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Background and Purpose: Licofelone is a dual 5-lipoxygenase/cyclooxygenase inhibitor, with well-docu- 

mented anti-inflammatory and analgesic effects, which is used for treatment of osteoarthritis. Recent 

preclinical studies have also suggested neuroprotective and anti-oxidative properties of this drug in some 

neurological conditions such as seizure and epilepsy. We have recently demonstrated a role for nitric oxide 

(NO) signaling in the anti-epileptic activity of licofelone in two seizure models in rodents. Given the important 

role of N-methyl-D-aspartate receptors (NMDARs) activation in the NO production and its function in the 

nervous system, in the present study, we further investigated the involvement of NMDAR in the effects of 

licofelone (1, 3, 5, 10, and 20 mg/kg, intraperitoneal [i.p.]) in an in vivo model of seizure in mice. 

Methods: Clonic seizures were induced in male NMRI mice by intravenous administration of 

pentylenetetrazol (PTZ).

Results: Acute administration of licofelone exerted anticonvulsant effects at 10 (p<0.01) and 20 mg/kg 

(p<0.001). A combined treatment with sub-effective doses of the selective NMDAR antagonist MK-801 

(0.05 mg/kg, i.p.) and licofelone (5 mg/kg, i.p.) significantly (p<0.001) exerted an anticonvulsant effect on 

the PTZ-induced clonic seizures in mice. Notably, pre-treatment with the NMDAR co-agonist D-serine (30 

mg/kg, i.p.) partially hindered the anticonvulsant effects of licofelone (20 mg/kg).

Conclusions: Our data suggest a possible role for the NMDAR in the anticonvulsant effects of licofelone 

on the clonic seizures induced by PTZ in mice. (2021;11:14-21)
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Introduction

Licofelone, a substrate analogue of arachidonic acid, is a dual com-

petitive inhibitor of 5-lipoxygenase (5-LOX), cyclooxygenase (COX)-1, 

and COX-2 that has been shown to be effective in the treatment of 

osteoarthritis.1 Additionally, licofelone exerts analgesic, anti-in-

flammatory, anti-pyretic, anti-bronchoconstrictive, and anti-platelet 

effects.2-4 In comparison to nonsteroidal anti-inflammatory drugs, li-

cofelone contains a favorable gastrointestinal safety profile as well as 

promising efficacy in the treatment of osteoarthritis.1,5-7 Several stud-

ies have also demonstrated effects of licofelone in decreasing the pro-

duction of pro-inflammatory leukotrienes and prostaglandins.8-10 

Given the fact that dysregulation of prostaglandins and leukotrienes 

can contribute to the pathophysiology of neurological disorders,11 ef-

fects of licofelone on various experimental models of central nervous 

system (CNS) disorders have been investigated suggesting neuro-

protective and anti-oxidative effects for licofelone.12-14 Moreover, pre-

vious experiments have demonstrated modulatory effects of licofe-

lone on neuroinflammatory markers in animal models of Alzheimer’s 

disease.15 Furthermore, licofelone can exert antidepressant-like ef-



 Gholizadeh R, et al. Licofelone & Seizure: NMDA Receptors 15

www.kes.or.kr

fects probably due to its anti-inflammatory properties.16

Collectively, these studies point toward an instrumental ther-

apeutic role of dual COX/5-LOX inhibitors in CNS disorders in which 

oxidative stress plays a key role. Consistent with this notion, the pro-

tective effect of licofelone in epileptic disorders has been inves-

tigated in recent years.17,18 For instance, inducible nitric oxide (NO) 

synthase inhibition could potentiate the anticonvulsive effects of lico-

felone on lithium-pilocarpine induced seizures in a rat model of sta-

tus epilepticus (SE).17 These results have also been reproduced in a 

pentylenetetrazole (PTZ)-induced clonic seizure model in mice.18 

Furthermore, another COX/LOX inhibitor, BW755C, has been found 

to be protective against kainite-induced epilepsy in a rat model.19 

Tenidap, another COX/LOX inhibitor, conferred neuroprotection and 

prevented the epileptogenesis process in lithium pilocarpine-induced 

SE in male rats.20 These studies collectively indicate the effectiveness 

of COX/LOX inhibitors in the management of different types of 

seizure.

Excitatory amino acids play a critical role in producing and sustaining 

epileptic activity in both the mature and developing brain.21 

Glutamatergic N-methyl-D-aspartate receptors (NMDARs) receptors 

have been implicated in epileptogenesis. The selective NMDAR antago-

nist MK-801 is anticonvulsant in several models of epilepsy in both 

adults and immature animals.21 In adults, an anticonvulsant effect 

has been shown in the kindling,22,23 PTZ24,25 electroshock,22,25 lith-

ium/pilocarpine,26,27 bicuculline,28 soman,29 and kainic acid models.30-32 

Activation of NMDARs in the CNS is responsible for neuronal NO pro-

duction through activation on the neuronal NO synthase enzyme.33,34 

It has been well established that NMDRs/NO signaling modulates seiz-

ure threshold in a variety of seizure models.35-38 Additionally, from sev-

eral mechanisms that potentially contribute to the anticonvulsant ef-

fects of licofelone, the NO pathway has drawn much attention.17,18,39 

These data may indicate the potential involvement of NMDAR in the 

anti-seizure activity of licofelone. Therefore, we aimed to answer this 

question in the present study, which not only does provide novel insight 

on the protective effect of licofelone in the PTZ-induced clonic seizure 

model in mice, but also suggests NMDAR as a possible mediator involved 

in seizure susceptibility.

Methods

Animals

Male NMRI mice, aged 6-8 weeks and weighing 22-30 g, were used 

in this study. The animals were placed in a temperature-controlled 

(22±3oC) colony room on a 12-hour light/12-hour dark cycle with ad-

equate and free access to food and water. The behavioral experiments 

were conducted between 09:00 and 14:00. The groups consisted of 

eight animals and each animal was used only once. All procedures were 

carried out in accordance with institutional guidelines for animal care 

and use of laboratory animals published by national institutes of health 

and with the approval of the Ethics Committee on Animal Experiments 

of Tehran University of Medical Sciences (IR.IAU.K.REC.1396.100).

Drugs

The following drugs were used in the present study: PTZ (Sigma, 

Gillingham, UK), MK-801 (Dizocilpine or MK-801 ([+]-5-methyl-10,11-di-

hydro-5H-dibenzo [a,d]cyclohepten-5,10-imine maleate; Sigma), and 

D-serine (β hydroxyalanine, (R)-2-Amino-3-hydroxypropionic acid; 

Sigma). Licofelone ([2,2-dimethyl-6-(4-chloropheny-7-phenyl-2,3- 

dihydro-1H pyrrazoline-5-yl] acetic acid) was a generous gift from a 

pharmaceutical company, Tofigh daru (Tehran, Iran). To induce clonic 

seizures, PTZ was infused intravenously (0.5%, i.v.) into the lateral tail 

vein of mice. All other drugs were administered intraperitoneally (i.p) 

and injections were in a volume of 10 mL/kg of the body weight of the 

mice. PTZ, MK-801 and D-serine were dissolved in sterile normal saline 

solution (0.9%). Licofelone was suspended in a 1% aqueous solution 

of tween 80. In experiments investigating the possible role of NMDARs 

in the licofelone effects, mice were administered MK-801 and D-serine 

or saline vehicle. The dosages and timing of administrations of drugs 

in the present study were based upon pilot experiments and our previous 

study.36,37,40,41

PTZ-induced seizure threshold measurement

The animals were placed in a transparent restrainer and a 

30-gauge dental needle was inserted in the lateral tail vein.42 The 

correct needle placement in the tail vein was verified by the appear-

ance of blood in the tubing. The needle was then secured to the tail 

by a narrow piece of adhesive tape. With mouse moving freely, the 

PTZ solution (0.5 %) was slowly infused into the tail vein at a con-

stant rate of (1 mL/min) using an infusion pump (NE 1000; New Era 

Pump System, Inc., Farmingdale, NY, USA), which was connected to 

the dental needle by polyethylene tubing. Infusion was immediately 

halted when general clonus (forelimb clonus followed by full clonus 

of the body) was observed. The minimal dose of PTZ (mg/kg of mice 

weight) needed to induce general clonus was recorded as an index of 

clonic seizure threshold.



16 Journal of Epilepsy Research Vol. 11, No. 1, 2021

Copyright ⓒ 2021 Korean Epilepsy Society

A B

Figure 1. Effects of licofelone on PTZ-induced seizure threshold in mice. (A) Time course properties of licofelone potent dose (20 mg/kg) on the clonic seizure 

threshold induced by PTZ in mice. Licofelone was administered intraperitoneally (i.p.) 30, 45, 60, and 75 minutes before PTZ injection and the effects on the 

seizure threshold effects were compared to the vehicle control group (administered i.p. 60 minutes before the test). Data are expressed as mean±S.E.M. of 

seizure threshold in each group. Each group consisted of eight mice. *p<0.05, **p<0.01, and ***p<0.001 compared with the control group. It should be 

considered that the control group was same as (A) and repeated here for better comparisons. (B) Different doses of licofelone (1, 3, 5, 10, and 20 mg/kg, i.p.) 

were injected 60 minutes prior to the determination of seizure threshold. Data are shown as the mean±S.E.M. of seizure threshold in each group. Each group 

consisted of eight mice. **p<0.01 and ***p<0.001 compared with the vehicle control group. There were no statistically significant differences between any 

of the other groups tested. PTZ, pentylenetetrazol; S.E.M., standard error of mean; i.p., intraperitoneal.

Experiments

In experiment 1, we evaluated effects of licofelone on PTZ-induced 

clonic seizure thresholds in mice. Different doses of licofelone (1, 3, 

5, 10, and 20 mg/kg, i.p.) or its vehicle (control) were administrated 

60 minutes prior to the determination of PTZ-induced clonic seizure 

thresholds. Prior to this, a time-course experiment was performed, 

which revealed maximal efficacy for licofelone at 60 minutes post 

drug injection. Control animals received the same volume of the ve-

hicle (1% aqueous solution of tween 80) in all experiments. Based on 

this experiment, sub-effective dose of 5 mg/kg of licofelone was 

chosen for subsequent experiments.

In experiment 2, we examined the role of NMDARs in the seizure 

threshold modulation by licofelone. Mice received acute admin-

istration of a non-effective dose of the noncompetitive NMDAR an-

tagonist MK-801 (0.05 mg/kg, i.p.) 15 minutes before licofelone (1, 

5, and 20 mg/kg) and 75 minutes before PTZ in separate groups. The 

non-effective dose of MK-801 (0.05 mg/kg) and the time points of 

administration prior to PTZ were selected based on our previous 

studies and a pilot experiment.37,40,41

In experiment 3, we assessed effects of the NMDAR co-agonist 

D-serine (30 mg/kg, i.p.) alone or 15 minutes before either the 

sub-effective (5 mg/kg) or effective (20 mg/kg) doses of licofelone 

and 75 minutes prior seizures induced by PTZ in mice. The doses of 

D-serine and the time points of administration prior to PTZ were se-

lected based one a pilot experiment.

Statistical analysis

Clonic seizure thresholds were presented as the mean±standard 

error of mean in each experimental group. Data were analyzed by 

one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc 

test for multiple comparisons. In all experiments, a p-value <0.05 

was regarded as significant.

Results

Effect of licofelone on PTZ-induced seizure 

threshold

The PTZ-induced seizure analysis was performed at several differ-

ent time points (30, 45, 60, and 75 minutes) after the administration 

of licofelone (20 mg/kg) to identify the most effective time point to 

reach maximal anticonvulsant effect. Although licofelone exerted a 

significant anticonvulsant effect at all time points except 30 minutes, 

the highest anticonvulsant effect was observed 60 minutes after lico-

felone administration (p<0.001) in comparison with the correspond-
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Figure 2. Effects of MK-801 on the effects of licofelone on PTZ-induced seizure

threshold in mice. Licofelone (1, 5, and 20 mg/kg, i.p.) was injected 60 minutes

before the PTZ injection in different groups. In separate groups, low dose of

MK-801 (0.05 mg/kg, i.p.) was also administrated 15 minutes before the 

non-effective doses of licofelone (1 and 5 mg/kg) or 75 minutes before 

intravenous injection of PTZ. The data shows that MK-801 significantly 

potentiated the anticonvulsant effect of licofelone at its sub-effective dose

(5 mg/kg). Data are shown as the mean±S.E.M. of seizure threshold in each 

group. Each experimental group consisted of eight mice. ***p<0.001 

compared with the vehicle control group; #p<0.05 and ###p<0.001 in 

comparison with the MK-801 (0.05 mg/kg) group. PTZ, pentylenetetrazol;

S.E.M., standard error of mean; i.p., intraperitoneal.

Figure 3. Effects of D-serine on the effects of licofelone on PTZ-induced seizure

threshold in mice. Licofelone (5 and 20 mg/kg) was injected 60 minutes before

the PTZ injection in different groups. In separate groups, D-serine (30 mg/kg,

i.p.) was also administered 15 minutes before licofelone (5 and 20 mg/kg,

i.p.) or 75 minutes prior the intravenous PTZ injection. Data are expressed as

the mean±S.E.M. of seizure threshold in each group. Each group consisted

of eight mice. ***p<0.001 compared with the vehicle control group. There

were no statistically significant differences between any of the other groups

tested. PTZ, pentylenetetrazol; n.s., non significant; S.E.M., standard error 

of mean; i.p., intraperitoneal.

ing vehicle-treated control animals (Fig. 1A). Subsequently, different 

doses of licofelone (1, 3, 5, 10, and 20 mg/kg) were administered 60 

minutes prior to the PTZ-induced clonic seizures. One-way ANOVA 

followed by Tukey post-hoc analysis revealed a statistically significant 

effect for licofelone at 10 mg/kg (p<0.01) and 20 mg/kg (p<0.001) 

compared to the control group. Licofelone injections at the lower 

doses (1, 3, and 5 mg/kg) did not alter seizure thresholds, suggesting 

a dose dependent anti-convulsant effect for licofelone (Fig. 1B).

Effects of MK-801 on the anticonvulsant effects of 

licofelone

To investigate the effects of NMDARs on the clonic seizure thresh-

olds, a non-effective dose of the NMDAR antagonist MK-801 (0.05 

mg/kg, i.p.) were injected 15 minutes prior to different doses of lico-

felone (1, 5, and 20 mg/kg, i.p.) and 75 minutes prior to the PTZ-in-

duced clonic seizure determination. As depicted in Figure 2, 

pre-treatment with the non-effective dose of MK-801 (0.05 mg/kg, 

i.p.) 15 minutes prior to non-effective dose of licofelone (5 mg/kg), 

exerted a significant anticonvulsant effect compared to the vehicle 

(p<0.001) and corresponding licofelone (5 mg/kg) group (p<0.001). 

This finding indicates a possible role of NMDARs in the licofelone’s 

effects on clonic seizure threshold in mice. Additionally, the compar-

isons between MK-801 (0.05 mg/kg) group and the combination 

groups of MK-801 (0.05 mg/kg) with different doses of licofelone (5 

mg/kg, 20 mg/kg) were significant (p<0.05 and p<0.001, re-

spectively). Interestingly, pre-treatment of MK-801 prior to the lower 

1 mg/kg dose of licofelone did not result in a significant change in 

the seizure threshold, suggesting a dose-dependent effect (Fig. 2). 

There were no statistically significant differences between any of the 

other groups tested.

Effect of D-serine on the anticonvulsant effects of 

licofelone

As shown in Figure 3, D-serine alone at 30 mg/kg did not affect 

the clonic seizure thresholds. However, pre-treatment with this 

non-effective dose of D-serine (30 mg/kg, i.p.) 15 minutes prior to an 
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effective dose of licofelone (20 mg/kg) considerably hindered the an-

ticonvulsant effects of licofelone treatment at 20 mg/kg (p>0.05). 

Pre-treatment of D-serine prior to the lower non-effective dose of li-

cofelone (5 mg/kg) did not result in any significant changes in the 

seizure threshold (Fig. 3).

Discussion

Findings of the present study confirm the previously established 

anticonvulsant effects of the dual COX/5-LOX inhibitor licofelone in 

the PTZ-induced clonic seizure model in mice. We also found that in-

hibition of the NMDAR using the receptor antagonist MK-801 can 

potentiate the anti-seizure property of licofelone in a dose-depend-

ent manner, while the NMDAR co-agonist D-serine considerably hin-

ders the effects of licofelone on seizure threshold, indicating a possi-

ble role for NMDAR in this anticonvulsant properties of licofelone.

Licofelone, as a 5-LOX inhibitor, can act as a neuroprotective 

agent in a variety of CNS disorders.43 Consequently, much of the cur-

rent literature on licofelone has drawn particular attention to its ther-

apeutic role in neurological conditions, which may contribute to a 

novel therapeutic modality for the treatment of brain disorders such 

as Alzheimer's disease and epilepsy.15,17,44 Findings concerning lico-

felone application in animal models of the Alzheimer’s disease have 

depicted its modulatory effects on neuroinflammatory markers.15 

Furthermore, licofelone has been shown to exert antidepressant-like 

effects probably through its anti-inflammatory property.16 In line with 

this, other COX inhibitors, either selective (nimesulide, rofecoxib and 

celecoxib) or non-selective (aspirin, naproxen), have been examined 

in animal seizure models, suggesting an elevation in the seizure 

threshold.45 In the present study, the effects of acute administration 

of five different doses of licofelone (1, 3, 5, 10, and 20 mg/kg, i.p.) 

were investigated which revealed that licofelone at doses higher 

than 10 mg/kg could significantly increase PTZ-induced seizure 

thresholds compared to vehicle. This is in accordance with recent re-

ports as well as earlier findings in SE and PTZ-induced seizures, 

respectively.17,18,46 In the current study, licofelone exerted its max-

imum effect 60 minutes after administration, which is in accordance 

with other studies reporting the same onset of action.18 The anti-

convulsant effects of licofelone observed in this study can be ex-

plained at least partly by inhibition of COX-2. Induction of COX-2 

mRNA and protein following an electroconvulsive seizure has been 

reported in rat hippocampus and cerebral cortex, and the COX-2 ex-

pression in neurons is regulated by NMDA dependent synaptic 

activity.47 Inhibition of the NMDA pathway using MK801 has been 

shown to reduce the expression levels of COX-2 mRNA throughout 

the cerebral cortex.47

Furthermore, the key findings of the current study can be ex-

plained by the role of both NMDA receptors and COX in the perme-

ability of the blood brain barrier (BBB) in neurological ailments. 

Disruption of the BBB has been associated with seizure induction in 

several human and rodent studies.48-52 On the one hand, activation of 

NMDA receptor by the excitatory neurotransmitter glutamate leads 

to BBB disruption and increased permeability in the human brain53 

while NMDA inhibition by MK-801 prevents BBB breakdown in brain 

capillary endothelial cells.54 Our findings from the use of MK801 and 

D-serine can therefore be explained by their potential effect on BBB 

permeability, and consequently increased levels of epilepsy media-

tors in the brain, most importantly P-glycoprotein, which has been 

associated with triggering seizure activity in many studies.52,55-58 On 

the other hand, the expression levels of P-glycoprotein in the brain 

are increased during PTZ induced seizures which is associated with 

membrane depolarization in the hippocampus.59 This upregulation is 

most interestingly triggered by glutamate induced NMDA receptor 

activation which is also modulated by COX-2.60,61 Therefore, in our 

study, the anticonvulsant effects of the LOX/COX inhibitor licofelone 

and our observations from pre-treatments with an NMDA agonist 

and antagonist can potentially be explained by the important roles of 

both NMDA receptors and COX-2 in the expression levels of P-glyco-

protein and the permeability of the BBB to this important epilepsy 

mediator. This hypothesis needs to be further investigated in future 

studies.

The pathophysiology of epileptic seizures is complex, and it is 

known that an array of signaling pathways is activated to provoke 

the process of epileptogenesis, among which activation of the AMPA, 

kainite, and NMDARs have been supposed to have a key role in neu-

ronal excitability in seizures.39,62 Excessive activation of NMDARs has 

been suggested to contribute to the various neurologic disorders in-

cluding brain damage associated with stroke and neurodegenerative 

illnesses.63-65 Accumulating evidence also suggest that NMDARs play 

a crucial role in modulating seizure threshold and brain excitability in 

various animal models of seizures, including PTZ-induced clonic and 

tonic-clonic seizures.38,66-69 and flurothyl-induced clonic and ton-

ic-clonic seizures.70 Blocking or suppression of NMDARs with ket-

amine has been associated with lower seizure susceptibility in elec-

troconvulsive therapy-induced seizures.71 Likewise, trials on human 

subjects revealed that NMDAR blockers including felbamate could 
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potentially be developed as a treatment option in controlling re-

fractory partial seizures.72,73 This anticonvulsant effect might also re-

sult from the proposed dual action of felbamate as a NMDAR blocker 

as well as activation of the GABAergic activity.73 Our data also 

showed that acute injection of the NMDAR antagonist MK-801 had 

anticonvulsant effects on seizure threshold, which was effective at 

0.1 mg/kg and higher doses in our previous study.36,37 This ob-

servation further confirms the role of NMDARs in modulating seizure 

threshold. Considering these notions stated herein, we next at-

tempted to test the possible involvement of NMDA pathway on seiz-

ure susceptibility by pre-treating the animals receiving licofelone 

with a noncompetitive NMDA receptor antagonist, MK-801, and ex-

plored if it could enhance the anticonvulsant effects of licofelone in 

our model. Further experiment showed that the enhancing effect of 

licofelone on clonic seizure threshold was partially reversed by the 

NMDAR co-agonist D-serine, providing additional evidence that the 

modulation of seizure modulation may be mediated by NMDAR 

pathway.

Collectively, our data suggest that that NMDAR pathway may play 

a role the anticonvulsant effects of licofelone in the PTZ model of 

clonic seizure in mice. It is noteworthy that in our experiments, al-

though combined non-effective doses of MK-801 (0.05 mg/kg) and 

licofelone (5 mg/kg) exerted a significant anticonvulsant effect on 

the PTZ-induced clonic seizures in mice, when MK-801 was com-

bined with lower dose of licofelone (1 mg/kg), such anticonvulsant 

effect was not observed. This may raise the possibility that such a low 

dose of licofelone (1 mg/kg) does not reach to the threshold that af-

fects NMDRs signaling and thereby increasing seizure threshold com-

bined with MK-801. The other possibility is that NMDARs may be on-

ly partially involved in such effects of licofelone on the PTZ-induced 

clonic seizure thresholds. Consistent with latter assumption, our data 

also showed that D-serine at 30 mg/kg only partially reversed the an-

ticonvulsant effects of licofelone at 20 mg/kg. Therefore, it is possible 

that NMDARs may have partially contributed to the anticonvulsant 

effects of licofelone on the PTZ-induced clonic seizures in mice. 

Considering the function of NMDAR and its role in epilepsy, further 

studies such as using the chronic epilepsy models (e.g., SE and re-

current seizures) are needed to verify the exact role of NMDAR in the 

anticonvulsant property of licofelone.

These behavioural results are prominent and could lay the ground-

work to propose a novel mechanism for licofelone activity, which in-

deed mandates comprehensive molecular investigation in our up-

coming investigations. Also, to introduce this drug class as a poten-

tial anti-epileptic agent in the clinic, several questions concerning the 

safety of NMDAR antagonists need to be meticulously pursued in fu-

ture studies.
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