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YC-1 induces lipid droplet formation in
RAW 264.7 macrophages
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Abstract

Background: 3-(5'-Hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) is a potential anticancer drug that may activate
soluble guanylyl cyclase (sGC) and increase the level of cyclic guanosine monophosphate (cGMP). The aim of this
study was to explore the effects of YC-1 on lipid droplet accumulation and foam cell formation in macrophages.

Results: Human-oxidized low density lipoprotein (ox-LDL) was used to induce accumulation of lipid droplets in a
murine macrophage cell line, RAW 264.7. Oil red O staining showed that treatment with 20 μM YC-1 for 24 h
increased the area of intracellular lipid droplets in macrophages. The results of high content screening (HCS) with
the AdipoRed™ assay further revealed that YC-1 enhanced ox-LDL-induced foam cell formation. This was evidenced
by an increase in the total area of lipid droplets and the mean fluorescence intensity per cell. Inhibition of cGMP-
dependent protein kinase (PKG) using KT5823 significantly reduced YC-1-enhanced lipid droplet formation in ox-
LDL-induced macrophage foam cells.

Conclusion: YC-1 induces lipid droplet formation in macrophages, possibly through the sGC/cGMP/PKG signaling
pathway. This chemical should be tested with caution in future clinical trials.
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Background
Derived from monocytes, macrophages display tissue-
specific phenotypes in different locations of the human
body [1]. Macrophages regulate various aspects of nor-
mal physiology, including development, tissue homoeo-
stasis, remodeling and repair [2]. Several reports have
shown that these cells are also involved in pathological
situations, especially in the initiation of the immune re-
sponse, the engulfing of pathogens and the progression
of atherosclerosis [3].
During atherosclerosis development, low density lipo-

protein (LDL) in the plasma penetrates the artery wall
and becomes oxidized to oxidized-LDL (ox-LDL), which
is phagocytosed by macrophages, leading to the forma-
tion of foam cells from macrophages [4]. Accumulation
of LDL in the intima of blood vessels promotes the mi-
gration of circulating monocytes to the endothelial layer

and their differentiation into macrophages upon adhe-
sion to the endothelial layer [5]. Subsequently, macro-
phages engulf excessive intimal lipids via several
scavenger receptors [6], becoming foam cells, which
have abundant membrane-bound lipid droplets in their
cytoplasm [7]. Finally, the cell debris of macrophage
foam cells forms the atherosclerotic plaques. Hence, it is
reasonable to consider that inhibiting macrophage-
derived foam cell formation may be a possible target for
therapeutic intervention in atherosclerosis [5, 8].
Recently, we have reported that YC-1 can inhibit

oleate-induced lipid accumulation in macrophages [9].
YC-1 is a chemically-synthetic benzylindazole com-
pound, which directly activates soluble guanylyl cyclase
(sGC), elevates the level of cyclic guanosine monopho-
sphate (cGMP) in rabbit platelets, and possesses anti-
platelet properties [10]. Subsequently, elevated cGMP
activates cGMP-dependent protein kinase (PKG) and
downstream signal transduction to regulate many cellu-
lar responses [11]. Studies have demonstrated several ef-
fects of YC-1 on macrophages, including its ability to
potentiate the release of tumor necrosis factor-α and ni-
tric oxide production in alveolar macrophages [12, 13].
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It has also been found that YC-1 can increase the level
of cGMP and inhibit the expression of inducible nitric
oxide synthase in RAW 264.7 macrophages [14]. How-
ever, the impact of YC-1 on ox-LDL-induced macro-
phage foam cell formation has not been addressed
before. The purpose of this study was to clarify the effect
of YC-1 on lipid droplet formation. We hypothesized
that YC-1 may regulate lipid droplet and ox-LDL-
induced foam cell formation of macrophages through
the cGMP signaling pathway. To prove our hypothesis,
we used high content screening (HCS), a powerful tool
in biological and pharmacological research, to quantita-
tively detect the influence of YC-1 on the changes in
lipid droplets.

Methods
Cell culture of RAW 264.7 macrophages
A murine macrophage cell line, RAW 264.7, was pur-
chased from the American Type Culture Collection
(Manassas, VA) and cultured, as described in an earlier
study [15]. In brief, RAW 264.7 macrophages were
maintained in Dulbecco’s Modified Eagle Medium (Invi-
trogen Life Technologies, Carlsbad, CA) containing
10 % fetal bovine serum (Invitrogen), 100 unit/mL of
penicillin (Invitrogen), and 100 μg/mL of strepto-
mycin (Invitrogen) at 37 °C in a humidified incubator
with 5 % CO2.

Reagent preparation
YC-1 (Sigma-Aldrich) was dissolved in dimethyl sulfoxide
(DMSO; Sigma-Aldrich). KT5823 (Sigma-Aldrich) was
dissolved in ethyl acetate (Kanto Chemical Corporation,
Tokyo, Japan).

LDL oxidation
Commercial purified human LDL (Millipore, Temecula,
CA) was diluted to 0.5 mg/mL with phosphate-buffered
saline (PBS; 137 mM NaCl, 2.7 mM KCl, 8 mM
Na2HPO4, and 1.5 mM KH2PO4; pH 7.4) and oxidized
with 10 μM CuSO4 (Sigma-Aldrich) at 37 °C for 24 h
[16]. Finally, 1 mM ethylenediaminetetraacetic acid
(Sigma-Aldrich) was used to stop the oxidation. After
oxidation, the ox-LDL was stored at 4 °C.

Oil red O staining
Oil red O powder (Sigma-Aldrich) was dissolved in 2-
propanol (0.5 %; Kanto Chemical Corporation). The
stock was then diluted to 0.3 % oil red O solution with
distilled H2O and filtered through a 0.22-μm filter.
RAW 264.7 macrophages were seeded in a 6-well plate
(3 × 105 cells/well; total 2 mL) overnight. After treat-
ment, the treated cells were washed with PBS briefly,
and 1 mL of 0.15 % glutaraldehyde (Sigma-Aldrich) was
added to each well for 10 min. The fixed cells were

washed with PBS three times and stained with 0.5 mL
0.3 % oil red O solution for 5 min. Finally, the stained
cells were washed with PBS three times and observed
with a Nikon Eclipse E600 microscope (Nikon Instru-
ments Inc., Tokyo, Japan) and an Evolution™ MP digital
camera (Media Cybernetics, Bethesda, MD). All experi-
ments were repeated three times, and the representative
data are shown.

Cell viability assay
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) powder (Sigma-Aldrich) was dissolved
to 5 mg/mL with distilled H2O. The MTT stock solution
was sterilized through a 0.22-μm filter and stored at 4 °
C. RAW 264.7 macrophages were seeded in a 24-well
plate (104 cells/well; total 0.5 mL) overnight and treated
until 80 % confluency. After treatment, 50 μL of MTT
stock solution was added to each well and incubated
with 5 % CO2 at 37 °C for 2 h. Finally, the medium was
removed and 0.5 mL of 2-propanol was added to each
well. After 5 min at room temperature, 200 μL of solu-
tion from each well was transferred to a 96-well plate
and measured at 590 nm by a Multiskan RC microplate
reader (Thermo LabSystems, Helsinki, Finland). All ex-
periments were repeated three times.

Quantification of total lipid content
Quantification of total lipid content was measured based
on a previously-published protocol [17]. In brief, RAW
264.7 macrophages were seeded in a 24-well plate (104

cells/well; total 0.5 mL) overnight and treated until 80 %
confluency. After treatment, the cells were stained with
oil red O, and the intracellular lipid was extracted by
adding 200 μl DMAO to each well. After 5 min at room
temperature, 200 μL of solution from each well was
transferred to a 96-well plate. Absorbance was measured
at 510 nm with a μQuant microplate reader (BioTek
Instruments, Winooski, VT). The quantified results were
corrected after parallel experiments of cell viability assay.
All experiments were repeated three times.

Measurement of intracellular cGMP
RAW 264.7 macrophages were seeded in a 24-well plate
(104 cells/well; total 0.5 mL) overnight and treated until
80 % confluency. After treatment, intracellular cGMP of
macrophages was measured using cGMP Enzymeimmu-
noassay Biotrak System (Amersham Biosciences, Little
Chalfont Buckinghamshire, UK). Absorbance was mea-
sured at 450 nm with a μQuant microplate reader (BioTek
Instruments, Winooski, VT). All experiments were re-
peated three times.
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HCS with AdipoRed™ assay
Quantification of lipid storage compartments in macro-
phages and ox-LDL-induced foam cells was performed,
based on a previously-published protocol [18]. RAW
264.7 macrophages were seeded in a Costar® 96-well
black solid plate (3000 cells/well; total 100 μL; Bio-Rad
Laboratories, Hercules, CA). After treatment, the cells
were stained with AdipoRed™ (1:40; Lonza Walkersville,
Inc., Walkersville, MD) and Hoechst 33342 (1:1000;
Invitrogen) for 0.5 h. The sample was analyzed by a
Thermo Scientific Cellomics® ArrayScan® VTI HCS
Reader (Thermo Fisher Scientific, Pittsburgh, PA), and
the Columbus™ Image Data Storage. Analysis System
software (PerkinElmer, Columbus, OH) was used to re-
color the images and perform the HCS image analysis.
The intracellular lipid droplets were analyzed using the
Spot Detector protocol of the Cellomics® HCS Reader.
All HCS experiments were repeated at least three
times.

Statistical analysis
All data are presented as the mean ± standard deviation.
The statistical significance of differences between groups
was analyzed using one-way analysis of variance with
Tukey’s post hoc test by SAS version 9.4 (SAS Institute,
Cary, NC). Differences with a P value less than 0.05 were
considered significant.

Results
YC-1 induces lipid droplet accumulation in RAW 264.7
macrophages
To analyze the effect of YC-1 on lipid droplet formation,
we treated RAW 264.7 macrophages with YC-1 for dif-
ferent lengths of time (12, 24 and 48 h) and with differ-
ent doses (10, 20 and 30 μM). We found that
macrophages treated with 10, 20, and 30 μM YC-1 for
24 h displayed a significant increase in the area of intra-
cellular lipid droplets and total lipid content compared
to the control group, as detected and quantified by oil
red O staining (Fig. 1a and c). We also found that mac-
rophages treated with 20 μM YC-1 for 12, 24 or 48 h
displayed a significant increase in lipid droplet accumu-
lation (Fig. 2a and c). In addition, the result of the MTT
cell viability assay revealed that YC-1 did not signifi-
cantly affect cell survival except with doses of 30 μM (or
higher) used for 24 h (Figs. 1b and 2b). These results
demonstrate that YC-1 stimulates lipid droplet forma-
tion in macrophages and suggests that YC-1 may affect
foam cell formation in macrophages.

YC-1 induces foam cell formation in RAW 264.7
macrophages
To further evaluate the effect of YC-1 on foam cell forma-
tion, commercial LDL was oxidized with copper ions and
was then used to induce the formation of lipid-laden

Fig. 1 The effect of different doses of YC-1 on lipid droplet formation and cell viability in RAW 264.7 macrophages. a Dosage-dependent YC-1
enhanced lipid droplet formation. RAW 264.7 macrophages were treated with different concentrations of YC-1 for 24 h. After fixation and staining
with oil red O, the cells were observed by light microscopy. Scale bar = 30 μm. b 30 μM YC-1 reduced the cell viability of macrophages. RAW
264.7 macrophages were treated with different concentrations of YC-1 for 24 h and the cell viability was measured by the MTT assay (n = 6). c
Quantification of total lipid content of macrophages (n = 6). * indicates P < 0.05 compared to the control group
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macrophages. The results of oil red O staining show that
treatment with 50 μg/mL ox-LDL for 24 h induced lipid
droplet formation (Fig. 3a) but significantly decreased cell
viability in macrophages (Fig. 3b). We also observed that
YC-1 enhanced ox-LDL-induced lipid droplet formation.

The quantification result revealed that co-treatment with
ox-LDL and 20 μM YC-1 for 24 h significantly increased
total lipid content compared to treatment with ox-LDL
alone (Fig. 3c). This result indicates that YC-1 may enhance
ox-LDL-induced foam cell formation in macrophages.

Fig. 2 Time course effect of YC-1 on lipid droplet formation and cell viability in RAW 264.7 macrophages. a Time course analysis of YC-1-induced
lipid droplet formation in macrophages. RAW 264.7 macrophages were treated with 20 μM YC-1 for the indicated lengths of time. After fixation
and staining with oil red O, the cells were observed by light microscopy. Scale bar = 30 μm. b Time course analysis of the cell viability of YC-1-
treated macrophages. RAW 264.7 macrophages were treated with 20 μM YC-1 for different lengths of time and the cell viability was measured by
MTT assay (n = 6). c Quantification of total lipid content of macrophages (n = 6). * indicates P < 0.05 compared to the control group

Fig. 3 Treatment with YC-1 enhances ox-LDL-mediated foam cell formation. a YC-1 increased intracellular lipid droplets in ox-LDL-treated
macrophages. RAW 264.7 macrophages were treated with 20 μM YC-1 with/without 50 μg/mL ox-LDL for 24 h. After fixation and staining with
oil red O, the cells were observed by light microscopy. Scale bar = 30 μm. b Treatment with ox-LDL decreased the cell viability of macrophages. RAW
264.7 macrophages were treated with 20 μM YC-1 with/without 50 μg/mL ox-LDL for 24 h and the cell viability was measured by MTT assay (n = 6). c
Quantification of total lipid content of macrophages (n = 6). * indicates P < 0.05 compared to the control group; # indicates P < 0.05 compared to the
ox-LDL-treated group
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To further confirm the effect of YC-1 on lipid droplet
and foam cell formation, we used the AdipoRed™ assay
to label lipid accumulation in macrophages. HCS was
used to quantify the total area of lipid droplets and mean
fluorescence intensity in individual cells to estimate the
level of intracellular lipid accumulation. The results of
the HCS image analysis show that YC-1 increased the

amount of intracellular lipid compared to the control
group, and enhanced ox-LDL-induced lipid accumula-
tion in macrophages compared to the ox-LDL-treated
group (Fig. 4a). Compared with the control cells, YC-1
increased the total area of lipid droplets by 75 % and the
mean fluorescence intensity per cell by 30 % (Fig. 4b and
c). Moreover, YC-1 significantly increased the total area

Fig. 4 YC-1 induces lipid droplet formation in ox-LDL-mediated foam cells. RAW 264.7 macrophages were treated with 20 μM YC-1, 50 μg/mL ox-
LDL, or both YC-1 and ox-LDL for 24 h. After fluorescence staining with AdipoRed™ (red for intracellular lipid) and Hoechst 33342 (blue for nucleus),
the total area of lipid droplets and mean fluorescence intensity labelled by AdipoRed were detected and analyzed in each cell using an HCS reader.
Scale bar = 50 μm. a The imaging of HCS. b Quantification of total area of lipid droplet per cell (n = 5). c Quantification of mean fluorescence intensity
per cell (n = 5). * indicates P < 0.05 compared to the control group; # indicates P < 0.05 compared to the ox-LDL-treated group
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of lipid droplets (by 1900 %) and the mean fluorescence
intensity (by 275 %) in ox-LDL-induced lipid droplets
compared to the ox-LDL-treated group (Fig. 4b and c).
These results further confirm that YC-1 promotes ox-
LDL-induced foam cell formation in macrophages.

PKG inhibitor decreases YC-1-induced lipid droplet
accumulation and foam cell formation in macrophages
To clarify the involvement of the sGC/cGMP/PKG sig-
naling pathway in YC-1-induced lipid accumulation,
intracellular cGMP was measured in macrophages. The
sGC activator, atrial natriuretic factor (ANF), was used
as a positive control [19]. We found that treatment with
20 μM YC-1 for 16 h, like the treatment of the positive
control ANF, significantly increased the level of cGMP
(Fig. 5). The result of oil red O staining also revealed
that the cGMP analogue dibutyryl cyclic guanosine
monophosphate (db-cGMP) induced lipid droplet for-
mation in macrophages in a manner similar to that ob-
tained with YC-1 (Fig. 6). These findings support the

idea that YC-1 may regulate lipid accumulation in mac-
rophages through the cGMP-related pathway.
To further clarify the effect of YC-1 on lipid droplet

formation in macrophages and foam cells, we used
KT5823 to attenuate the activation of PKG [20]. The re-
sults of oil red O staining show that KT5823 inhibited
YC-1-induced lipid droplet accumulation (Fig. 7), sug-
gesting that YC-1 may induce lipid accumulation in
macrophages via the PKG-related signaling pathway.
The HCS results revealed that KT5823 significantly
inhibited YC-1-induced lipid droplet formation, as the
mean fluorescence intensity per cell of KT5823-treated
groups was reduced by 20 % (Fig. 8a) and 140 % (Fig. 8b)
in macrophages and in ox-LDL-mediated macrophage
foam cells, respectively. Our findings suggest that the
sGC/cGMP/PKG signaling pathway may be involved in
YC-1-induced lipid droplet accumulation and foam cell
formation in macrophages.

Discussion
We have demonstrated that YC-1 increases the number
of intracellular lipid droplets and total lipid content in
RAW 264.7 macrophages, and enhances ox-LDL-induced
foam cell formation. In addition, the results show that the
PKG-related signaling pathway is involved in YC-1-
regulated lipid droplet formation in macrophages and
foam cells.
We have previously reported that YC-1 inhibits oleate-

induced lipid droplet formation, leading to lipolysis in
lipid-laden macrophages [9]. Oleate, a type of unsatur-
ated free fatty acid, is reported to inhibit cholesterol ef-
flux in modified LDL-treated macrophages [21] and to
induce triglyceride accumulation in macrophages [22].
However, ox-LDL is composed not only of triglycerides,
but also of cholesterol and cholesterol esters [23–25].
The uptake of ox-LDL is through scavenger receptors
and endocytosis in macrophages [26], whereas oleate is
probably transported via diffusion [27]. These differences
may explain the different effects of YC-1 on the ox-
LDL-induced macrophage foam cells used in this study

Fig. 5 YC-1 and ANF increases the level of intracellular cGMP in
macrophages. RAW 264.7 macrophages were treated with 20 μM YC-1
or 10 μg/mL ANF for 16 h. The intracellular cGMP was measured using
a cGMP Enzymeimmunoassay kit (n = 5). * indicates P < 0.05 compared
to the control group

Fig. 6 YC-1 and db-cGMP induce lipid droplet formation in RAW 264.7 macrophages. RAW 264.7 macrophages were treated with 20 μM YC-1 or
1 mM db-cGMP for 24 h. After fixation and staining with oil red O, the cells were observed by light microscopy. Scale bar = 30 μm
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and oleate-induced lipid-loaded macrophages. Therefore,
we speculate that YC-1 may regulate scavenger recep-
tor–mediated endocytosis, and subsequently enhance
lipid droplet formation in macrophage foam cells. In
addition, we have demonstrated here that YC-1 increases
the number of intracellular lipid droplets in macro-
phages as well as in ox-LDL-induced macrophage foam
cells. This could be explained by the possibility of YC-1
increasing the clearance of fatty acids in oleate-treated
macrophages, while enhancing the uptake of cholesterol
or triglycerides supplied by serum or ox-LDL.
We have previously shown that treating cells with YC-

1 for 10 min does not affect sGC activity and cGMP
levels in RAW 264.7 macrophages [9]. In contrast to
this, it has also been reported that treatment of J774A.1
macrophages with YC-1 (20 and 40 μM) for 24 h sig-
nificantly increases intracellular cGMP [28]. In this
study, we showed that YC-1, as well as the sGC activa-
tor ANF, increased the level of intracellular cGMP at
16 h. The result of oil red O staining revealed that YC-
1 and the cGMP analogue db-cGMP induced lipid

droplet formation in macrophages. We also demon-
strated that the PKG inhibitor KT5823 inhibits YC-1-
induced lipid droplet formation in RAW 264.7 macro-
phages and foam cells, as evidenced by the reduction of
the mean fluorescence intensity (per cell) in KT5823-
treated cells. In addition, it seems that a longer treat-
ment with YC-1 (e.g., 24 h) may be required to continually
activate the sGC/cGMP/PKG pathway in macrophages
and induce lipid droplet and foam cell formation. In
addition, previous studies have demonstrated that treat-
ment with 100 μg/ml ox-LDL for 4 h had no impact on
the level of cGMP in human monocyte-derived macro-
phages [29]. However, nitric oxide could regulate
apoptosis of macrophages through guanylate cyclase
stimulation [29]. According to the study of Chen et al.,
ox-LDL can decrease intracellular cGMP in human plate-
lets [30]. Similarly, ox-LDL has been reported to activate
human platelets through inhibition of the cGMP signaling
cascade in the study of Magwenzi et al. [31]. These studies
have clearly revealed the possible relationship among ox-
LDL, cGMP, and sGC/cGMP/PKG cascades.

Fig. 7 The PKG inhibitor KT5823 inhibits YC-1-induced lipid droplet formation in RAW 264.7 macrophages. RAW 264.7 macrophages were treated
with 20 μM YC-1, 3 μM KT5823 or both of YC-1 and KT5823 for 24 h. After fixation and staining with oil red O, the cells were observed by light
microscopy. Scale bar = 30 μm

Fig. 8 PKG inhibitor reduces YC-1-stimulated lipid accumulation in macrophages and ox-LDL-mediated foam cells. a PKG inhibitor reduced YC-1-
induced lipid accumulation in macrophages. RAW 264.7 macrophages were treated with or without 3 μM KT5823, and then exposed to 20 μM
YC-1 for 24 h. After fluorescence staining with AdipoRed™ and Hoechst, the mean fluorescence intensity (AdipoRed) per cell was detected
and analyzed by an HCS reader (n = 5). b PKG inhibitor reduced YC-1-induced lipid accumulation in ox-LDL-mediated foam cells. RAW
264.7 macrophages were treated with or without 3 μM KT5823, and then exposed to 20 μM YC-1 and 50 μg/mL ox-LDL for 24 h. After
fluorescence staining with AdipoRedTM and Hoechst, the mean fluorescence intensity (AdipoRed) per cell was detected and analyzed by an HCS reader
(n= 5). * indicates P< 0.05 compared to the control group; § indicates P < 0.05 compared to the YC-1-treated group; # indicates P< 0.05 compared to
the ox-LDL-treated group; ⱡ indicates P < 0.05 compared to the YC-1 and ox-LDL-treated group
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HCS, consisting of automated microscopy and image
analysis, is a new technology that has been applied to
drug discovery and cell biology [32]. It has also been
used to identify specific proteins or cellular structures
with immunoreagents, organic dyes, genetically-encoded
fluorescent proteins or quantum dots [33]. Using the
technique of HCS with hydrophobic fluorescence dye to
detect intracellular lipid droplets and ox-LDL-induced
lipid accumulation in macrophages has been reported in
the research literature [18]. To estimate the level of
intracellular lipid accumulation, we used HCS and Adi-
poRed™ assay to label and quantify the total area of lipid
droplets and the mean fluorescence intensity per cell.
Tsou et al. have shown that YC-1 can decrease choles-
terol content in ox-LDL-treated macrophages through
activation of sGC, but that the protein level of scavenger
receptor class A did not change [28]. In contrast, we
used HCS and the AdipoRed™ assay to quantify lipid
droplet and foam cell formation in macrophages instead
of the cholesterol content assay, as foam cells are de-
fined as being “full of intracellular lipid droplets” in mac-
rophages and smooth muscle cells.
YC-1 is a promising antiangiogenic anticancer agent

that functions by targeting HIF-1α and has effectively
prevented tumor growth in immunodeficient mice
grafted with five types of human tumor cells and in
Hep3B cells [34, 35]. Yeo et al. have proposed that YC-1
should be regarded as a good lead compound for the de-
velopment of novel antiangiogenic and anticancer agents
[36]. Our current data suggest that YC-1 enhances ox-
LDL-mediated lipid accumulation and foam cell forma-
tion, which may in turn contribute to atherosclerosis.
Hence, this chemical should be used cautiously in future
clinical trials.

Conclusion
In summary, YC-1 induces lipid droplet formation in
macrophages, possibly via an sGC/cGMP/PKG-related
pathway.
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