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ABSTRACT

While RNA secondary structure prediction from se-
quence data has made remarkable progress, there is
a need for improved strategies for annotating the fea-
tures of RNA secondary structures. Here, we present
bpRNA, a novel annotation tool capable of pars-
ing RNA structures, including complex pseudoknot-
containing RNAs, to yield an objective, precise, com-
pact, unambiguous, easily-interpretable description
of all loops, stems, and pseudoknots, along with
the positions, sequence, and flanking base pairs of
each such structural feature. We also introduce sev-
eral new informative representations of RNA struc-
ture types to improve structure visualization and in-
terpretation. We have further used bpRNA to gen-
erate a web-accessible meta-database, ‘bpRNA-1m’,
of over 100 000 single-molecule, known secondary
structures; this is both more fully and accurately
annotated and over 20-times larger than existing
databases. We use a subset of the database with
highly similar (≥90% identical) sequences filtered
out to report on statistical trends in sequence, flank-
ing base pairs, and length. Both the bpRNA method
and the bpRNA-1m database will be valuable re-
sources both for specific analysis of individual RNA
molecules and large-scale analyses such as are use-
ful for updating RNA energy parameters for compu-
tational thermodynamic predictions, improving ma-
chine learning models for structure prediction, and
for benchmarking structure-prediction algorithms.

INTRODUCTION

Ribonucleic acid (RNA) is a type of macromolecule that is
essential for all life, with functions including molecular scaf-
folding, gene regulation, and encoding proteins. The sec-
ondary structures and base-pairing interactions of RNAs
reveal information about their functions (1–4). While RNA

structure prediction has made tremendous improvements
in the past decades, there are several limitations in avail-
able resources for researchers. While over 100 000 known
RNA structures exist in various databases, the most detailed
meta-database, RNA STRAND v2.0, contains <5000 en-
tries, and has not been updated in a decade. Moreover, even
with base pairing data, the structural features present can
be rather complex and there has not yet been a fully suc-
cessful general approach presented to systematically resolve
the structural topology and identify all structural features
given the base pairing information. This limitation is part of
the reason that most source databases do not provide dot-
bracket sequences for their structures. Therefore, there is a
need for reliable tools that identify and annotate structural
features from RNA base pairing data.

We present ‘bpRNA’, a fast, easy-to-use program that
parses base pair data into detailed structure ‘maps’ pro-
viding relevant contextual data for stems, internal loops,
bulges, multi-branched loops (multiloops), external loops,
hairpin loops, and pseudoknots. Previous work to parse
RNA structural topology from base pairs does not han-
dle pseudoknots (5) or only analyze tertiary structures
(6). bpRNA outputs new file formats (both high-level and
detailed-level) for RNA secondary structures that provide
information to help understand the structure. bpRNA has
accurately generated the dot-bracket sequence for all struc-
tures, including the complex structures with pseudoknots.

The prediction of RNA secondary structure is based on
thermodynamic model parameters that are calculated from
available data of known structures (7–9). Likewise, the study
of RNA secondary structure creates a need for compre-
hensive meta-databases, the analysis of which could en-
able updated RNA thermodynamic parameters and pre-
diction tools. The detailed structural annotations gener-
ated by bpRNA provide information needed to build a
rich database of great use to the RNA research commu-
nity. While databases of 3D structures exist (10–12), they
don’t serve the same needs as secondary structure databases.
There have been many attempts at creating RNA secondary
structure databases and meta-databases (13–15), yet all of
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the meta-databases except RNA STRAND v2.0 (14) are
no longer available or have not been updated. To meet this
need, we have built a detailed meta-database, ‘bpRNA-1m’,
consisting of over 102 318 single molecule (1m) RNA sec-
ondary structures extracted from seven different sources,
and analyzed by bpRNA. These data, including the struc-
ture annotations provided by bpRNA, represent the largest
and most detailed RNA secondary structure meta-database
created to date and will be expanded as more data become
available. This comprehensive meta-database can be used
in machine learning applications, benchmarking studies, or
can be filtered as desired for other RNA structure research.

MATERIALS AND METHODS

RNA secondary structure types

We use the term ‘stem’, as previously defined (14), to refer
to a region of uninterrupted base pairs, with no interven-
ing loops or bulges (Figure 1A). We label the two paired se-
quences of a stem as 5′ or 3′ depending on their order in the
RNA sequence. A hairpin loop is an unpaired sequence with
both ends meeting at the two strands of a stem region. The
direction of the hairpin loop sequence also defines the nu-
cleotides in the closing base pair and mismatch pair as being
5′ or 3′ (Figure 1B). An internal loop is defined as two un-
paired strands flanked by closing base pairs on both sides,
which are labeled as 5′ versus 3′ based on which is more 5′ in
the RNA sequence (Figure 1C). The closing base pair 5′ of
the 5′ strand is labeled as the 5′ closing pair, and the closing
pair that is 3′ of the 5′ strand is the 3′ pair. A bulge can be
considered as a special case of the internal loop where one
of the strands is of length zero (Figure 1D). Multi-branch
loops (multiloops) consist of a cycle of more than two un-
paired strands, connected by stems (Figure 1E). External
loops are similar to multiloops, but are not connected in a
cycle. Dangling ends are unpaired strands at the beginning
and end of the RNA sequence.

Pseudoknots (PKs) are characterized by base-paired po-
sitions (i, j ) and (i ’, j ’) that satisfy the PK-ordering, which
is defined as either i < i ’ < j < j ’ or i ’ < i < j ’ < j . For
a secondary structure, PK base pairs are annotated as the
minimal set that result in a PK-free structure when removed
(5,14,16–18). While representations of PK-containing RNA
structures are not planar, the ‘book embedding’, or the
number of distinct half-planes with a common boundary
line (the RNA strand) can describe the RNA structure (19).
The number of half-planes needed to represent the structure
is called the ‘page number’, and a book embedding for an
RNA structure that has a lower page number is preferred
because it provides a more compact representation. Figure
1F depicts the pages for an RNA structure with a page num-
ber of 3.

Segment graph representation

We have defined the ‘segment’ and ‘segment graph’ to as-
sist in parsing RNA secondary structures and for visual-
ization of structures. A segment is a region consisting of
two strands of duplexed RNA that can contain bulges or in-
ternal loops. The difference between a stem and a segment
is that segments can contain unpaired bases. When a base

Figure 1. RNA structure types. (A) cartoon schematic of RNA structure
types. (B) Hairpins have one closing pair and one mismatch pair with nu-
cleotides defined by ordering from 5′ to 3′. ( C) Internal loops have two
closing base pairs and two mismatch pairs each defined by ordering from
5′ to 3′ relative to the 5′ internal loop strand. The nucleotides of the clos-
ing pairs are defined as 5′ or 3′ based on their positions relative to the loop
sequence. (D) Bulges have one loop strand, but have two closing base pairs
and two mismatch pairs defined 5′ to 3′. (E) Multiloops have a closing pair
for each branch. The nucleotides of the closing pairs are defined as 5′ or
3′ based on their positions relative to the loop sequence. Red dashed line
represents the common axis of coaxially stacked stems. (F) A depiction of
RNA page number, which can be viewed as separate half-planes contain-
ing edges corresponding to base pairs. Each symbol type corresponds to a
separate page, and edges within a page are nested.

pair at positions (i, j ) is part of a segment, then if the next
paired nucleotide 5′ of i is paired to the previous paired nu-
cleotide 3′ of j , then this base pair is also part of the seg-
ment (See Supplementary Methods). As an illustration of
this idea, Figure 2A presents the structure of a ribozyme
that contains 8 color-coded segments numbered 5′ to 3′.
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Figure 2. Segment graph example. (A) Secondary structure of the Anopholes gambia drz-agam-2-2 ribozyme. (B) The segments are the vertices of the
segment graph and ordered from 5′ to 3′, and directed edges are defined by unpaired strands connecting segments. (C) Segments with base pairs crossing
other segments comprise the PK-graph. A maximally weighted independent set is selected by dynamic programming, with the remaining segments defined
as pseudoknots. (D) The pseudoknot-free segment graph is created after remove PK base pairs and allows easy annotation of loops. (E) The structure
array enhances bpRNA’s multi-bracket dot-bracket sequence by labeling each positions structure type. Strands participating in pseudoknots are labeled in
the structure array by their loop-type in the structure resulting from the removal of PKs.

This definition allows us to parse a structure into segments
in linear time (‘IdentifySegments’ Algorithm in Supplemen-
tary Methods). The segment concept has some similarity to
‘bands’, which is loosely defined as ‘a pseudoknotted stem,
which may contain internal loops or multi loops’ (20), ex-
cept segments apply more generally than pseudoknots, and
do not contain multiloops. Pseudoknots (PKs) can be seg-

ments as well, such as segments 1 and 5 in Figure 2A and
B, but the concept generally applies to any paired region.

The upshot of the segment representation is we can cre-
ate a ‘segment graph’, which provides a compact represen-
tation of each structure (Figure 2B). Others have defined
graph representations of RNA structures, such as ‘RNA
As Graph’ (21,22); however, the problem is these repre-
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sentations use stems as the edges of an undirected graph,
making this extraordinarily complex for typical long non-
coding RNAs, which can contain hundreds of stems or
more. Moreover, examples from biology such as microR-
NAs show that many structures can preserve their function-
ality even when including bulges and internal loops (23).
These examples suggest a value in a more coarsely-defined
secondary structure graph concept.

For any structure, we can define a directed multigraph
G = (V, E) such that the vertices V of the graph are the
segments, the directed edges E correspond to unpaired
strands, in the 5′ to 3′ direction, connecting them. Two seg-
ments can have an edge even when there is no intervening
unpaired nucleotide (only a backbone). Each vertex of a
segment graph can have at most two outgoing and two in-
going edges. Only the first and last segment can have less
than two ingoing and outgoing edges. Hairpin stem-loops
are easily identified as segments with self-edges, which count
as one outgoing and one ingoing edge.

Pseudoknots (PKs) have been identified previously as the
minimum set of base pairs that, when removed, produce a
pseudoknot-free structure (5,16–18), and algorithms have
been developed for optimal selection of these base pairs
(24). We use the segment concept to identify this minimal set
of base pairs. All pseudoknot base pairs are part of a seg-
ment, and these pseudoknot segments (PK-segments) can
be easily identified; if one base pair of a segment satisfies the
PK-ordering with a base pair in another segment, then all
base pairs in this segment satisfy the PK-ordering with all
base pairs in the other segment (See proof in Supplemen-
tary Methods). Once PK-segments have been identified, a
weighted, undirected graph called a PK-segment graph can
be created such that the PK-segments correspond to ver-
tices and edges connect them when they satisfy the PK-
ordering with each other (Figure 2C). We assign a weight
to each vertex, with the value of the number of base pairs
for the PK-segment. From this graph, we next identify the
maximum weighted independent subset (MWIS), leaving
a minimal subset of segments whose removal leaves the
secondary structure free of pseudoknots (Figure 2C). We
created an exact algorithm, ‘MaxPKFreePairs’ to selecting
the MWIS using a Nussinov-style (25) dynamic program-
ming approach similar to defined previously (5), as well as
a heuristic algorithm ‘PK Detection’ for dealing with ties
(Supplementary Methods). We found that both methods
produce the same solution to identifying the minimum sub-
set of base pairs needed to produce a PK-free structure.
These segments are then annotated as pseudoknots, and can
be excised to produce a pseudoknot-free (PK-free) structure
and PK-free segment graph (Figure 2D). The PK-free struc-
ture is equivalent to the page number = 1 structure. The full
algorithm for this approach is presented in the Supplemen-
tary Methods.

The PK-free segment graph enables facile identification
of structure types. Hamiltonian cycles in the PK-free seg-
ment graph correspond to multiloops (Figure 2D). Interior
loops and bulges can be identified as unpaired bases within
segments. Pseudoknots are not discarded, but rather we an-
notate pseudoknots by the type of loops they connect in the
corresponding PK-free structure. For instance, if a PK con-

sists of base pairs connecting what would otherwise be a
multiloop branch and a bulge, we label the PK as ‘M-B’.

The bpRNA code is written in perl and requires the
Graph perl module. Several additional scripts for analysis
are included. The source code is available at http://github.
com/hendrixlab/bpRNA.

Reference databases

The seven databases that comprise the bpRNA-1m meta-
database include Comparative RNA Web (CRW) (26), tm-
RNA database (27), tRNAdb (28), Signal Recognition Par-
ticle (SRP) database (29), RNase P database (30), tRNAdb
2009 database (31), and RCSB Protein Data Bank (PDB)
(32), and all families from RFAM 12.2 (33). Moreover, to
reduce duplication for further analysis, we created a subset
called bpRNA-1m(90), where we removed sequences with
>90% sequence similarity when there is at least 70% align-
ment coverage (34). The bpRNA-1m database currently has
102 318 RNA structures and the bpRNA-1m(90) subset
consists of 28 370 structures. For comparison, the RNA
STRAND v2.0 database has 4666 structures, with fewer
than 2000 structures when similarly filtered.

The Comparative RNA Web (CRW) site contains RNA
sequences and secondary structures obtained from compar-
ative sequence analysis. There are 55 600 records extracted
from this reference through the mass data retrieval option.
For each RNA extracted from this source, we retrieved phy-
logenetic lineage, organism name, and RNA type. The tm-
RNA Database provides structures of transfer messenger
RNAs (tmRNAs), which are bacterial RNAs with both
tRNA- and mRNA-like functions. The base pair informa-
tion for all 728 RNAs from this source was also deter-
mined using comparative sequence analysis. Single Recog-
nition Particle Database (SRP) is a source for structures and
functions of single recognition particle RNAs (SRP RNAs)
along with phylogenetic lineage and organism names for
each RNA (28). The tRNAdb 2009 database (formerly
Sprinzl tRNA Database) encompasses all the structures and
sequences from tRNA genes from three different univer-
sity sources: Leipzig, Marburg, and Strasbourg (31). All
623 of these verified RNA structures were downloaded from
this source along with their taxonomy and links to each in-
dividual reference. The RNase P Database (RNP) has se-
quences and secondary structures of Ribonuclease P type
RNA of bacteria, archaea, and eukaryotes. All available
taxonomy, organism name, and associated PubMed ID data
were downloaded for the 466 entries in this database.

RCSB Protein Data Bank (PDB) contains structures of
proteins and nucleic acids obtained using X-ray crystallog-
raphy and NMR techniques. We downloaded all 669 RNA
structures (PDB files) consisting of one RNA molecule as of
12 June 2017. We first parsed the 3D structures from PDB
files with the June 2017 version of RNAview (35), and used
custom perl scripts to convert to BPSEQ format. This con-
version considers both canonical and non-canonical base
pairs. The priority is on the positions with Watson-Crick
and Wobble pairs. The Watson–Crick pairs are identified
by the edge represented in RNAView output (+/+ for GC
pairs and –/– for AU pairs), and wobble pairs are recog-
nized when the edge is Watson–Crick/Watson–Crick and

http://github.com/hendrixlab/bpRNA
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has the cis orientation with XXVII Saengers classification
(35). Similarly, non-canonical pairs are extracted based on
these three specifications (36).

The RNA Family Database (RFAM) V12.2 contains con-
sensus structures derived from comparative sequence analy-
sis of individual sequence family members of thousands of
RNA families. For each sequence, we extracted the RNA
type, validation technique and when available, the URL
for the RNA family Wikipedia page. There are 2495 fam-
ilies in RFAM V12.2 and 43 273 individual sequences. For
each family, we projected consensus structures to individ-
ual sequences using multiple sequence alignments provide
by RFAM and custom perl scripts. Base-paired positions
in the consensus structure were mapped to individual se-
quences, while removing gaps in the alignment, as done in
previous studies (14). We include information on the publi-
cation status in the database for users who want to exclude
unpublished structures.

The relational database is implemented with MySQL
(Version 15.1) on a CentOS GNU/Linux server (Supple-
mentary Figure S1). For more detail on the database, see
Supplementary Methods.

RESULTS AND DISCUSSION

The bpRNA approach

bpRNA secondary structure decomposition and representa-
tion. The input to bpRNA can be a list of base pairs
(BPSEQ file) or dot-bracket file for a given RNA secondary
structure. First, the segments are identified as in Figure 2A
and B. Next, a PK-graph is built, and the PK-segments are
identified (Figure 2C). The PK-free segment graph, which
enables multiloops and external loops to be easily identi-
fied, is built after the removal the base pairs in PK-segments
(Figure 2D). Bulges and internal loops are identified as un-
paired positions within the segments. After all loops are
identified, the pseudoknots are annotated by the loops in
the PK-free structure that they connect (see Materials and
Methods). The output of bpRNA analysis are (i) a multi-
bracket dot-bracket representation of the secondary struc-
ture, (ii) a ‘structure array’ sequence providing more detail
to the dot-bracket and (iii) a ‘structure type’ file. The con-
tent of these files is described in the following sections.

An accurate dot-bracket representation of RNA secondary
structure. Dot-bracket format represents base pairs with
paired parentheses, unpaired nucleotides with dots, and
pseudoknots with other brackets (‘[’,‘{’,‘<’. . . ). Although
most of the databases that the data was derived from do
not include a multi-bracketed dot-bracket representation
when pseudoknots are present, bpRNA has successfully
created one for every structure. Each dot-bracket represen-
tation we created is sufficient to re-create the BPSEQ file
using our multi-stack approach to parse the dot-bracket
structure. The efficiency of a dot-bracket sequence is de-
scribed by the ‘page number’, which is the number of dif-
ferent symbol types used to represent the dot-bracket struc-
ture (37). Our dot-bracket consists of dots ‘.’ for unpaired
bases, matched parentheses indicate nested base pairs for
page 1, square brackets for page 2, curly braces for page

3, angle brackets for page 4, and pairs of upper/lower al-
phabetical characters (Aa, Bb,. . . , Zz) for higher page num-
bers. Base pairs on the same page do not cross each other,
i.e., each page is pseudoknot-free (Figure 1F). We were able
to represent all structures with a page number less than or
equal to 7, and 99.46% of the structures with a page num-
ber of 2 or less. For all 1497 structures where bpRNA differs
from RNA STRAND v2.0, bpRNA produced a lower page
number lower page number, and thus a simpler dot-bracket
sequence (Supplementary Figure S2). In some cases, RNA
STRAND v2.0 had a page number as high as 30, requiring
every letter of the alphabet to represent the pseudoknots of
the structure, while bpRNA has a page number of 5.

The bpRNA ‘structure array’. We also created what we call
the ‘structure array’, which is a series of single character
identifiers for the structure types of each nucleotide in the
sequence, providing another layer of annotation to supple-
ment the dot-bracket (Figure 2E) and a high-level represen-
tation of the structure. In this representation, S = stem, H =
hairpin loop, M = multi-loop, I = internal loop, B = bulge,
X = external loop and E = end. The next sequence labels
nested or unpaired nucleotides with ‘N’, and nucleotides
forming pseudoknots with ‘K’. This enables a compact rep-
resentation and additional detail, making the dot-bracket
more easily interpretable for researchers. This is particularly
helpful for loop regions, which are only represented as a dot
‘.’ in dot-bracket, and detailed by the type of loop with the
structure array. Similarly, the structure array at pseudoknot
positions indicates what loops result from the removal of
the pseudoknots.

The bpRNA ‘structure type’ file. We defined a new file for-
mat with each structural feature, relevant positions, and
flanking base pairs, and sequences called a ‘structure type’
file (Supplementary Figure S3). This file format goes be-
yond the dot-bracket and structure array because it has
more detail such as positions and flanking base pairs, and
is capable of representing features of length zero, such as
zero-length multiloop branches. Each feature is numbered,
and PK interactions are indicated for loops that contain
them. Researchers can unambiguously explore a structure
with this information, along with the dot-bracket, structure
array, and VARNA 2D structure image (38).

bpRNA yields accurately annotated features. We found a
number of differences with our feature extraction and other
work. For bulges, we found 1042 structures with differ-
ences in the identified number of bulges. For instance, Sup-
plementary Figure S4A shows a structure for the tmRNA
List.wels. AF440351 1-321. This is annotated as having 0
bulges in RNA STRAND v2.0. The structure has four
bulges, which are indicated by light green in the bpRNA-
1m figure (Supplementary Figure S4B). For other structure
types, we have a different classification system. For example,
if a hairpin loop participates in a pseudoknot (e.g. a ‘kiss-
ing hairpin pseudoknot’), RNA STRAND v2.0 does not
annotate it as a hairpin. In contrast, we still classify loops
by the above definitions even when they contain nucleotides
forming PK base pairs, but label them with the specific PK
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Table 1. The number of RNAs from each source is listed for both bpRNA-
1m and bpRNA-1m(90)

bpRNA-1m bpRNA-1m(90)

CRW 55 600 4368
tmRNA 728 339
SRP 959 352
tRNAdb 2009 623 207
RNP 466 253
RFAM 43 273 22 521
PDB 669 330
Total 102 318 28 370

involved. Furthermore, we categorize PK base pairs by the
loop sequences that they connect.

The bpRNA-1m and bpRNA-1m(90) databases

The number of RNA structures extracted from each source
is shown in Table 1 for both bpRNA-1m and bpRNA-
1m(90). There are a relatively higher numbers of structures
from CRW and RFAM database; however, around 92% of
the CRW data are filtered running the CD-HIT-EST algo-
rithm with the 90% similarity. In some cases, bpRNA de-
tected errors in the source BPSEQ files used to build our
meta-database: in cases where a nucleotide was paired to it-
self, the base pair was removed; in cases where a nucleotide
was paired to two positions, one was removed. Overall, we
found 30 such examples (Supplementary Table S1).

The complete bpRNA-1m (Version 1.0) database is avail-
able through our interactive website at http://bpRNA.
cgrb.oregonstate.edu. Bulk download for bpRNA-1m and
bpRNA-1m(90) are also available under the download sec-
tion of our website. For each RNA in the database, along
with all the structural details, we provide different graphical
representations generated by VARNA package and custom
scripts. These graphical representations include secondary
structure images color-coded by segment number as in Fig-
ure 2A (Supplementary Figure S5A), color-coded by struc-
ture types (Supplementary Figure S5B), and linear graph
color-coded by page number (Supplementary Figure S5C).

Secondary structure feature analysis

The output of bpRNA can help researchers understand
RNA secondary structure and enable large-scale structural
analysis. As an example of the type of analysis that can
be performed, we analyzed the resulting secondary struc-
ture annotations to identify enriched sequence and struc-
tural patterns in our database (Table 2). We performed this
analysis on the bpRNA-1m(90) to reduce duplicated infor-
mation. Table 3 shows the distribution of RNA types for
bpRNA-1m and bpRNA-1m(90). We found several general
trends in this large data set, which could be refined in fu-
ture studies as more data become available, or with a more
restricted subset.

Hairpin loops. The most common loop-type found in
RNA secondary structures are hairpin loops (39). For each
hairpin loop, there is a closing base pair and unpaired re-
gion. The destabilizing energy of a hairpin loop can be de-
termined from the type of the closing base pair, type of mis-

Table 2. The number of each structures type for all RNA structures in
bpRNA-1m and bpRNA-1m(90)

bpRNA-1m bpRNA-1m(90)

Bulges 517 672 82 061
Hairpin Loops 708 144 119 645
Multiloops 317 046 41 424
Internal Loops 538 670 93 435
Pseudoknots 57 686 7164
Exterior Loops 229 468 67 059
Stems 2 075 928 335 877
Segments 1 019 586 160 381

Table 3. The number of common RNA types is listed for bpRNA-1m and
bpRNA-1m(90)

RNA Type bpRNA-1m bpRNA-1m(90)

Transfer RNA 35 622 3 383
16S Ribosomal
RNA

17 641 1067

5S Ribosomal RNA 477 607
Signal Recognition
Particle RNA

1603 388

Ribonuclease P
RNA

1425 605

Transfer Messenger
RNA

161 449

Group I Intron 237 123
23S Ribosomal
RNA

191 72

Hammerhead
Ribozyme

186 77

Group II Intron 131 101

match, and the length of the unpaired region (9,40). Using
the bpRNA-1m(90), we found that tetraloops, hairpin loops
of length four, are the most common (Figure 3A). While
many previous studies focused hexaloops, loops of length 6
(9,41–43), we found that heptaloops, hairpin loops of length
seven, are the second most frequent (Figure 3A). Hairpin
loops of size less than 4 and greater than 7 occur much less
frequently in bpRNA-1m(90).

When considering all hairpin loops in bpRNA-1m(90),
we found that C:G followed by G:C are the most common
closing base pairs (Figure 3B), and GA mismatches are the
most common overall (Figure 3C). The data suggest that
tetraloops are significantly enriched with C:G closing base
pairs, while heptaloops are enriched with G:C closing pairs.
The tetraloops with C:G base pairs are mostly associated
with GA mismatches, while heptaloops of size seven have
the G:C base pair which is followed by UU mismatch. There
are known frequent and stable patterns for tetraloops from
various studies such as UNCG, GNRA and CUUG, where
N = A, C, G or U and R = A or G (41,44,45). Previous
work has compared the statistical frequency of secondary
structural features to thermodynamic stability (46,47). Us-
ing Turner 2004 nearest neighbor model, we compared the
destabilizing energy of the hairpin loop types to their fre-
quency of occurrence in bpRNA-1m(90) (Figure 4A). As it
is shown, the GNRA and UNCG patterns are highly abun-
dant whereas CUUG was not as frequent in our set. Se-
quence logos (48) for all tetraloop tokens and for the top 1%
when sorted by type frequency is presented in Figure 4B. We
also did the same energy calculation for heptaloops, which is

http://bpRNA.cgrb.oregonstate.edu
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Figure 3. Hairpins in bpRNA-1m(90). (A) The distribution of hairpin loop lengths in bpRNA-1m(90) has two primary peaks, overlapping the same peak
for subsets defined by closing pairs. (B) Heat map shows the frequency of nucleotides occurring in closing base pairs. (C) Heat map shows the frequency
of pairs of nucleotides occurring in hairpin mismatch pairs.

illustrated in Figure 4C along with sequence LOGOs in Fig-
ure 4D. Altogether in bpRNA-1m(90), the most common
type for tetraloops is C(GAAA)G and for heptaloops the
most common type is G(UUCGAAU)C (Figure 4). In other
examples, there are loops that have low energy and a low
frequency of occurrence. For example, G(GGUAAGC)U is
probably rare because it is more stable for the GC mismatch
to pair, forming a loop of length 5.

Internal loops. Internal loops tend to be symmetric, be-
cause this creates a more stable structure (49). The internal
loop frequency heat map (Figure 5A) demonstrates a ten-
dency toward symmetric internal loops in bpRNA-1m(90),
particularly when fewer than 4 nt. There are various fac-
tors in calculating the energy parameters of an internal loop
such as first mismatch, closing base pairs, and the length of
the 5′ and 3′ loop sequences (9). We found that while the 5′
closing base pair favors G:C, the 3′ closing base pair favors
C:G (Figure 5B). Mismatch nucleotides, defined as the first
and last nucleotide of the loop, are enriched for GA (Fig-
ure 5C). Moreover, we found that internal loops with GA

mismatches were most likely to have a length of 3 (Supple-
mentary Figure S7). We found that 5′ and 3′ internal loops
had slightly different length distributions, with 5′ showing a
greater propensity for length 3 (Figure 5D and E). The pref-
erence for C:G for the 3′ closing pair is especially true for 3′
internal loops longer than 3 nt (Figure 5E).

Bulges. The bulge length distribution obeys an approxi-
mate exponential distribution (Figure 6A) consistent with
the destabilizing energy of a bulge increasing as a function
of length. When the bulge loop is of length 1 nt, the nu-
cleotide is enriched for A, and depleted for G and C, when
compared to global nucleotide frequencies in this database
(Figure 6B). The strongest deviation from the exponential
fit is at length 6 nt, which is also enriched for bulges with a
GA mismatch (Supplementary Figure S7A).

Similar to internal loops, bulges show the highest enrich-
ment for G:C at the 5′ and C:G at the 3′ closing pairs (Fig-
ure 6C). The majority of bulges are flanked by GC base
pairs, but for bulge loops less than 3 nt other flanking base
pairs are common (Supplementary Figure S7B–D). In ad-
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Figure 4. Tetraloops and heptaloops. (A) Scatterplot compares the frequency of tetraloop sequences to destabilizing energy. (B) Sequence LOGOs demon-
strate sequence biases in the most enriched tetraloops. (C) Scatterplot compares the frequency of heptaloop sequences to destabilizing energy. (D) Sequence
LOGOs demonstrate the sequence biases in the most enriched heptaloops.

dition, while GA mismatches are the most common for in-
ternal loops, the most common mismatch for bulges is AA,
with GA the second most common (Figure 6D). The largest
asymmetry between 5′ and 3′ closing base pairs was ob-
served for U:G 5′ closing pairs for bulges less than 4 nt (Fig-
ure 6E and F). Internal loops and bulges show similar trends
for lengths when binned by closing pairs, but with bulges
having a more sharply decaying distribution.

Multiloops. Based on analysis of bpRNA-1m(90), we
found that multiloops branches (junctions) of sizes 3, 4 and
5 are the most common and multiloops of size >6 nt are
very rare (Figure 7A). Additionally, the distributions of
branch lengths for these common multiloop branch-counts
indicates that multiloops with four branches are signifi-
cantly enriched for multiloop branches of zero length (Fig-
ure 7B) which is found in ‘flush stacking’ (18). This pat-

tern is consistent with the fact that multiloops with four
branches have more opportunities to be stabilized by coax-
ial stacking when the branches are zero length. In contrast,
two helices in a multiloop with three zero-length branches
would still be offset asymmetrically by the width of the third
helix.

Heat maps of the frequency of each closing base pair in
multiloops branches demonstrates that most of the closing
base pairs in multiloops tend to be C:G for 5′ closing pairs,
and G:C for 3′ closing pairs––the opposite of internal loops
(Figure 7C). This pattern for the closing pairs is the most
common regardless of the number of branches (Supplemen-
tary Figure S8A–C). Overall, G:C and C:G closing pairs are
significantly more common (Supplementary Figure S8D-I).
In contrast to both internal loops and bulges, the most com-
mon mismatch pair for multiloops is AG (Figure 7D). Mul-
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Figure 5. Internal loops. (A) Heat map shows the frequency of internal loops based on 5′ and 3′ loop length. (B) Heat map shows the frequency of base
pairs occurring in 5′ and 3′ internal loop closing base pairs. (C) Heat map shows the frequency of pairs of nucleotides occurring in 5′ and 3′ internal loop
mismatch pairs. (D) Stacked histograms of 5′ internal loop lengths when organized by the 5′ closing base pair. (E) Stacked histograms of the 3′ internal
loop lengths when organized by the 3′ closing base pair.

tiloop branches have a strong preference for GC-base pair-
ing, with loops of length 0 showing a preference for C:G
closing pairs, and loops of length 2 showing a preference
for G:C closing pairs (Figure 7E and F).

Stems. Each stem in the database can be considered an
instance of a ‘stem type’, such as CAG:CUG. To avoid
double-counting, we alphabetically sort the two strands to
form a distinct type. The full bpRNA-1m database contains
of 2,075,928 stems that are instances (tokens) of 44 307 stem

types, and bpRNA-1m(90) has 335 877 stems and 34 424
stem types. The frequency of stem type occurrences obeys a
Zipfian distribution (50,51), as observed in Figure 8A. The
frequency f of occurrence of stems follows the equation,
f = Ar−s , where r is the rank of the stem when sorted by
frequency, and the scale factor s ≈ 1.005, extremely close to
the ideal Zipf relationship of s = 1. The frequency of oc-
currence of stems does not correlate perfectly with the en-
ergy of the stem sequence, because longer stems are typically
less frequent.
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Figure 6. Bulges. (A) Bulge length histogram. (B) Nucleotide frequency in bulges of length 1. (C) Heat map of closing base pairs. (D) Heat map of mis-
matches. (E) Bulge length distribution for different 5′ closing base pairs. (F) Bulge length distribution for different 3′ closing base pairs.

Pseudoknots. Around 12% (3320) of RNA structures have
at least one pseudoknot (PK) in bpRNA-1m(90) (Supple-
mentary Table S2). Most PK-containing RNAs have only
one PK; however, many RNA secondary structures con-
tain more than one PK. Overall, there are 7164 PKs in this
data set. To get a sense of most frequent loop types form-
ing the PK structures in our set, we plotted the frequency
of each type of PK in Figure 8B. The most frequent type is
between multiloops and hairpin loops, followed by bulges
and hairpin loops. Kissing hairpins (H-H), which are com-
monly studied (52,53), are the seventh most common. Con-
sistent with our expectations that dangling ends and exter-
nal loops cannot form pseudoknots with each other because
such an interaction would form a multiloop and not a PK,

Table 4. Number of canonical and non-canonical base pairs in bpRNA-
1m and bpRNA-1m(90)

Base pair bpRNA-1m bpRNA-1m(90)

C:G 5 027 894 747 110
A:U 2 232 052 410 641
G:U 1 137 821 174 545
A:G 239 066 32 564
A:C 105 964 26 074
U:U 87 396 18 958
C:U 56 063 18 587
G:G 51 959 11 820
A:A 39 072 10 499
C:C 21 421 7748
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Figure 7. Multiloops. (A) Histogram of branch number for all multiloops in bpRNA-1m(90). (B) Branch length for multiloops with different branch
numbers. (C) Closing pair heat map. (D) Mismatch heat map. (E) Length distribution for different GC closing base pairs. (F) Length distribution for
different AU closing base pairs.

our annotations do not find any examples of this. Analyz-
ing base pair information per pseudoknot structures sug-
gests that PKs with three base pairs are the most frequent
in our dataset and there are only four PKs in bpRNA-1m
that have 12 bp, the largest observed in bpRNA-1m (only
one PK with length 12 observed in bpRNA-1m(90)).

Non-canonical base pairs. The C:G/G:C base pairs in
both bpRNA-1m and bpRNA-1m(90) outnumber any
other base pairs. In addition to Watson–Crick (base pair
interaction between C and G or A and U) and wobble
base pairs (G:U pairs), there are other nucleotide interac-
tions observed in the databases we have compiled, com-
monly referred to as non-canonical base pairs. Even though

the canonical base pairs (Watson–Crick and wobble pairs)
are more common in RNA secondary structures formation,
non-canonical base pairing is important in the formation of
the tertiary structures. We observe 9.1% of the base pairs
in bpRNA-1m(90) are non-canonical. 44.8% of these non-
canonical pairs occur in the middle of a stem surrounding
by canonical pairings, whereas only 7.2% are isolated base
pairs. Also, about 1.4% of these special pairings are involved
in pseudoknot formation (All stats are based on bpRNA-
1m(90)). Table 4 shows the frequency of each type of base
pairs in bpRNA-1m and bpRNA-1m(90). A:G/G:A, and
A:C/C:A are the most common non-canonical pairs in both
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Figure 8. Stems and pseudoknots. (A) The frequency of stem types com-
pared to their rank has a Zipfian distribution with a scale factor approxi-
mately equal to –1.00. (B) bpRNA classifies pseudoknots by the loops that
their base pairs connect when the pseudoknots are removed.

bpRNA-1m and bpRNA-1m(90) and C:C are the least fre-
quent.

SUMMARY AND CONCLUSIONS

We have developed the bpRNA annotation approach to
reliably produce intuitive secondary structure annotations
from base pairing data to help with understanding RNA
structure. Our efforts to provide annotations that are more
informative and generally applicable than previous ap-
proaches have yielded many new strategies for represent-
ing RNA structural data such as the structure array, which
makes the structure easier to read and visualize by pro-
viding a character label for each nucleotide of the dot-
bracket representation. Likewise, the structure type file rep-
resents a detailed annotation, covering each nucleotide of
the sequence. Separating the structure into segments––base
paired regions interrupted by only bulges and internal
loops––provides facile identification of multiloops and ex-
ternal loops, even when their length is zero. bpRNA also
creates accurate dot-bracket representations for both sim-

ple and complex pseudoknot-containing RNA secondary
structures.

We applied bpRNA to create a large integrated meta-
database of single molecule RNA secondary structure that
we have assembled from seven different sources (bpRNA-
1m). With this large meta-database and the RNA struc-
tural information that bpRNA provides, there is an oppor-
tunity for a number of applications. The annotations pro-
duced from bpRNA could be used to improve the source
databases used to build bpRNA-1m. Expanded structure
annotations could enable the calculation of a next gener-
ation of thermodynamic parameters. The data set gener-
ated by bpRNA is large enough to enable training and test-
ing machine learning algorithms for the prediction of RNA
structure. Moreover, by restricting to only include single
molecule structures, this dataset can serve as a benchmark
for RNA secondary structure prediction algorithms, which
typically take a single sequence as input.

We have used the annotation details and structural fea-
tures produced by bpRNA to identify several statistical
trends in bpRNA-1m(90), which contains over 28 000 se-
quences that are less than 90% similar, over 10 times the
size of previous similar refined data (54). While some of
these trends represent patterns of thermodynamic stability,
future studies are needed to expand this analysis with more
structures, or judiciously filter the data for a more refined
structural analysis.
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Pütz,J. (2008) tRNAdb 2009: compilation of tRNA sequences and
tRNA genes. Nucleic Acids Res., 37, D159–D162.
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