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Abstract. Multivariate Hawkes processes (MHPs) are a class of point
processes where an arrival in one dimension can affect the future arrivals
in all dimensions. Existing MHPs are associated with homogeneous link
functions. However, in reality, different dimensions may exhibit different
temporal characteristics. In this paper, we augment MHPs by incorporat-
ing heterogeneous link functions, referred to as hybrid MHPs, to capture
the temporal characteristics in different dimensions. Since the branching
structure can be utilized to equivalently represent MHPs, we propose
a novel model called BRUNCH via intensity-driven Chinese Restaurant
Processes (intCRP) to identify the optimal branching structure of hybrid
MHPs. Furthermore, we relax the constraint on the shapes of triggering
kernels in MHPs. We develop a Monte Carlo-based inference algorithm
called MEDIA to infer the branching structure. Experiments on real-world
datasets demonstrate the superior performance of BRUNCH and its use-
fulness in social media applications.

Keywords: Branching structure · Hawkes process · Heterogeneous
link functions · Social media

1 Introduction

Multivariate Hawkes processes (MHPs) are a class of point processes with mutu-
ally exciting components to model sequences of discrete events in continuous
time, where an arrival in one dimension can affect future arrivals in all dimen-
sions [5,6]. Recently, MHPs have emerged in multiple fields to capture mutual
excitation between dimensions, including high frequency trading [1], social influ-
ence analysis [16] and computational biology [13]. However, these MHPs are
limited to a specific scenario where a past arrival can only excite the occurrence
of future arrivals, and the corresponding link functions1 are linear (i.e., linear
MHPs). However, in reality, inhibitory arrivals and non-additive aggregation of

1 Link functions describe the dynamics of the comprehensive effects from previous
events.
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effects from past arrivals are present in several application domains [10]. For
instance, negative feedbacks of online consumers may inhibit others’ purchas-
ing behaviours. Consequently, MHPs associated with nonlinear link functions,
namely nonlinear MHPs [10], have been proposed where effects from past events
encompass both excitation and inhibition.

Prior work on MHPs also assume that all dimensions take the same link
function i.e., either linear or nonlinear MHPs (homogeneous MHPs). That is,
all dimensions follow roughly the same temporal characteristics. Note that a
dimension may record actions of a user (e.g., tweet, retweet, comment, share)
in social media, behavior of a customer (e.g., purchase, comment, return) in
online shopping websites, and so on. In reality, different dimensions may exhibit
different temporal characteristics. For example, in Twitter, one individual (i.e.,
dimension) may be extremely interested in a popular topic and interact with
her followers frequently whereas another individual may take little interest in
that topic and seldom respond to his followers. In such scenario, the cumulative
influence from recent events on the former individual is clearly different from
the one on the latter. Hence, homogeneous MHPs are insufficient to capture
such diverse temporal characteristics. To address this problem, in this paper we
augment MHPs by incorporating heterogeneous link functions, referred to as
hybrid MHPs, allowing us to cope with diverse impact of past events on future
events in different dimensions.

The cluster Poisson process interpretation [7] of MHPs separates the events
into two categories, namely, immigrants and offspring. The offspring events are
triggered by past events, while the immigrants arrive independently and thus do
not have a existing parent event. Offsprings are structured into clusters associ-
ated with each immigrant event. This is called the branching structure [8], which
is an useful representation of MHPs in various applications. For example, in
social influence analysis it can construct the narrative of information diffusion
to pave the way for strategies to encourage or limit individual behaviors [14].
Additionally, the branching structure is widely utilized as a strategy in the max-
imum likelihood estimation of MHPs [16]. Unfortunately, such cluster Poisson
process representation can only be applied to linear MHPs due to the mutually
exciting assumption. Nonlinear MHPs cover both mutual excitation and mutual
inhibition stochastically. Consequently, existing approaches based on the cluster
Poisson process representation cannot be adopted to infer the branching struc-
ture of hybrid MHPs. In this paper, we infer the branching structure of hybrid
MHPs regardless of the shapes of the triggering kernel functions2.

We propose a novel probabilistic model called BRUNCH (Branching
stRUcture iNferenCe of Hybrid multivariate Hawkes processes) to reveal the
branching structure of hybrid MHPs without assuming homogeneity of link func-
tions or shapes of triggering kernel functions (Sect. 3). It is important for our
probabilistic model to emphasize the following two features mirrored by the

2 Triggering kernel functions describe the dynamics of how previous events trigger
future events and may vary widely across different applications, e.g., the triggering
patterns in social media can be very different from the ones in high frequency trading.



BRUNCH: Branching Struc. Inference of Hybrid MHPs with Apps. to SoMe 555

Table 1. Key notations.

Notation Definition Notation Definition

X Event sequences tik k-th arrival in i-th dimension

Xi i-th event sequence Ni(t) Event number until t in i-th dimension

B Collection of event links til → tik Event link from event til to event tik

C Collection of cluster links s → g Cluster link from cluster s to cluster g

Pik Events triggered by tik I(B, C) Collection of cascades

Zik Parent event of tik Zik The cascade the event tik belongs to

event sequences in MHPs: (a) the chronological order of events is nonexchange-
able; and (b) the triggering relations could distribute within or across dimensions
stochastically. To this end, we propose intensity-driven Chinese Restaurant Pro-
cess (intCRP), a novel extension of classical CRP [3] in which the random seating
assignment of the customers depends on the triggering kernels between them. In
particular, intCRP has a nested structure – inner intCRP to explore the possible
triggering relations among events occurring in one dimension (i.e., event links),
and outer intCRP to identify the collection of triggering relations between all
events and their parents (if any) across dimensions (i.e., cluster links). Obvi-
ously, the changes to the triggering relations within and across dimensions are
highly coupled, i.e., the inner intCRP and outer outCRP are strongly interlaced.
Since there are countably infinite sets of triggering relations, we propose a novel
inference approach called MEDIA (MontE Carlo-baseD Inference Approach)
that leverages the triggering nature of MHPs to sample event links and clus-
ter links alternatively (Sect. 4). Finally, we apply BRUNCH on real-world social
media datasets, and the experimental study in Sect. 5 demonstrates its supe-
rior performance and usefulness. Formal algorithms and proofs of theorems and
lemmas appear in [9]. List of key symbols used in this paper is given in Table 1.

2 Preliminaries

In this section, we introduce relevant concepts for understanding this paper.

2.1 Multivariate Hawkes Processes (MHPs)

The conditional intensity function of the i-th dimension for an M -dimensional
MHP takes the following form [10]:

λi(t) = Fi

(
μi +

∑M

j=1

∑

tjl<t
αijφij(t − tjl)

)
(2.1)

where μi > 0 is the base intensity capturing the arrival rate of exogenous events
independent of historical events. The term

∑M
j=1

∑
tjl<t αijφij(t−tjl) represents

the accumulation of endogenous intensity caused by history [4]. The coefficient
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Fig. 1. (a) An example of branching structure of MHPs and the events on the time
axis; (b) Branching structure construction using BRUNCH.

αij measures the influence from the j-th dimension to the i-th dimension, allow-
ing mutual excitation (αij > 0) and mutual inhibition (αij < 0). The triggering
kernel function φij(t− tjl) quantifies the triggering effect from the event tjl (i.e.,
tjl denotes the l-th arrival occurring in the j-th dimension) to the occurrence
rate of the i-th dimension. Most of the existing work use predefined kernel func-
tions with unknown parameters, such as the exponential kernels [16] and the
power-law kernels [15]. The link function Fi : R → R+, recognizes the trigger-
ing pattern of the i-th dimension over the historical events. The linear MHPs [6]
is the case Fi(x) = x with nonnegative αij for each dimension, while nonlinear
MHPs apply various Fi(x) to guarantee the positive intensities. In hybrid MHPs,
we allow each dimension to take a personalized link function to capture diverse
temporal characteristics in real-world scenarios.

2.2 Branching Structure

Recall that the events in MHPs are classified as either immigrants or offsprings.
An immigrant event arrives independently of other events, while an offspring event
is triggered by a previous event. In the sequel, we refer to an immigrant together
with its offsprings as a cascade. The collection of triggering relations in cascades is
called the branching structure [8]. The cluster Poisson processes [7] could equiva-
lently represent the branching structure of linear MHPs. Briefly, each immigrant
starts one cascade, which consists of offspring events of the 1st, 2nd, 3rd, · · · gener-
ations, controlled by the endogenous intensity in Eq. 2.1 [11]. Due to the non-linear
link functions, the above branching structure representation based on the cluster
Poisson processes is inapplicable for nonlinear MHPs and hybrid MHPs.

Suppose that Xi = {tik}Ni(t)
k=1 denotes the i-th event sequence during a

time window [0, t]. Then X = {Xi}i∈[M ] is the collection of events from M
dimensions during [0, t]. While modeling the sequences X via hybrid MHPs,
the corresponding branching structure could be represented by the variable set
K = {{(Zik, Pik)}Ni(t)

k=1 }i∈[M ] mathematically, such that

– Zik = tik if tik is an immigrant; and Zik = tjl if event tjl triggers tik; and
– Pik = {thm, trs, . . .} if there are some events {thm, trs} triggered by tik; oth-

erwise, Pik = ∅.
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Our objective is to infer (Zik, Pik) for each event. Consider Fig. 1(a). Directed
links sketch an example of branching structure. Z11 = t11 indicates the event t11
is an immigrant, and Z12 = t11 shows t11 triggers t12. Z32 = t31 and Z33 = t31
leads to P31 = {t32, t33}, denoting that t31 triggers t32 and t33 successively.

3 The BRUNCH Model

While modeling the asynchronous time-stamped event sequences via hybrid
MHPs, we aim to reveal the underlying branching structure. Although the
traditional Chinese Restaurant Process (CRP) [3] provides a flexible class of
distributions that is amenable for modeling dependencies between elements,
the exchangeability assumption here is problematic for elements with tempo-
ral dependencies. This is because events in MHPs occur at different time points,
and are nonexchangeable. In addition, in our problem setting the influence that
determines the pairwise dependencies between events is not homogeneous within
and across different sequences. Intuitively, it is natural to quantify the influence
via the triggering kernels in Eq. 2.1. In order to tackle these issues, we present
the BRUNCH model, which is based on intensity-driven Chinese restaurant pro-
cesses (intCRP), a new variant of CRP that allows a number of intensity-driven
distributions as priors on triggering relations between events.

The events in one cascade could stem from different dimensions. So, beyond
the triggering relations obtained from single-sequence intCRP, we need to cap-
ture the cross-sequence triggering relations among events. To this end, BRUNCH
allows us to identify the possible dependencies among multi-dimensional event
sequences in hybrid MHPs. Specifically, it presents a class of prior distributions
over branching structure according to intCRP, which has nested structure, inner
intCRP and outer intCRP. Briefly, the inner intCRP identifies the possible trig-
gering relations in each sequence independently, which are referred to as event
links. Linked events in each sequence form one cluster. Subsequently, outer
intCRP captures the potential cross-sequence triggering relations, referred to as
cluster links, which connects parent events with children from cross-sequence
clusters.

We resort to the Chinese Restaurant metaphor to describe the generative
process of event links and cluster links in BRUNCH. Imagine a collection of
event sequences as a collection of restaurants, and the events in each sequence
as customers entering a restaurant. The linked events in each sequence compose
one cluster, and such clusters correspond to tables. Figure 1(b) illustrates the
process. Note that in traditional CRP, the probability of a customer sitting at
a table is computed from the number of other customers already sitting at that
table.

3.1 Event Link Construction

In each sequence, if one event is an immigrant, there exists one self-link with
itself; otherwise, there exists a triggering dependency for the event. That is, if
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event til generates event tik, the link from til to tik is created spontaneously.
The inner intCRP assigns event link til → tik in a biased way, according to the
following cluster-specific distribution:

Pr(til → tik|ρi, Ai) ∝
{

Ai
lk tik > til

ρi tik = til
(3.1)

where self-affinity ρi = μi yields new immigrant events, and larger self-affinity
favors more cascades. Ai

lk describes how the affinity between a pair of events
affects the probability for til triggering tik. In accordance with the propagation
characteristics described by hybrid MHPs, child events tend to be generated by
preceding events with stronger triggering effect. We define Ai

lk as the product
of two parts: fw(til, tik) and fd(til, tik). For a window size W , we set the decay
function fw(til, tik) such that for tik−til < W, fw(til, tik) = 1, and zero otherwise.
It determines the probability to link with events that are at most W timespan
away, and disregards the historical events as time progresses. Intuitively, the
possible links existing between events that are far away from each other are
negligibly rare. For fd(til, tik), we apply the self-triggering kernel fd(til, tik) =
αiiφii(tik − til) which decays the probability of connecting events along with the
timespan to the current one. Consequently, the event links Bi = {til → tik|k =
1, 2, · · · , Ni(t), l ∈ {1, 2, · · · , k}} in i-th dimensional sequence assign events into
clusters, where two events are assigned to the same cluster if one is reachable
from the other by traversing the directed links. Once the event link til → tik is
confirmed, we can obtain the branching structure Zik = til within sequences.

3.2 Cluster Link Construction

Accordingly, the collection of event links B = {B1, B2, · · · , BM} will divide the
event sequences X into clusters, denoted by C(B). By involving the mutual-
triggering kernels, we could measure the pairwise affinity between cross-sequence
events. Hence, given two clusters, s and g, the outer intCRP assigns the cluster
link s → g according to the following cascade-specific distribution:

Pr(s → g|B) ∝ max
tik∈s,tik<tje

(|αij |φij(tje − tik)
)

g �= s (3.2)

where tje = min{tjl|tjl ∈ g}. Only if one event (i.e., tik) in cluster s generates the
earliest event in cluster g, there exists a cluster link s → g. In particular, self-loop
cluster link is non-existent. Once the cluster link s → g is determined, we could
construct the equivalent branching structure Pik = Pik

⋃{tje}. In summary, we
construct the complete branching structure K = {(Zik, Pik)} via scanning the
obtained event links B and cluster links C.

Intuitively, a collection of cluster links will divide clusters into cascades. We
represent one cascade as one set of events. Let Zik denote the cascade associated
with event tik, and Z = {Zik|i = 1, 2, · · · ,M ; k = 1, 2, · · · , Ni} records the
final cascade assignments. Notice that events tik and tjl belong to one cascade
(i.e., Zik = Zjl) if and only if they are reachable via combinations of event
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links and cluster links. Given the collection of event links B and cluster links C,
we denote I(B, C) as the final collection of cascades. We initialize the Hawkes
likelihood parameters Θ1:M = {μi, αij , φij}i,j∈[M ] ∼ π(γ) where γ are the hyper-
parameters, and π(γ) is the collection of distributions.

The central goal of BRUNCH is to infer the posterior distribution of the
latent links (B, C), given a collection of time-stamped events. It places a prior
distribution over a combinatorial number of possible event links and cluster
links, according to inner intCRP (Eq. 3.1) and outer intCRP (Eq. 3.2), respectively.
Intuitively, applying Bayes’s Theorem, the posterior distribution takes the form
Pr(B, C|X) = Pr(X,B,C)

Pr(X) . Unfortunately, we cannot compute Pr(X). Hence, the
posterior inference of links is intractable. To address this, in the following section
we present a strategy that approximately infers the posterior distribution.

4 Model Inference

As the number of event links and cluster links varies with the observed events,
we need to undertake Bayesian inference over a link set of unknown cardinality.
Moreover, changes over event links may induce subsequent changes to other event
links and current cluster links. To this end, we propose the Monte Carlo-based
inference approach (MEDIA) that leverages the triggering nature of hybrid MHPs
to sample event links and cluster links.

t

t
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tD1

D2

D3

D4

event link

cluster link

one cluster

one cascade

sampling 
event link

(a) Sampling

t

t

t
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D2

D3

D4

cluster from one cascade cluster from another cascade

(b) New Branching Structure

Fig. 2. Sampling event links in Panel (a) leads a chain of changes to current branching
structure, and constructs new one in Panel (b).

We aim to construct a Markov chain whose stationary distribution is the
target posterior distribution Pr(B, C|X). The state of the chain is represented by
(B, C), a collection of links over event sequences. Furthermore, event links B and
cluster links C are strongly coupled, that is, sampling event links could trigger
a chain of merges and splits to the current structure, as shown in Fig. 2. In view
of this, we design the Monte Carlo-based inference approach, which involves two
key phases: (a) sampling event links B via a Metropolis-Hastings rule, which
could possibly bring changes to current cluster links C, and then (b) update
cluster links C via a Gibbs sampler. We elaborate on them in turn.
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Sampling Event Links. Let current links be (B, C). After sampling one event
link, the reconstructed links are denoted as (B̃, C̃). The iterative procedure runs
until approaching the stationary distribution as follows:

1. Using the current links B, sample a candidate link set B̃ from the transition
probability q(B̃, C̃|X,B, C);

2. Sampled B̃ leads to cluster links C̃. Calculate the acceptance probability
η(B̃, C̃|X,B, C) for the candidate set B̃,

η(B̃, C̃|X,B, C) = min
{Pr(X, B̃, C̃)q(B, C|X, B̃, C̃)

Pr(X,B, C)q(B̃, C̃|X,B, C)
, 1

}

Notice that we are considering the ratio of Pr(B, C|X) under two different
structures, so the denominator Pr(X) is eliminated.

Theorem 4.1 The above Metropolis-Hastings rule satisfies detailed balance.

Based on Theorem 4.1, we can guarantee the resulting Markov chain con-
verges to a stationary distribution uniquely [2]. BRUNCH provides a joint distri-
bution for a collection of events and current links as following:

Pr(X,B, C) = Pr(B) Pr(C|B) Pr(X|B, C) (4.1)

If one event is an offspring, it has only one parent event. So once the affinity
functions in inner intCRP are predefined, the generated event links are condition-
ally independent. Furthermore, event links divide all events into clusters. Hence,
once the event links and the affinity functions in outer intCRP are predefined,
the generated cluster links are conditionally independent. That is to say, event
links B are conditionally independent given (ρ1:M , A1:M ), and cluster links C are
conditionally independent given B, thereby causing the independent cascades.
As a consequence, the joint distribution on events and links equals to:

Pr(X, B, C|ρ1:M , A
1:M

, γ) =
∏

I∈I(B,C)

Pr(tZ=I |γ)

M∏

i=1

Ni∏

k=1

k∏

l=1

Pr(til → tik|ρi, A
i
)

s∈C(B)∏

tik∈g

Pr(s → g|B)

(4.2)
The activities belonging to cascade I are represented as tZ=I , hence,

Pr(tZ=I |γ) =
∫ ∏

Zik=I
Pr(tik|Θ1:M )dπ(Θ1:M |γ) (4.3)

where the parameter set Θ could be drawn from pre-determined distributions
associated with the hyper-parameters γ. Hence, the above integral is tractable.
Based on the hybrid MHPs associated with conditional intensity (Eq. 2.1), we
derive the conditional probability density [8] that an event occurs at time tik is:

Pr(tik|Zik = I,Θ1:M ) = λi(tik|Zik = I,Θ1:M ) · exp
( −

∫ tik

0

λi(s|Θ1:M )ds
)

(4.4)
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where the integral
∫ tik
0

λi(s|Θ1:M )ds is not always analytically integrable w.r.t.
various link functions of hybrid MHPs. To address the issue, we propose the
approximation:

∫ t

0
λi(s|Θ1:M )ds =

∑n
m=1(tm − tm−1)λi(tm).

We describe how replacing an event link affects the current links (B, C), and
there are four cases:

1. Split. If adding event link tik → tik breaks the existing link til → tik and
divides tik and til into two clusters, it shows that event tik is an offspring.
Moreover, there are no existing clusters to be merged after sampling event link
tik → til′ . Thus, the new cluster including til has the same incoming cluster links
as the previous cluster containing both tik and til. We assume that the incoming
links are independently linked to the new cluster with equal probability. New
cluster s including tik collects its outgoing cluster links Cs according to the dis-
tribution Pr(Cs|X, B̃, C−s) where C−s represents the set of cluster links excluding
the ones s → g, g ∈ C(B̃). Then, the transition probability is:

q1(B̃, C̃|X,B, C) = Pr(tik → til′ |ρi, Ai) · 0.5|Ctik
∪Ctil

| Pr(Cs|X, B̃, C−s) (4.5)

where |Ctik ∪Ctil | records the number of incoming cluster links for the old cluster
containing both tik and til. Calculate Pr(tik → til′ |ρi, Ai) according to Eq. 3.1.

2. Split and Merge. Adding event link tik → tik breaks existing link til →
tik. Moreover, the cluster including event tik and the cluster including event
til′ are merged after sampling event link tik → til′ . Thus, the outgoing cluster
links of new cluster retain the outgoing cluster links of the old cluster including
til′ , and the incoming cluster links of new cluster combine the incoming cluster
links connecting to the cluster including tik and the cluster including til′ . The
transition probability is:

q2(B̃, C̃|X,B, C) = q(tik → til′) · 0.5|Ctik
∪Ctil

| (4.6)

Also, the incoming cluster links are assumed to be assigned to the new merged
cluster equally. When the sampling link tik → til′ merges two clusters from one
cascade, q(tik → til′) = Pr(tik → til′ |ρi, Ai). Otherwise, when tik → til′ merges
two clusters from different cascades, it combines the two cascades. Hence,

q(tik → til′) = Pr(tik → til′ |ρi, Ai) · Pr(XZ1=Zik
∪ XZ2=Zil′ |Zik �= Zil′ , γ)

W1 · W2
(4.7)

wherein W1 = Pr(XZ1=Zik
|Zik �= Zil′ , γ), and XZ1=Zik

represents the events
in the cascade Zik excluding the events in the cascade Zil′ . Similarly, W2 =
Pr(XZ2=Zil′ |Zik �= Zil′ , γ), and XZ2=Zil′ denotes the events in the cascade Zil′

excluding the events in the cascade Zik.

3. Merge. After adding event link tik → tik, if there is no new cluster to appear,
it shows that event tik is an immigrant. Moreover, sampling event link tik → til′

causes two existing clusters to be merged. Hence, the transition probability is:

q3(B̃, C̃|X,B, C) = q(tik → til′) (4.8)
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Considering the two merged clusters come from one cascade or two cascades,
q(tik → til′) is analogous to the analysis of q2(B̃, C̃|X,B, C).

4. No Change. There is no new cluster after setting tik → tik, and also no merge
after sampling event link tik → til′ . In this case, the corresponding transition
probability is: q4(B̃, C̃|X,B, C) = Pr(tik → til′ |ρi, Ai).

Obviously, after sampling each event link, the resulting split (i.e., case 1) and
merge (i.e., case 3) are inverse of each other, meanwhile, the other two cases (i.e.,
split and merge vs. no change) are inverse transform. Accordingly, by taking the
inverse pairs, we derive the corresponding acceptance ratios η(B̃, C̃|X,B, C) =
min{τ, 1}, where the Hastings ratio τ = Pr(X,B̃,C̃)q(B,C|X,B̃,C̃)

Pr(X,B,C)q(B̃,C̃|X,B,C) .
As aforementioned, sampling an event link may lead four possible changes to

current links (B, C). Hence, the corresponding Hastings ratio is:

• A single offspring event becomes an immigrant and the previous cluster is split
into two clusters. Thus the candidate partition structure (B̃, C̃) is generated.
The transitions corresponding to q1 and q3 are the inverse of each other.
Substituting Eq. 4.1, 4.5 and 4.8, the Hastings ratio works out to be

τ1 =
Pr(X, B̃, C̃)q3(B, C|X, B̃, C̃)
Pr(X,B, C)q1(B̃, C̃|X,B, C)

=
1

0.5|Ctik
∪Ctil

|
Pr(C−s|B̃)
Pr(C|B)

Pr(X|B̃, C−s)
Pr(X|B, C)

(4.9)
When the offspring event changes its parent event from one cluster to another
cluster under the condition that the two clusters locate in different cascades,
the reverse transition q3 leads to the merger of two cascades. Consequently,
the transition probability is:

q3(B, C|X, B̃, C̃) = Pr(tik → til′ |ρi, Ai) · Pr(XZ1=Zik
∪ XZ2=Zil′ |Ctik �= Ctil′ , γ)

W1 · W2

W1 = Pr(XZ1=Zik
|Zik �= Zil′ , γ) W2 = Pr(XZ2=Zil′ |Zik �= Zil′ , γ)

Similarly,
q1(B̃, C̃|X,B, C) = Pr(tik → til′ |ρi, Ai) · 0.5|Ctik

∪Ctil
| Pr(Cs|X, B̃, C−s, ρ).

The corresponding transition probability becomes: τ1 = 1

0.5
|Ctik

∪Ctil
|
Pr(C−s|B̃)
Pr(C|B)

• A single offspring event switches to an immigrant, and sampling a new event
link leads to the combination of two local clusters. In this case, the transitions
corresponding to q2 and q4 are the inverse of each other. If the two merged
clusters come from one cascade,

τ2 =
Pr(X, B̃, C̃)q4(B, C|X, B̃, C̃)
Pr(X,B, C)q2(B̃, C̃|X,B, C)

=
1

0.5|Ctik
∪Ctil

|
Pr(C̃|B̃)
Pr(C|B)

Pr(X|B̃, C̃)
Pr(X|B, C)

(4.10)

If the sampling new event link causes two cascades to be merged, we obtain
τ2 = 1

0.5
|Ctik

∪Ctil
|
Pr(C̃|B̃)
Pr(C|B) .

• Sampling Ctil′ = tik leads the immigrant event tik to trigger new offspring.

Similar to τ1, we can calculate the Hastings ratios: τ3 = Pr(X,B̃,C̃)q1(B,C|X,B̃,C̃)
Pr(X,B,C)q3(B̃,C̃|X,B,C) .
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• Samplings which change event links but cause no change to the cluster links
always have τ4 = 1.

Sampling Cluster Links. Once the event links B are sampled via the afore-
mentioned Metropolis-Hasting rule, we update the cluster links C again via
Gibbs sampler as follows: [i)] Scan each cluster s ∈ C(B); [ii)] Draw Cs ∼
Pr(Cs|X,B, C−s). Repeat the above steps until convergence. Cs represents the
outgoing cluster links for cluster s, and C−s records the set of cluster links
excluding the ones s → g, g ∈ C(B). We calculate Pr(Cs|X,B, C−s) according to
Eq. 3.2.

We keep all event links in an adjacency matrix S ∈ Rn×n(n =
∑M

i=1 Ni(t)),
wherein rows and columns are indexed by ordered events from all sequences,
value 1 or 0 is recorded in entry (tik, tjl) according to whether tik triggers tjl or
not. The formal description of MEDIA, is given in [9]. The time complexity of
MEDIA is O(LM3n2

anc) [9].

5 Experiments

In this section, we investigate the performance of our model and inference algo-
rithm and report the key results. All experiments are performed on a machine
with 16 GB RAM with Intel(R) Core(TM) E5-1620V2 CPU@3.70 GHz processor
running on Windows 8.1 Pro.

Competitors. Recall that there is no existing work that infers the branching
structure of nonlinear MHPs. Hence, we are confined to compare our proposed
frameworks to techniques that infer the branching structure of linear MHPs
in [12,17]. In particular, we consider the following strategies for our study. (a)
Cluster-L: Based on the alternative representation of the linear Hawkes process
in terms of cluster Poisson processes, [12,17] propose the cluster-based method.
(b) MEDIA-L: Use MEDIA to infer the branching structure of linear MHPs. (c)
MEDIA-E: Apply MEDIA to infer the branching structure of exponential MHPs
(i.e., the corresponding link function Fi(x) = ex). (d) MEDIA-H: The odd dimen-
sions of MHPs take linear link function, and the even dimensions adopt exponen-
tial one. Then we use MEDIA to infer the branching structure of hybrid MHPs.

As mentioned earlier, BRUNCH is not sensitive to shapes of the triggering
kernel functions in hybrid MHPs. Hence, we adopt an exponential kernel function
φij(t) = exp(−βijt)(βij > 0) in the experiments (see [9] for the performance
associated with other kernel functions). For each dimension, the hyper-parameter
γ is sampled by a uniform distribution U(0, 10). The base intensity μ is set
varying over dimensions and is sampled from U(0, γ), then the coefficient αij is
sampled from N (0, γ2), and the decay parameter βij has the form of βij = c∗αij

where c is sampled from U(0, γ). The initial parameters Θ1:M = (μ, α, φ) need
satisfy the stability and uniqueness conditions (see details in [9]). Additionally,
we set the time window size to W = 12 h.

Datasets and Ground Truth. We fit the aforementioned models on two real-
world social media datasets: (1) Facebook (Fa): 43, 679, 231 events from 109, 211
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Fig. 3. Experimental results.

individuals during March 2018 to May 2018; (2) Twitter (Tw): 51, 622, 139 events
from 123, 972 individuals from March 2018 to May 2018. While crawling the
triggering relations of events (i.e., which event triggers which events) as ground
truth via Facebook Graph API and Twitter Streaming API, we crawl the social
network structure in advance. For each immigrant event in each individual’s
sequence, we grab the triggered events (i.e., offsprings) starting from the indi-
vidual’s followers via a depth-first search algorithm. Then, while modeling the
observed timestamped events via MHPs, we aim to infer the branching structure
without the knowledge of social network structure.

Inferring Branching Structure. We convert the branching structure to a
binary matrix S as mentioned in Sect. 4. Given the estimated links (B̃, C̃), we
update S̃ according to B̃, and then derive the across-dimensional branching
structure K from C̃ before filling in the final S̃. Afterwards, comparing the esti-
mated matrix S̃ with the ground truth S, we evaluate the effectiveness for all
the aforementioned strategies in terms of F1-Score.

Figures 3(a) and 3(b) plot the results. Clearly, our proposed model BRUNCH
with MEDIA outperforms the baseline Cluster-L, obtaining higher inference F1-
Score. That is, the triggering relations among events (i.e., branching structure of
MHPs) identified by the MEDIA approach are more reliable. While applying the
same inferring procedure MEDIA, hybrid MHPs (mixing exponential MHPs and
linear MHPs) show superior inference performance compared to other alterna-
tives. In particular, MEDIA-H is superior to MEDIA-L and MEDIA-E. This further
verifies the justifiability of our proposed hybrid MHPs.

Convergence. We compare the convergence rate of our proposed techniques in
Fig. 3(c) on Facebook data. The results on Twitter are qualitatively similar (see
[9]). Clearly, MEDIA-H is of higher likelihood than MEDIA-L and MEDIA-E. This
further validates the usefulness of our hybrid MHPs.

Scalability. Figures 3(d) plots the scalability of our algorithms with increasing
events on Facebook data. The results are qualitatively similar on Twitter (see [9]).
We run the inference methods on different sizes of datasets (i.e., slice different
percentages of events in datasets as input data for BRUNCH). Observe that the
average inference time of MEDIA stabilizes with increasing number of events.
Since the number of event links and cluster links grows significantly as events
increases, we expect the average runtime of MEDIA becomes relatively stable
when more than 70% input data are utilized.
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6 Conclusions

In this paper, we propose a novel probabilistic model called BRUNCH to infer
the branching structure of hybrid MHPs. It bridges a significant chasm between
hybrid MHPs (nonlinear MHPs as well) and branching structure inference. We
handle the inferencing procedure via the MEDIA method, which provides a heuris-
tic to make coordinated changes to both event links within clusters and cluster
links within cascades. Empirically, our model demonstrates good performance
and application potential in the real world.
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