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Abstract

Right ventricular dysfunction is a predictor for worse outcomes in patients with congenital

heart disease. Myocardial ischemia is primarily associated with right ventricular dysfunction

in patients with congenital heart disease and may be a therapeutic target for right ventricular

dysfunction. Previously, autologous skeletal myoblast patch therapy showed an angiogenic

effect for left ventricular dysfunction through cytokine paracrine effects; however, its efficacy

in right ventricular dysfunction has not been evaluated. Thus, this study aimed to evaluate

the angiogenic effect of autologous skeletal myoblast patch therapy and amelioration of

metabolic and functional dysfunction, in a pressure-overloaded right heart porcine model.

Pulmonary artery stenosis was induced by a vascular occluder in minipigs; after two months,

autologous skeletal myoblast patch implantation on the right ventricular free wall was per-

formed (n = 6). The control minipigs underwent a sham operation (n = 6). The autologous

skeletal myoblast patch therapy alleviated right ventricular dilatation and ameliorated right

ventricular systolic and diastolic dysfunction. 11C-acetate kinetic analysis using positron

emission tomography showed improvement in myocardial oxidative metabolism and myo-

cardial flow reserve after cell patch implantation. On histopathology, a higher capillary den-

sity and vascular maturity with reduction of myocardial ischemia were observed after patch

implantation. Furthermore, analysis of mRNA expression revealed that the angiogenic

markers were upregulated, and ischemic markers were downregulated after patch implanta-

tion. Thus, autologous skeletal myoblast patch therapy ameliorated metabolic and functional

dysfunction in a pressure-overloaded right heart porcine model, by alleviating myocardial

ischemia through angiogenesis.
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Introduction

The prognosis of patients with congenital heart disease (CHD) is improving with advances in

treatment strategies and interventions [1–3]. However, long-term cardiac overload owing to

anatomical features and residual lesions after repair leads to heart failure [4–6], especially right

heart failure [7,8], which is also known to be a predictor for poor outcomes [4,8–11]. Myocar-

dial ischemia is primarily associated with right ventricular dysfunction, causing right heart fail-

ure in patients with CHD [4,8,12–20]. Thus, myocardial ischemia could be a potential

therapeutic target for right heart failure. Specific treatments for right heart failure in patients

with CHD are not well elucidated [8,21–24], and even ventricular assist device therapy and

heart transplantation remain challenging treatments in patients with CHD and are not suitable

for all of them [25–29].

In recent years, regenerative treatments such as cell therapy have gained increasing atten-

tion as newer treatment options for left heart failure and are progressively being integrated

into clinical use [30,31]. Previously, we revealed the clinical efficacy of autologous skeletal

myoblast patch transplantation therapy for left ventricular dysfunction associated with ische-

mic cardiomyopathy and dilated cardiomyopathy, through angiogenesis and anti-fibrosis,

induced by cytokine paracrine effects in preclinical [32–37] and clinical studies [38–41]. These

findings propose a possible efficacy of the same treatment for right ventricular dysfunction

based on the ischemic etiology; however, this has not been evaluated before.

Hence, we hypothesized that autologous skeletal myoblast patch transplantation alleviated

right ventricular dysfunction, and conducted a preclinical study using a pressure-overloaded

right heart porcine model.

Material and methods

All studies were performed after the approval of the ethics review committee for animal experi-

mentation of Osaka University Graduate School of Medicine, Osaka, Japan (reference number:

30-056-005). All animal care procedures were conducted in compliance with the Principles of

Laboratory Animal Care formulated by the National Society for Medical Research and the

Guide for the Care and Use of Laboratory Animals prepared by the Institute of Animal

Resources and published by the National Institutes of Health (publication no: 85–23, revised

1996).

Preparation of animal models

Twelve Göttingen minipigs aged 5–6 months and weighing 10–12 kg (Oriental Yeast Corpora-

tion, Tokyo, Japan) were used in the experiments. The minipigs were anesthetized with an

intravenous administration of ketamine (6 mg/kg) and sodium pentobarbital (10 mg/kg) for

endotracheal intubation, and were maintained with inhaled isoflurane (1.5%–2%). The left

intercostal space was opened to mount a vascular occluder (OA218-025; Unique Medical Co.,

Ltd., Tokyo, Japan) (Fig 1A) to the pulmonary artery trunk (Fig 1B). The pericardium was

opened, and the vascular occluder was mounted to the pulmonary artery trunk and was con-

nected to an access port (CP2AC-7Fr; Primetech Co., Ltd., Tokyo, Japan), which was

implanted subcutaneously in the back. Pulmonary artery stenosis was gradually strengthened

over a month to a stenosis velocity of over 3.0 m/s, evaluated using echocardiography by inject-

ing 50% glycerin from the access port to inflate the vascular occluder. Pulmonary artery band-

ing (PAB) was maintained at the same level of stenosis for the rest of the study period (Fig 1G).

All the minipigs survived the induction of pulmonary artery stenosis, and two months after

PAB, the degree of right ventricular dysfunction was checked using echocardiography and
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Fig 1. Preparation of animal models and skeletal myoblast patch. All minipigs underwent a PAB procedure by

mounting the VO (a) to the pulmonary artery trunk (b) via the left intercostal space, harvesting the skeletal muscle

from the quadriceps femoris muscle (c) at the same time. The purified skeletal myoblast cells were isolated and

cultured (d). Cell patches were fabricated using a temperature-responsive dish (e) and were placed on the epicardium

of the right ventricular free wall (f). The protocol of the study is given in (g). PAB, pulmonary artery banding; VO,
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cardiac computed tomography, for confirming the establishment of a pressure-overloaded

right heart failure model.

Cell patch transplantation

Skeletal muscles weighing approximately 5 g were collected from the quadriceps femoris mus-

cle during the PAB procedure (Fig 1C). Purified skeletal myoblast cells were cultured for three

weeks as reported previously (Fig 1D) [35]. For quality control, the cell patch process was initi-

ated after confirming that the cultured cells had a CD56 positivity rate of�80% using flow

cytometry (BD FACSCanto2, BD Biosciences, New Jersey, USA). Cells were incubated in

100-mm temperature-responsive culture dishes (UpCell, CellSeed Inc., Tokyo, Japan) at 37˚C

for 6 h. The number of incubated cells was 5 × 106 per body weight of the minipigs, during

transplantation. The dishes were then transferred to a clean bench at room temperature to

release the cultured cells as intact cell patches. Using this protocol, skeletal myoblast cells spon-

taneously detached from the plates as free-floating monolayer cell patches (Fig 1E). Two

months after the PAB procedure, minipigs were again placed under general anesthesia for

either cell patch implantation (PATCH group, n = 6), or a sham operation with opening of the

pericardium through the right intercostal space (control group, n = 6). The cell patch was

placed on the epicardium of the right ventricular free wall (Fig 1F). Additionally, some fibrin

glue was applied over the cell patches after their placement to attach them to the epicardium of

the heart.

Echocardiography

Before the PAB procedure, and at two months after PAB (that is, before the patch implantation

or sham operation), and furthermore, at four months after PAB (that is, two months after the

patch implantation or sham operation), transthoracic echocardiography (TTE) was performed

to measure right ventricular systolic and diastolic function using Vivid I (General Electric

Healthcare, Chicago, USA) with a 6Tc-RS probe (General Electric Healthcare, Chicago, USA)

under general anesthesia. The following parameters were evaluated using four chamber view

images and tissue Doppler images: (1) Tei index of right ventricle, (2) right ventricular fraction

area change (RVFAC), (3) tricuspid annular plane systolic excursion (TAPSE), (4) the ratio

between early tricuspid inflow velocity and early tricuspid annular diastolic velocity (E/e’), (5)

isovolumic contraction time (ICT), (6) isovolumic relaxation time (IRT), and (7) right ventric-

ular free wall thickness (RVFWT).

Electrocardiography-gated multidetector-row computed tomography

Before the PAB procedure, and at two and four months after the PAB, electrocardiography-

gated multidetector-row computed tomography (MDCT) was performed to measure the vol-

ume and contraction of the right ventricle. The images were taken in the supine position with

a 16-slice multislice CT scanner (Somatron Emotion 16; Siemens Aktiengesellschaft, Munich,

Germany) during end-expiratory breath hold, under general anesthesia. MDCT was per-

formed after intravenous injection of a nonionic contrast medium (3 mL per bodyweight of

the mini-pigs; Iomeprol; Bracco-Eisai Co Ltd, Tokyo, Japan). The axial images were recon-

structed using the scanner software (Siemens Aktiengesellschaft, Munich, Germany). All

vascular occluder; TTE, transthoracic echocardiography; MDCT, electrocardiography-gated multidetector-row

computed tomography; PET, positron emission tomography; CATH, catheterization; HIS, histologic analysis; rtPCR,

real-time polymerase chain reaction analysis.

https://doi.org/10.1371/journal.pone.0247381.g001
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images were analyzed at a workstation (AZE; Virtual Pl Lexus 64, AZE Co., Ltd., Tokyo,

Japan). Right ventricular end-diastolic volume (RVEDV) and right ventricular end-systolic

volume (RVESV) were obtained from the workstation, and RV ejection fraction (RVEF) was

calculated using the following equation: RVEF (%) = 100 × (RVEDV/RVESV)/(RVEDV).

Pressure-volume loop analysis using cardiac catheterization

Four months after the PAB (that is, two months after the patch implantation or sham opera-

tion), an invasive pressure-volume loop analysis was performed under general anesthesia. A

tourniquet was placed under the inferior vena cava to change the ventricular preload. Arterial

access was obtained by introducing a 6Fr sheath into the left carotid artery, and venous access

was obtained by introducing a 7Fr sheath into the right carotid vein. 4Fr conductance and pres-

sure-tip catheters (CA-41063-PN, CD Leycom, Zoetermeer, Netherlands) were inserted into

the left and right ventricles through the sheaths in the carotid artery and carotid vein, under

fluoroscopic guidance. The position of the catheter was determined by observing the pressure

and segmental volume signals with appropriate phase relationships. The conductance and pres-

sure transducer controllers (Conduct NT Sigma 5DF plus analysis system; CFL-M, CD Leycom,

Zoetermeer, Netherlands) were set, and pressure-volume loops and intracardiac electrocardio-

grams were monitored online. The conductance, pressure, and intracardiac electrocar-

diographic signals were analyzed with Inca software (CD Leycom, Zoetermeer, Netherlands).

Under stable hemodynamic conditions, the baseline indices were initially measured, and the

pressure-volume loop was then drawn during the inferior vena cava occlusion and analyzed.

The following indices were calculated as the baseline left ventricular and right ventricular func-

tions: heart rate (HR), ejection fraction (EF), end-systolic pressure (ESP), end-diastolic pressure

(EDP), the maximum rate of the right ventricular pressure rise (dP/dt max), the maximal rate of

fall of the right ventricular pressure (dP/dt min), and the time constant of isovolumic relaxation

(Tau). The following relationships were determined by means of pressure-volume loop analysis,

as load-independent measures of right ventricular function: end-systolic pressure-volume rela-

tionship (ESPVR) and end-diastolic pressure-volume relationship (EDPVR).

11C-acetate positron emission tomography

Two months after PAB (that is, before the patch implantation or sham operation), and four

months after PAB (that is, two months after the patch implantation or sham operation), in vivo
measurements of myocardial oxygen consumption (MVO2) and myocardial blood flow (MBF)

were performed using positron emission tomography (PET) scanning (Eminence-B SET-3000B/

L; Shimadzu, Kyoto, Japan), on four minipigs in each group. The minipigs were sedated using a

propofol infusion (1 mL/h), and with 1% isoflurane inhalation, and were positioned in a whole-

body PET scanner at the Medical Imaging Center for Translational Research of Osaka University

Graduate School of Medicine. A 5-min transmission scan was performed for correcting the emis-

sion images for photon attenuation. Immediately after the transmission scan, approximately 100

MBq of 11C-acetate was administered intravenously, and dynamic PET acquisition was initiated

(15 mins). The measurements were performed under both resting conditions and high cardiac

work state induced by catecholamine (dobutamine, 20 μg/kg per minute), as reported previously

[42]. PET images were acquired in 30 frames (10 s × 6, 20 s × 6, 30 s × 12, and 60 s × 6) and were

reconstructed with a dynamic row-action likelihood algorithm with an image matrix of 128 ×
128. The PET images were analyzed using the software PMOD (Ver. 4.003, PMOD Japan Inc.,

Tokyo, Japan), where the right ventricle was also analyzed by flipping the PET image horizontally.

To determine the global cardiac oxygen consumption, the acetate clearance rates (myocardial oxi-

dative consumption [kmono]) of all segments of each measurement were averaged. The MBF was
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calculated using the one-tissue compartment model. Both the values of kmono and MBF were

derived from the subtraction of the preoperative test value from the postoperative test value, to

represent the amount of change by treatment. RV efficiency was derived by combining cardiac

catheterization data, CT data, and RV weight using the following equation as reported previously

[43]: RV efficiency = HR × RVESP × RVSV × 1.33 × 10−4/RV kmono × RV mass × 20, where

RVSV is the RV stroke volume determined using CT, RVESP is the RV end-systolic pressure

determined using cardiac catheterization, HR is heart rate determined using cardiac catheteriza-

tion, RV kmono is the resting condition right ventricular kmono at two months after patch implan-

tation or sham operation, and RV mass is the RV weight of the harvested heart.

Histologic analyses

Four months after PAB (that is, two months after patch implantation or sham operation), the

heart and liver were excised to perform histological and molecular biological analyses under

general anesthesia. The hearts were removed, and the ventricles were dissected free of atrial tis-

sue and large blood vessels. The RV was carefully separated from the left ventricle (LV) and

the intraventricular septum. Fresh ventricular tissue was immediately blotted dry and weighed

separately for determining the degree of RV hypertrophy based on two parameters: RV wall

weight/biventricular weight (RV/BV), and RV wall weight/body weight (RV/BW). Fresh liver

tissues were also immediately blotted dry and weighed for determining the degree of abdomi-

nal organ congestion owing to right heart failure: Liver weight/BW (Liver/BW).

The excised RV wall was fixed with either 10% buffered formalin for paraffin sections, or

4% paraformaldehyde for frozen sections. The paraffin sections of the RV were stained with

picrosirius red for assessing the degree of myocardial fibrosis and were stained with Periodic

Acid-Schiff for assessing myocardial cell size. The paraffin sections of the RV were used for

immunohistochemistry, and were labeled using polyclonal CD31 antibody (1:50, Abcam,

Cambridge, UK) and anti-α-smooth muscle actin antibody (1:50, DAKO, Hovedstaden, Den-

mark) for assessing capillary vascular density and vascular maturity. Frozen sections of the RV

were also used for immunohistochemistry and were labeled with dihydroethidium for estimat-

ing superoxide production. The paraffin sections of the liver were stained with hematoxylin-

eosin for assessing the degree of congestion around the central vein in the hepatic lobule.

Data were analyzed and averaged from three randomly selected fields in the RV free wall

and the RV anterior and posterior hinge points in each group. The fibrotic area was calculated

as the percentage of the myocardial area using Metamorph image analysis software (Molecular

Devices, Inc., Downingtown, PA, USA). BZ-analysis software (Keyence, Tokyo, Japan) was

used for measuring the capillary density and dihydroethidium positive dots. Myocardial cell

size was determined by drawing point-to-point perpendicular lines across the cross-sectional

area of the cell at the level of the nucleus. The results were expressed as the average diameter of

10 myocytes randomly selected from each selected field by Periodic Acid-Schiff staining using

a fluorescence microscope (BZ-9000, Keyence, USA).

Real-time polymerase chain reaction

The RV free wall region of the excised heart samples was later immersed in an RNA stabilization

solution (RNAlater, Invitrogen, Carlsbad, CA, USA). The total RNA was isolated from the

infarct-border area using the RNeasy Kit (Qiagen, Hilden, Germany), and was reverse-tran-

scribed using the Omniscript reverse transcriptase (Qiagen) enzyme. Real-time PCR was per-

formed using TaqMan Gene Expression Assay Master Mix (Applied Biosystems, Foster City,

CA, USA) on a 7500 Fast Real-Time PCR System (Applied Biosystems). The following genes

were analyzed using the TaqMan Gene Expression Assay (Applied Biosystems): vascular
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endothelial growth factor A, hepatocyte growth factor, C-X-C motif chemokine ligand 12, NADPH
oxidase heavy chain subunit, NADPH oxidase 4, natriuretic peptide A, natriuretic peptide B,

transforming growth factor beta 1, and cellular communication network factor 2. Glyceraldehyde-
3-phosphate dehydrogenase was co-amplified as an internal control for RNA integrity.

Statistical analyses

All data were analyzed using the JMP Pro15 software (SAS Institute, Cary, NC, USA). All val-

ues were expressed as means ± standard deviation (SD). Comparisons between the two groups

were performed using the Mann-Whitney U test. The differences were considered statistically

significant at a P-value of<0.05.

Results

Amelioration of pressure-overloaded right ventricular dysfunction after

patch implantation

The functional effect of autologous skeletal myoblast patches on the pressure-overloaded right

ventricles was assessed using MDCT (Fig 2A) and TTE. The deterioration in RV volume, RVEF,

and RV systolic and diastolic functions, at two months after PAB (before patch implantation)

was not significantly different between the PATCH and the control groups (Fig 2B and 2C).

Two months after the patch implantation or sham operation, RV volume dilatation and

reduction in RVEF were significantly alleviated in the PATCH group than in the control group

(RVEDV: 47.5 ± 6.9 mL vs. 65.7 ± 7.4 mL, p = 0.01; RVESV: 27.8 ± 3.8 mL vs. 46.1 ± 5.2 mL, p

<0.01; RVEF: 41.3 ± 1.1% vs. 29.7 ± 4.0%, p<0.01, PATCH vs. control, respectively) (Fig 2A).

In the TTE at two months after patch implantation or sham operation, the RV free wall

thickness was not different in the groups (S1 Fig), but the RV systolic and diastolic functions

were more significantly ameliorated in the PATCH group than in the control group (Tei

index: 0.42 ± 0.08 vs. 0.68 ± 0.07, p<0.01; RVFAC: 47.8 ± 2.2% vs. 19.2 ± 5.2%, p<0.01; ICT:

46.0 ± 6.7 ms vs. 90.8 ± 9.8 ms, p<0.01; TAPSE: 9.0 ± 1.2 mm vs. 5.1 ± 0.9 mm, p<0.01; E/e’:

6.57 ± 1.24 vs. 10.11 ± 1.38, p<0.01; IRT: 53.3 ± 7.8 ms vs. 99.7 ± 9.0 ms, p<0.01, PATCH vs.

control, respectively) (Figs 2B and S1).

Pressure-volume loop analysis at two months after patch implantation and sham operation also

revealed a more significant alleviation of the RV systolic and diastolic functions in the PATCH

group than in the control group (Table 1 and S2 Fig). However, there was no difference in the sys-

temic RV pressure, and the ratio between the systemic RV pressure and systemic LV pressure

(Table 1), which indicates that the level of pressure load on the RV was equal between the groups.

Significant improvement in myocardial oxidative metabolism in the patch

implantation group

Based on the 11C-acetate PET conducted at 2 months after PAB (that is, before patch implanta-

tion or sham operation), and at 4 months after PAB (2 months after patch implantation or

sham operation); the MVO2 and MBF were measured at each point, and the preoperative val-

ues were subtracted from the postoperative values to evaluate the changes in the value between

treatments (Fig 3).

The postoperative value of the 11C-acetate clearance rate constant k (kmono), which is an index

of tricarboxylic acid (TCA) cycle activity, was lower than the preoperative value at rest conditions,

and showed no difference between the groups (Table 2). However, under stress conditions with

dobutamine administration, the change in kmono was positive in the PATCH group but was nega-

tive in the control group (Table 2). The ratio between the kmono at stress and rest conditions,
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Fig 2. Changes in the right ventricular volume and right ventricular systolic and diastolic functions during the

study. (a) Representative cardiac images of the four-chamber view and short axial view at the end-diastolic phase and

end-systolic phase for each point. The RV volume was enlarged at the pre-treatment point compared to the baseline in

either group, but at the post-treatment point, the enlargement of the RV volume was alleviated more in the PATCH

group than in the control group. (b) Changes in the RV volume and RVEF at pre-treatment and post-treatment from
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which is an index of the MVO2 reserve, was positive in the PATCH group but was negative in the

control group with a significant difference, which indicates a high activity reserve of the TCA

cycle in the PATCH group (Table 2). RV efficiency calculated from RV work and RV oxygen con-

sumption was significantly higher in the PATCH group than in the control group (Table 2).

Like the MVO2, the postoperative value of the MBF was lower than the preoperative value

at rest conditions and showed no difference between the groups (Table 2). However, under

stress conditions with dobutamine administration, the change in MBF was positive in the

PATCH group but was negative in the control group, with a significant difference (Table 2).

The ratio between the MBFs at stress and rest conditions, which is an index of myocardial flow

reserve, was positive in the PATCH group, but was negative in the control group with a signifi-

cant difference, which indicates an increment of myocardial flow reserve after treatment in the

PATCH group, but a decrease in the control group (Table 2).

Myoblast cell patch attenuates pathological remodeling and myocardial

ischemia in the pressure-overloaded right ventricular myocardium

The macropathological findings of the resected heart revealed a hypertrophied RV wall in both

groups, however, the enlargement of the RV cavity was lesser in the PATCH group than in the

baseline. The RV volume dilatation and reduction of RVEF were more significantly alleviated in the PATCH group

than in the control group at the post-treatment point. (c) Changes in the systolic and diastolic functions of the RV at

pre-treatment and post-treatment, from the baseline. The RV systolic and diastolic functions significantly ameliorated

in the PATCH group than in the control group at the post-treatment point. The red and blue numbers at each point

represent the mean ± standard deviation of the PATCH group and the control group, respectively. P-values were

calculated using the Mann-Whitney U test. P<0.05�, P<0.01�� versus control group. RVEDV, right ventricular end-

diastolic volume; RVESV, right ventricular end-systolic volume; RVEF, right ventricular ejection fraction; FAC,

fraction area change; E/e’, the ratio of early trans-tricuspid flow velocity to early diastolic velocity of the tricuspid

annulus.

https://doi.org/10.1371/journal.pone.0247381.g002

Table 1. Analysis of hemodynamic indices at two months after patch implantation.

Control (n = 6) PATCH (n = 6) P-value

Basic hemodynamic indices

HR (bpm) 75 ± 14 124 ± 26 0.013

RVEF (%) 23.7 ± 11.1 44.6 ± 9.6 0.008

RVESP (mmHg) 28.6 ± 10.2 35.9 ± 7.8 0.128

RVESP/LVESP (mmHg) 0.57 ± 0.17 0.75 ± 0.16 0.230

RVEDP (mmHg) 7.5 ± 1.3 2.9 ± 2.2 0.006

dP/dt max (mmHg/sec) 179 ± 55 425 ± 135 0.008

dP/dt min (mmHg/sec) −205 ± 76 −391 ± 112 0.013

Tau (ms) 51.8 ± 11.4 32.2 ± 6.7 0.005

Load-independent parameters analyzed

using PV loop

ESPVR (mmHg/mL) 1.15 ± 0.58 3.91 ± 1.54 0.005

EDPVR (mmHg/mL) 0.95 ± 0.39 0.14 ± 0.04 0.005

HR, heart rate; RVEF, right ventricular ejection fraction; RVESP, right ventricular end-systolic pressure; LVESP, left

ventricular end-systolic pressure; RVEDP, right ventricular end-diastolic pressure; dP/dt max, the maximum rate of

the right ventricular pressure rise; dP/dt min, the maximal rate of fall of the right ventricular pressure; PV, pressure-

volume; Tau, the time constant of isovolumic relaxation; ESPVR, end-systolic pressure-volume relationship; EDPVR,

end-diastolic pressure-volume relationship. P-values were calculated using the Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0247381.t001

PLOS ONE Autologous skeletal myoblast patch implantation for pressure-overloaded right heart failure

PLOS ONE | https://doi.org/10.1371/journal.pone.0247381 February 26, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0247381.g002
https://doi.org/10.1371/journal.pone.0247381.t001
https://doi.org/10.1371/journal.pone.0247381


control group (Fig 4A). Additionally, the increase in RV mass was significantly lower in the

PATCH group than in the control group for both the ratio of RV mass to biventricular mass,

and the ratio of RV mass to the BW of the minipigs (Fig 4A).

Fig 3. Representative images of 11C-acetate clearance curve and a bullseye map of myocardial blood flow at two months after patch implantation or

sham operation. (a) The 11C-acetate clearance curve for stress conditions was steeper than the curve for rest conditions in the PATCH group, but the 11C-

acetate clearance curve for stress conditions was flatter than the curve for rest conditions in the control group. (b) The bullseye map for stress conditions was

globally upregulated from the bullseye map for rest conditions in the PATCH group, but the bullseye map for stress conditions showed no further remarkable

change compared to the bullseye map for rest conditions in the control group. Rest, rest conditions; Stress, stress conditions with administration of

dobutamine.

https://doi.org/10.1371/journal.pone.0247381.g003

Table 2. Analysis of the change in myocardial oxidative metabolism and myocardial blood flow between treatments.

Control (n = 4) PATCH (n = 4) P-value

kmono

Rest conditions (min-1, mean ± SD) −0.003 ± 0.030 −0.008 ± 0.015 0.659

Stress conditions (min-1, mean ± SD) −0.078 ± 0.067 0.005 ± 0.050 0.194

Stress/Rest (min-1, mean ± SD) −1.023 ± 0.990 0.185 ± 0.211 0.029

RV efficiency (J/s�min−1�g, mean ± SD) 0.037 ± 0.022 0.311 ± 0.213 0.030

Myocardial blood flow

Rest conditions (min-1, mean ± SD) −0.235 ± 0.331 −0.128 ± 0.221 0.665

Stress conditions (min-1, mean ± SD) −1.565 ± 1.569 0.625 ± 0.510 0.030

Stress/Rest (min-1, mean ± SD) −1.323 ± 1.979 0.785 ± 0.463 0.005

kmono, 11C-acetate clearance rate constant k; Stress/Rest, the ratio between the value of stress conditions and rest conditions; RV, right ventricular. The P-values were

calculated using the Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0247381.t002
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Fig 4. Histopathological analysis of pressure-overloaded right ventricular myocardium two months after patch

implantation or sham operation. (a) Representative figures of the macropathological findings. Despite the

hypertrophied RV wall, the enlargement of the RV cavity was well-controlled in the PATCH group when compared to

the control group. The increase in RV mass was significantly lower in the PATCH group than in the control group for

both the ratio between RV mass and biventricular mass, and the ratio between the RV mass and the BW of the
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For the pathological evaluation of the liver, to identify the adverse effects of RV failure on

abdominal organs, the ratio between the liver mass and BW of minipigs was significantly

smaller in the PATCH group than in the control group, and the congestion around the central

vein in the hepatic lobule suggested that the degree of damage by RV failure was more remark-

able in the control group when compared to the PATCH group (S3 Fig).

Upregulated VEGF, HGF, and SDF-1, and downregulated NOX-2, NOX-4,

ANP, BNP, TGFβ1, and CTGF in the heart after myoblast cell patch

implantation

Real-time PCR was used to quantitatively assess the expression levels of myoblast cell patch-

derived factors, such as vascular endothelial growth factor (VEGF), hepatocyte growth factor

(HGF), and stromal cell-derived factor-1 (SDF-1), as well as to assess the expression levels of

myocardial hypoxia, hypertrophy, and fibrosis (Fig 5). Intramyocardial mRNA levels of

VEGF, HGF, and SDF-1 were more significantly upregulated in the PATCH group than in the

control group (VEGF: 1.08 ± 0.36 vs. 0.78 ± 0.06, p = 0.02; HGF: 1.34 ± 0.75 vs. 0.78 ± 0.11,

p = 0.02; SDF-1: 1.26 ± 0.83 vs. 0.49 ± 0.23, p<0.01, PATCH vs. control, respectively) (Fig 5A).

Intramyocardial mRNA levels of NADPH Oxidase (NOX)-2, NOX-4, atrial natriuretic peptide

(ANP), brain natriuretic peptide (BNP), transforming growth factor-β1 (TGF-β1), and cellular

communication network factor 2 (CCN2) were significantly downregulated in the PATCH

group than in the control group (NOX-2: 0.95 ± 0.30 vs. 2.21 ± 0.84, p<0.01; NOX-4: 0.75

±0.15 vs. 2.01 ± 0.54, p<0.01; ANP: 0.47 ± 0.26 vs. 2.40 ± 1.82, p<0.01; BNP: 0.15 ± 0.11 vs.

5.26 ± 4.61, p<0.01; TGF-β1: 0.84 ± 0.13 vs. 1.34 ± 0.21, p<0.01; CCN2: 0.39 ± 0.25 vs.

1.36 ± 1.04, p = 0.02, PATCH vs. control, respectively) (Fig 5B).

Discussion

In this study, we performed autologous skeletal myoblast patch implantation in pressure-over-

loaded right heart failure in a porcine model. Serial measurements of RV volume with MDCT

revealed that the dilatation of the RV due to pressure overload could be attenuated by myoblast

patch transplantation (Fig 2A and 2B). This was accompanied by the improvement in the sys-

tolic and diastolic functions of the RV, assessed on TTE (Fig 2C) or pressure-volume loop

analysis by cardiac catheterization (Table 1), 2 months after the patch transplantation. In addi-

tion, the right ventricular myocardial oxidative metabolism and myocardial flow reserve,

assessed with 11C-acetate PET, were significantly increased by myoblast patch transplantation

minipigs. (b) Representative photomicrographs of Periodic Acid-Schiff staining (×400, scale bar = 50 mm), picrosirius

red staining (×100, scale bar = 150 mm), double immunohistochemical staining of anti-CD31 and anti-aSMA (×400,

scale bar = 50 mm), and dihydroethidium staining (×400, scale bar = 50 mm). Cardiomyocyte size and fibrotic area

were significantly smaller in the PATCH group than in the control group. The number of CD31 and aSMA double

positive arterioles and capillaries per cardiomyocyte significantly increased in the PATCH group than in the control

group. Superoxide production was significantly reduced in the PATCH group than in the control group. The

horizontal line in the middle indicates the mean, and the whiskers mark indicates the standard deviation. P-values

were calculated using the Mann-Whitney U test. P<0.01��. LV, left ventricle; RV, right ventricle; BV, bi ventricle; BW,

bodyweight of mini-pigs; DHE, dihydroethidium staining. Histological analysis revealed that the cardiomyocyte size

and fibrotic area were significantly smaller in the PATCH group than in the control group (cell size: 12.7 ± 0.5 μm vs.

19.5 ± 2.6 μm, p<0.01; fibrosis: 4.1 ± 0.7% vs. 8.0 ± 0.9%, p<0.01, PATCH vs. control, respectively) (Fig 4B). The

capillary vascular density and vascular maturity were assessed by CD31 and aSMA double immunostaining. The

number of CD31 and aSMA double positive arterioles and capillaries per cardiomyocyte significantly increased in the

PATCH group when compared to the control group (0.60 ± 0.02 units/cell vs. 0.37 ± 0.03 units/cell, respectively, p

<0.01) (Fig 4B). Superoxide production was assessed using dihydroethidium staining, and superoxide production was

significantly lower in the PATCH group than in the control group (481 ± 149 units/mm2 vs. 1,649 ± 114 units/mm2,

respectively, p<0.01) (Fig 4B).

https://doi.org/10.1371/journal.pone.0247381.g004
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Fig 5. Gene expression of neurohormonal factors in the heart tissue assessed using real-time PCR. (a)

Intramyocardial mRNA levels of VEGF, HGF, and SDF-1 were more significantly upregulated in the PATCH group

than in the control group. (b) Intramyocardial mRNA levels of NOX-2, NOX-4, ANP, BNP, TGF-β1, and CCN2 were

significantly downregulated in the PATCH group as compared to the control group. The horizontal line in the middle

indicates the mean, and the whiskers mark indicates the standard deviation. The P-values were calculated using the
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(Table 2). Histological analysis showed reduced myocardial hypertrophy, reduced fibrosis, and

increased aSMA and CD31 double-positive mature vessels in the myocardium, by myoblast

patch transplantation (Fig 4). Gene expression profiling showed a significant upregulation of

angiogenic cytokines and reduced oxidative stress markers in the myocardium by myoblast

patch transplantation (Fig 5). These results suggest that, the transplantation of a myoblast

patch induces angiogenesis and anti-fibrosis by means of a cytokine paracrine effect, and

results in therapeutic effects in pressure-overloaded RV failure.

There have been multiple cell transplantation preclinical studies for RV dysfunction with

various cell types, animal models, and administration methods [44,45]. However, so far, none

of them have achieved clinical application. In the present study, we used a pressure-overloaded

right heart model to target CHD patients with a systemic right ventricle, which of right ventricle

is exposed to a high systemic vascular resistance for a long period. We directly attached the

myoblast cells to the epicardium of the RV myocardium with heart failure, as an administration

method. Our cell source has already been applied clinically for left heart failure, where its safety

has been assured and the detailed mechanism has been well studied. Furthermore, our cell

patch transplantation can more reliably transfer therapeutic cells to the myocardium in heart

failure, compared to previously reported administration methods, such as transcoronary or

intramyocardial injections. Our cell patch technology also has the advantage of not only main-

taining the cell-cell connection, but also noninvasively harvesting its own extracellular matrix,

deposited during culture beneath the cell patch, which allows a greater anti-heart failure effect.

Histopathologically, the loss of capillaries in the RV myocardium is a well-known feature in

cases of pressure-overloaded RV dysfunction in CHD patients with systemic RV, such as hypo-

plastic left heart syndrome with previous Norwood/Fontan palliation [46–48]. However, the

MVO2 was increased by hypertrophic changes in the ventricular cardiomyocytes in a pres-

sure-overloaded right heart [43,49–51]. Under these conditions, the RV cardiomyocytes,

which were originally poorly resistant to ischemia [8,12,13], were in seriously ischemic condi-

tions. The metabolic remodeling in cardiomyocytes owing to increased oxidative stress, due to

the ischemic conditions of a pressure-overloaded RV, can cause various reactions, such as

inflammation, apoptosis, and fibrosis, leading to RV dysfunction [8,12,13]. Based on these

conditions of the pressure-overloaded RV myocardium, the main therapeutic mechanism in

autologous skeletal myoblast patch implantation therapy—angiogenesis—may be effective for

pressure-overloaded right heart failure.

The angiogenic effect of autologous skeletal myoblast patch implantation therapy has been

previously proven in many of our studies on left heart failure [33,40]. The major underlying

mechanism, angiogenesis, is expected to be upregulated by pro-angiogenetic cytokines from the

myoblast patch, such as VEGF and HGF [34,52,53]. These cytokines act on vascular endothelial

cells and vascular smooth muscle cells to promote angiogenesis along with vascular maturity of

the myocardium in a pressure-overloaded right heart. Additionally, the upregulated SDF-1

expression from the patch may promote further angiogenesis, secondary to the accumulation of

mesenchymal stem cells from the bone marrow on the impaired myocardium of the right ventri-

cle [34,52–55]. In our present study, the upregulation of VEGF, HGF, and SDF-1 was observed,

and the same mechanism of action is expected to work on the pressure-overloaded right ventric-

ular myocardium. In the present study, we did not investigate the survival of the implanted myo-

blast cells. However, we confirmed the survival of the implanted myoblast cells for a few months

Mann-Whitney U test. P<0.05�, P<0.01��. VEGF, vascular endothelial growth factor; HGF, hepatocyte growth factor;

SDF-1, stromal cell-derived factor-1; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; TGF-β1,

transforming growth factor-β1; CCN2, cellular communication network factor 2.

https://doi.org/10.1371/journal.pone.0247381.g005
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after transplantation in our previous study on left heart failure [35,56,57], and the same survival

can be expected in the right ventricle. Even after the loss of implanted myoblast cells a few

months after implantation, the recruited bone marrow mesenchymal stem cell-derived vascular

endothelial cells expressed angiogenic cytokines, along with the maintenance or maturation of

newly developed vascular networks. Therefore, the functional recovery of heart failure is pre-

served even after cell loss. Moreover, as in myoblast patch treatment for left heart failure, the

anti-hypertrophic effect on cardiomyocytes in the pressure-overloaded RV decreased MVO2

and ameliorated myocardial dysfunction, by improving the myocardial ischemia.

In the initial stage of pressure-overloaded right heart failure, compensatory mechanisms

such as volume dilatation and hypertrophic change work to maintain the RV function in a

hyperdynamic state [8,12,13]. In this stage, the myocardial oxidative metabolism improves,

and coronary flow reserve can be secured [43,49–51,58,59]. However, the prolonged pressure

overload advances the metabolic remodeling of cardiomyocytes, owing to persistent mechani-

cal stress on the myocardium and severe ischemic conditions [8,12,13,19,20]. Eventually, the

right heart failure progresses to a decompensated stage with impaired RV function due to the

reduction in cardiac reserve [13,60–62]. Considering the results of the 11C-acetate PET, the

angiogenic effect of patch implantation suppresses the metabolic remodeling of cardiomyo-

cytes and maintains the cardiac reserve of the RV, by avoiding chronic ischemic conditions.

Thus, patch implantation prevents progression to a decompensated stage and maintains a

hyperdynamic state of compensatory right heart failure. Additionally, from the results of car-

diac function analysis, the suppressed ventricular volume dilatation and decreased end-dia-

stolic pressure with patch implantation suggest a reduction in the RV wall stress, which can

also work positively for the amelioration of right heart failure.

Conclusions

In summary, in pressure-overloaded right heart porcine models, autologous skeletal myoblast

patch implantation therapy alleviated myocardial ischemia by angiogenesis and improved the

myocardial oxidative metabolism as well as the myocardial blood flow. This led to the amelio-

ration of RV diastolic and systolic functions, thereby alleviating right heart failure. This study

demonstrated the potential of autologous skeletal myoblast patch implantation therapy as a

novel cardiac regenerative treatment for patients with right heart failure associated with CHD.

Supporting information

S1 Fig. Changes in the RV systolic and diastolic functions during the study. RV systolic and

diastolic functions were significantly ameliorated in the PATCH group than in the control

group, at two months after patch implantation or sham operation. The red and blue numbers

at each point represent the means ± standard deviation of the PATCH group and control

group, respectively. P-values were calculated using the Mann-Whitney U test. P<0.01�� versus

control group. ICT, isovolumic contraction time; TAPSE, tricuspid annular plane systolic

excursion; IRT, isovolumic relaxation time; RVFWT, right ventricular free wall thickness.

(TIF)

S2 Fig. Representative pressure–volume loops of the control and PATCH groups under

different loading conditions. The slope of the end-systolic pressure–volume relationship is

displayed as a black straight line on top of the pressure-volume loops. The correlation of the

end-diastolic pressure–volume relationship is displayed as a back straight line below the pres-

sure-volume loops. RVP, right ventricular pressure; RV, right ventricle.

(TIF)
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S3 Fig. Adverse effects of RV failure on the abdominal organs. (a) Representative photomi-

crographs of hematoxylin-eosin staining (×40, scale bar = 300 mm; ×100, scale bar = 100 mm).

Congestion around the central vein in the hepatic lobule was more marked in the control

group than in the PATCH group. (b) The ratio between the liver mass and the bodyweight of

minipigs was significantly lower in the PATCH group than in the control group. The horizon-

tal line in the middle indicates the mean, and the whiskers mark indicates the standard devia-

tion. P-values were calculated using the Mann-Whitney U test. P<0.05�.

(TIF)

S1 File.

(XLSX)
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