of the hybrid-sequenced transcripts, Illumina short reads were mapped to transcripts
using Bowtie2 version 2.2.5 [24] with a mismatch of 0 (Table 3). SRX4453287 (this study) was from dorsal skin tissue;
SRR5344016 was from skin tissue [12]; SRR4449143 was from dorsal skin tissue [11]; SRR4449153 was from lateral
skin tissue [11]; SRR4449153 was from abdominal skin tissue [11]; and SRR1609131 was from skin tissue [5]. Tran-
scripts were hybrid assembled, and unigenes were assembled using Illumina short reads. CGS All Unigene filter.fa
was downloaded from Xiaofang Geng et al. [11] (http://gigadb.org/dataset/100277), which was assembled from more
than 20 tissues [11]. The mapping rate of hybrid-assembled transcripts was higher for dorsal skin tissue than for other
tissues.

According to the assembly results of the two libraries, the percentage of full-length unigenes was higher in the 0.5–4
kb library than in the >4 kb library, likely because of the sequence length bias of the PacBio sequencing system. The
GO category biological process was lacking in the > 4 kb library, which differed from the 0.5–4 kb library. According
to KO annotation, the term “immune system” was more enriched among transcripts in the >4 kb library than in the
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Figure 8. KEGG classification of the transcript isoforms

12 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2021) 41 BSR20210511
https://doi.org/10.1042/BSR20210511

0.5–4 kb library. These annotated functional genes will aid future cloning and analysis of the full-length sequences of
these transcripts.

Hybrid sequencing analysis recovered more full-length transcripts, had higher N50 contig lengths, and had more
CDSs and predicted unique genes compared with previous studies based on NGS. Exploration of the molecular basis
of amphibian skin function and adaptation requires understanding the evolutionary processes affecting amphibians
(Li et al., 2016). Sequencing of the skin transcriptome of A. davidianus generated 153,038 transcripts from two
size-fractionated libraries (0.5–4 kb and >4 kb). This large dataset has the potential to aid our understanding of the
molecular-level function of amphibian skin.

Combining the proteome and metabolome with this reference dataset could facilitate the identification of func-
tional proteins and their structures, such as immune proteins and colloid proteins; single-cell sequencing; analyses of
the function of giant salamander skin; analysis of the transcriptome associated with biological stress; the construction
of a transcriptional regulation network; and the protection of giant salamanders.
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