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Abstract

Background: The recent increase in cases of azole-resistant Aspergillus fumigatus (ARAf) infections is a major clinical
concern owing to its treatment limitations. Patient-derived ARAf occurs after prolonged azole treatment in patients
with aspergillosis and involves various cyp51A point mutations or non-cyp51A mutations. The prognosis of patients
with chronic pulmonary aspergillosis (CPA) with patient-derived ARAf infection remains unclear. In this study, we
reported the case of a patient with ARAf due to HapE mutation, as well as the virulence of the isolate.

Case presentation: A 37-year-old male was presented with productive cough and low-grade fever. The patient
was diagnosed with CPA based on the chronic course, presence of a fungus ball in the upper left lobe on chest
computed tomography (CT), positivity for Aspergillus-precipitating antibody and denial of other diseases. The patient
underwent left upper lobe and left S6 segment resection surgery because of repeated haemoptysis during
voriconazole (VRC) treatment. The patient was postoperatively treated with VRC for 6 months. Since then, the
patient was followed up without antifungal treatment but relapsed 4 years later, and VRC treatment was reinitiated.
Although an azole-resistant isolate was isolated after VRC treatment, the patient did not show any disease
progression in either respiratory symptoms or radiological findings. The ARAf isolated from this patient showed
slow growth, decreased biomass and biofilm formation in vitro, and decreased virulence in the Galleria mellonella
infection model compared with its parental strain. These phenotypes could be caused by the HapE splice site
mutation.

Conclusions: This is the first to report a case demonstrating the clinical manifestation of a CPA patient infected
with ARAf with a HapE splice site mutation, which was consistent with the in vitro and in vivo attenuated virulence
of the ARAf isolate. These results imply that not all the ARAf infections in immunocompetent patients require
antifungal treatment. Further studies on the virulence of non-cyp51A mutations in ARAf are warranted.
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Background
Aspergillus fumigatus is one of the most important op-
portunistic fungal pathogens in humans and causes asper-
gillosis, including invasive aspergillosis (IA), chronic
pulmonary aspergillosis (CPA), and allergic bronchopul-
monary aspergillosis (ABPA) [1]. Triazole antifungals are
the first choice of treatment for aspergillosis [2, 3]. How-
ever, an increase in cases of azole-resistant A. fumigatus
(ARAf) infections has been reported worldwide in the last
20 years, which is regarded as an emerging clinical prob-
lem due to its treatment limitations for this disease [4–7].
Infections due to azole-resistant strains are classified

into the environmental and patient routes and occur
through the mutation or upregulation of the cyp51A gene,
which encodes 14-α sterol demethylase, a triazole target
enzyme in A. fumigatus [6, 8, 9]. Environment-derived
ARAf occurs after environmental exposure to fungicides
and involves tandem repeats (TRs) in the promoter region
of cyp51A coupled with point mutations such as TR34/
L98H and TR46/Y121F/T289A, whereas patient-derived
ARAf occurs after prolonged azole treatment in
aspergillosis-infected patients and involves various cyp51A
point mutations (G54, G138, and M220) or non-cyp51A
mutations [9]. Although environment-derived ARAf infec-
tion has been associated with poor prognosis in patients
with IA and CPA [7, 9–11], the prognosis of patient-
derived ARAf infections remains unclear.
The proportion of ARAf exhibiting non-cyp51A muta-

tions has increased over the last 5 years [12]. To date,
non-cyp51A mutations, such as those in the cdr1B,
hapE, and hmg1 genes, have been reported to cause
azole resistance [13–15]. The cdr1B gene encodes an
ATP-binding cassette (ABC) transporter, and constitu-
tive expression of the cdr1B gene leads to a decrease in
intracellular drug concentration, resulting in azole resist-
ance [13]. The hapE gene is a subunit of the CCAAT-
binding complex (CBC), and the amino acid substitution
of HapE (P88L) leads to an increase in the cyp51A ex-
pression and consequent azole resistance [14, 16]. Muta-
tion in the sterol-sensing domain of the 3-hydroxy-3-
methyl-glutaryl-coenzyme A reductase-encoding gene,
hmg1, results in the accumulation of ergosterol precur-
sors in cells, leading to triazole resistance [15].
Although some of the resistance mechanisms of ARAf

with non-cyp51A mutations have been well investigated
[13, 15, 17], the causes of its change in virulence remain
unclear. In this study, we evaluated the clinical course of
with ARAf due to HapE mutation, as well as the viru-
lence of the isolate.

Case presentation
Case
A 37-year-old male presented with productive cough
and low-grade fever. The patient had a history of

thoracic surgery for recurrent pneumothorax with
chronic obstructive pulmonary disease as the underlying
condition. Chest computed tomography (CT) presented
a fungus ball in the upper left lobe, and the patient was
positive for Aspergillus-precipitating antibody. Although
the patient was negative for fungal culture on bronchos-
copy, other diseases such as mycobacterial infection and
lung cancer were excluded. The patient was diagnosed
with CPA based on the chronic course, presence of a
fungus ball on chest CT, and an immunological response
[18]. The patient was treated with itraconazole (ITC;
400 mg/day) from August 2009 to July 2010 and subse-
quently, with voriconazole (VRC; 400 mg/day) until De-
cember 2011; however, he had repeated haemoptysis
during treatment. The patient then underwent left upper
lobe and left S6 segment resection surgery in December
2011 and was treated postoperatively with VRC (400
mg/day) for 6 months. Since then, the patient was
followed up without antifungal treatment. In June 2016,
he had worsening respiratory symptoms and chest CT
showed thickening of the cavity wall in the upper left
lobe. The sensitive isolate MF-2046 was obtained from
the sputum, and VRC treatment was reinitiated due to
CPA relapse. Although the resistant isolate MF-2108
was obtained from the sputum in September 2016, the
VRC treatment was continued until November 2018 as
respiratory symptoms and radiological findings im-
proved. Since then, the patient has not been treated, but
no disease progression has been observed (Fig. 1).

Strains
The MF-2046 and MF-2108 isolates were obtained from
the patient’s sputum in June and September of 2016, re-
spectively (Fig. 1). Based on the macroscopic colony
morphology, micromorphological characteristics, the
ability to grow at 48 °C, and the sequences of the β-
tubulin gene, these were identified as A. fumigatus sensu
strico isolates [19, 20].

Drug susceptibility test
In vitro susceptibility testing of the isolates was per-
formed as previously described [19]. Briefly, minimum
inhibitory concentrations (MICs) of ITC, VCZ, and
amphotericin B and minimum effective concentrations
(MECs) of micafungin were determined using the Clin-
ical and Laboratory Standards Institute reference
method for broth microdilution, document M38-A2,
with partial modifications using a yeast-like fungus DP
plate (Eiken Chemical, Tokyo, Japan) [21]. The results
were evaluated according to the European Committee
on Antimicrobial Susceptibility (EUCAST) clinical
breakpoints.
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Short tandem repeats (STR) analysis and cyp51A mutation
STR analysis was performed as previously descibed [22].
Briefly, nine microsatellite regions were amplified by
polymerase chain reaction (PCR) using the designed pri-
mer pairs and sequenced. The number of repeats in each
region was counted from the sequences.
The cyp51A gene was amplified by PCR using the de-

signed primer pairs and was sequenced. The results of
the STR analysis and primers used in this study are
shown in Table S1.

Preparation of A. fumigatus conidia from isolates
All isolates were incubated on a potato dextrose agar
(PDA) (0.4% potato starch, 2% dextrose, and 1.5% agar)
(Difco Laboratories, Detroit, MI) slanted at 30 °C for 1
week. The conidia were harvested with phosphate-
buffered saline (PBS) containing 1% Tween 20 solution,
and the conidial suspensions obtained were passed
through a sterile 40-μm strainer to remove hyphal frag-
ments. The number of conidia was counted using a
haemocytometer.

Growth assay
A total of 1 × 104 conidia /A. fumigatus isolate were
spotted on the PDA plates and incubated for 5 days at
30 °C. Colony diameters were measured after 72, 96, and
120 h and the average diameters were calculated from
three independent experiments [23].

Biomass measurement and biofilm assay
A total of 5.0 × 105 conidia / A. fumigatus isolate were
incubated in 5 mL of yeast glucose medium at 37 °C for
24 h with shaking at 250 rpm. The precipitate obtained
was then recovered by filtration, frozen at − 80 °C,

lyophilized overnight, and weighed. The average biomass
was calculated from three independent experiments.
Biofilm assay was performed as previously described

[24, 25]. Briefly, a round-bottomed 96-well plate was in-
oculated with 100 μL of the conidial suspension at a
density of 1 × 105 conidia/mL in a Brian medium and in-
cubated at 37 °C for 24 h. The spent culture medium
was removed from each well and the adherent cells were
washed three times with distilled water (dH2O). Next,
100 μL of 0.1% (w/v) crystal violet solution was added to
each well and incubated for 10 min. This solution was
carefully removed and washed twice with dH2O. The
biofilms were destained for 10 min by adding 125 μL of
100% ethanol to each well. The absorbance of the
destaining solution was measured at 595 nm.

Galleria mellonella virulence assay
Healthy G. mellonella larvae (Oita General Service Co.,
Ltd., Japan) of the same size were selected for the assay.
Groups of 10 larvae were inoculated with 1.0 × 106 co-
nidia into the haemocoel using a Hamilton syringe
through the last left pro-leg [26]. The inoculated larvae
were incubated in the dark at 37 °C and survival was
monitored daily for 7 days. Ten larvae were inoculated
with PBS and used as controls, and no larvae died during
this time. Virulence assays were repeated three times
independently.

Whole-genome sequencing
A total of 5.0 × 105 conidia / A. fumigatus isolate were
incubated in 5 mL of yeast extract-peptone-dextrose (1%
yeast extract, 2% peptone, and 2% dextrose) (Difco La-
boratories, Detroit, MI, USA) broth at 37 °C for 24 h
with shaking at 250 rpm. Mycelium was recovered using
a sterile 40-μm strainer, rapidly frozen using absolute

Fig. 1 Clinical course of a patient with CPA. The patient was treated with itraconazole (ITC) from August 2009 to July 2010 and with voriconazole
(VRC) until December 2011, however, he had repeated haemoptysis during treatment. He underwent left upper lobe and left S6 segment
resection surgery in December 2011 and was treated with VRC for 6 months. The patient was then followed up without antifungal treatment, but
relapsed in June 2016, and treatment with VRC was initiated again. The sensitive isolate, MF-2046, was obtained from sputum before treatment
with VRC, while the resistant isolate, MF-2108, was obtained from sputum during treatment with VRC. Although the MF-2108 isolate was isolated
from sputum in September 2016, VRC treatment was continued until November 2018, as respiratory symptoms and radiological findings
improved. Since then, the patient has not been treated, but no disease progression has been observed
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ethanol and dry ice, and lyophilized overnight. The ly-
ophilized mycelium was homogenized and used for
DNA extraction. DNA was extracted using a Master-
Pure™ DNA Purification Kit (Epicentre, Madison, WI,
USA) and purified using a QIAquick PCR Purification
Kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions. Whole-genome sequencing was
performed by a commercial vendor (Novogene Bioinfor-
matics Technology Co. Ltd., Beijing, China) using Nova-
Seq 6000 (350-bp insert library with 150-bp paired-end
sequencing; Illumina, San Diego, CA).

Sequence analysis
Adaptor sequences and low-quality reads were elimi-
nated from paired-end sequence reads using the Cuta-
dapt v1.16 software [27]. The sequence reads were
mapped to the Af293 reference genome using Bowtie2
v2.3.4.1 [28, 29], and BAM files were processed with the
MarkDuplicates program from Picard-tools v2.18.1 to
generate analysis-ready BAM files [30]. Variants were
then called to obtain multi-sample Variant Call Format
file using the HaplotypeCaller program from GATK
v4.1.0.0 [31]. Subsequently, the effects of the variants
were predicted using the SnpEff software [32]. Single nu-
cleotide mutations were reconfirmed using Sanger
sequencing.

RNA isolation and cyp51A expression
Total RNA was extracted using the RNeasy Plant
Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. Complementary DNA
(cDNA) was synthesised from 2.5 μg of the total RNA
using a QuantiTect Reverse Transcription kit (Qiagen,
Hilden, Germany), and cDNA was used as the tem-
plate for PCR using a QuantiTect SYBR Green PCR
kit (Qiagen, Hilden, Germany). Quantitative reverse-
transcription PCR (qRT-PCR) was performed in tripli-
cate using a 7500 Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA). The mRNA abun-
dance of the target genes was normalised to
18SrRNA. The primers used for qRT-PCR are listed
in Table S1.

Statistical analysis
Unpaired t-test was used to assess the differences in the
colony diameter, and the biomass and biofilm amounts.
Survival was plotted on a Kaplan–Meier curve for each
strain, and log-rank (Mantel-Cox) test was used for pair-
wise comparison of percent survival using the GraphPad
Prism 5 software (GraphPad Software, La Jolla, CA).
Statistical significance was set at P < 0.05.

Results
Clinical course and characterisation of A. fumigatus
isolates
The sensitive isolate, MF-2046, was obtained from the
sputum of the patient in June 2016, 4 years after VRC
and ITC treatment and surgery, before retreatment with
VRC. The resistant isolate, MF-2108, was isolated from
the sputum of the same patient in September 2016 dur-
ing VRC treatment (Fig. 1). Microsatellite analysis
showed that the two isolates obtained from the patient
exhibited identical genetic backgrounds (Table 1). The
MF-2046 isolate was susceptible to azole antifungal
drugs (MICs: itraconazole, 0.5 mg/L and voriconazole,
0.5 mg/L), whereas the MF-2108 isolate showed resist-
ance to azoles (MICs: itraconazole, > 8 mg/L and vorico-
nazole, 4 mg/L). The azole-resistant isolate did not
harbour a point mutation of cyp51A or TRs in the pro-
moter region of cyp51A (Table 1).
Although the MF-2108 was isolated from the sputum

in September 2016, VRC treatment continued until No-
vember 2018 as respiratory symptoms and radiological
findings improved. Since then, the patient has not been
treated, but no disease progression has been observed
(Fig. 1).

Differences in phenotype and virulence of A. fumigatus
isolates
Although the colony morphologies of the two isolates
were almost similar, the colony colours were different.
The azole-susceptible MF-2046 isolate exhibited green
colonies, whereas the azole-resistant MF-2108 isolate ex-
hibited slightly white-in-green-coloured colonies (Fig. 2a).
In the growth assay, MF-2108 colonies showed slower
growth than that of the azole-susceptible MF-2046 (Fig.
2b). In addition, MF-2108 showed significantly decreased
biomass and biofilm formation compared with those of
MF-2046 (Fig. 2c, d). To evaluate the virulence of both
isolates, a virulence assay was performed using the G.
mellonella infection model. The MF-2108 isolate showed
significantly decreased virulence compared with that of
MF-2046 (Fig. 3).

Whole-genome comparisons between A. fumigatus
isolates
To investigate the azole-resistance mechanisms of the
isolate, we compared the genome sequences of both iso-
lates using next-generation sequencing. Compared with
that in MF-2046, MF-2108 exhibited one splice site, two
nonsynonymous, and two synonymous mutations
(Table 2). The two nonsynonymous mutations were
identified as Y622S in Afu1g09770 and F551L in
Afu2g02120, which encode uncharacterised proteins and
proteins exhibiting phosphopentomutase activity, re-
spectively. Two synonymous mutations were identified
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in Afu2g00910 and Afu2g03450. In addition, one splice
site mutation was identified in the gene encoding HapE.
The mutation from G to A was observed at the last base
of the third intron of the hapE gene. It is presumed that
this mutation resulted in the intron remaining in the
mature mRNA and the translation stopping at the 57th
amino acid, thereby leading to the production of abnor-
mal HapE protein (Fig. S1).

The cyp51A expression in the azole-resistant isolate
The cyp51A expression levels in both isolates were eval-
uated using qRT-PCR. The expression of cyp51A was in-
creased by approximately six fold in the azole-resistant

isolate (MF-2108) compared with that in the azole-
susceptible isolate (MF-2046) (Fig. 4).

Discussion and conclusions
To the best of our knowledge, this is the first to report a
case demonstrating the clinical phenotype and virulence
of an ARAf isolate with a HapE splice site mutation. In
this study, we demonstrated that ARAf isolated from a
patient with CPA showed slow growth, decreased bio-
mass and biofilm formation, and decreased virulence,
and these phenotypes may be caused by a HapE splice
site mutation. In addition, the virulence of the isolated
ARAf was consistent with the patient’s clinical course,

Table 1 Characteristics of Aspergillus fumigatus isolates used in this study

Isolation
date

Strain Mirosatellite Minimum inhibitory concentration(MIC; mg/L) MCFG Cyp51A

2A 2B 2C 3A 3B 3C 4A 4B 4C AMB ITC VRC MEC(mg/L) mutation

06/20/16 MF-2046 17 24 16 29 25 13 11 10 8 0.25 0.5 0.5 < 0.015 –

09/14/16 MF-2108 17 24 16 29 25 13 11 10 8 0.5 > 8 4 < 0.015 –

AMB amphotericin B, ITC itraconazole, VRC voriconazole, MCFG micafungin, MEC minimum effective concentration

Fig. 2 Phenotype of Aspergillus fumigatus isolates. a A total of 1 × 104 conidia /A. fumigatus isolate were spotted on the PDA plates at 30 °C.
Colony morphology was observed after 96 h incubation. b A total of 1 × 104 conidia /A. fumigatus isolate were spotted on the PDA plates at
30 °C. Colony diameters were measured after 72, 96, and 120 h and average diameters were calculated from three independent experiments.
Error bars represent standard deviations. *P < 0.001, Unpaired t-test. c A total of 5.0 × 105 conidia /A. fumigatus isolate were incubated in 5 mL of
yeast glucose (YG) media at 37 °C for 24 h with shaking at 250 rpm. The precipitates obtained were recovered by filtration, frozen at − 80 °C,
lyophilized overnight, and weighed. The average biomass was calculated from three independent experiments. Error bars represent standard
deviations. P = 0.0286, Unpaired t-test. d A round-bottomed 96-well plate was inoculated with 100 μL of the conidial suspension at a density of
1 × 105 conidia/mL in a Brian medium and incubated at 37 °C for 24 h. The spent culture medium was removed from each well and the adherent
cells were washed three times with distilled water (dH2O). Biofilms were stained with 100 μL of 0.1% (w/v) crystal violet solution and washed and
destained with 125 μL of 100% ethanol. The absorbance of the destaining solution was measured at 595 nm. Error bars represent standard
deviations. *P < 0.001, Unpaired t-test
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and the patient did not exhibit any disease progression
in respiratory symptoms or radiological findings, despite
continued treatment with VRC to which the isolate with
the HapE mutation was resistant.
A previous study reported that ARAf with HapE P88L

substitution showed increased cyp51A expression levels
and slow growth in an in vitro growth assay [14]. In
addition, another study reported that each deletion
strain of the HapB, HapC, and HapE subunits, which
confer the CBC-acquired resistance to triazole antifun-
gals, showed slow growth and decreased virulence of as-
pergillosis in a pulmonary and systemic mouse model
[16]. Here, an ARAf isolate with a HapE splice site muta-
tion showed slow growth and increased cyp51A expres-
sion levels, and these in vitro phenotypes were similar to
those with HapE P88L mutation and a CBC mutations.
These results suggest that the decreased HapE function
due to the HapE splice site mutation may affect the
in vitro and in vivo phenotypes, although other muta-
tions may also affect these phenotypes. Clinically, infec-
tion with ARAf exhibiting a HapE P88L mutation has
been reported to cause death in a patient with chronic
granulomatous disease, which is caused by a primary
immunodeficiency associated with phagocytic cell

abnormalities, despite a clear decrease in virulence
in vitro [14]. However, our patient did not exhibit any
disease progression in either respiratory symptoms or
radiological findings after infection with ARAf with a
HapE splice site mutation. The patient had no apparent
systemic immunodeficiency in this case, and these prog-
nostic differences may have been caused by differences
in host immune status.
In bacteria, long-term antibiotic exposure has been re-

ported to cause resistance mutation, resulting in de-
creased growth and virulence. This evolution of a
microorganism is termed the fitness costs of antibiotic
resistance [33, 34]. Similarly, in fungi, fitness losses in
patient-derived ARAf have also been frequently reported
[35–37]. The cyp51A-mediated resistance mechanisms
are not thought to be associated with fitness costs be-
cause these mutated strains do not show slow growth
[36, 38]. However, in our study, the ARAf isolate with
the HapE splice site mutation showed slow growth and
decreased virulence. This adaptation of the strain due to
the HapE mutation was considered a fitness cost.
ARAf infection has been suggested to be associated

with poor prognosis in IA patients with attenuated im-
munity due to leukaemia, solid organ transplantation,

Fig. 3 Virulence assay using the Galleria mellonella infection model. Groups of 10 larvae were inoculated with 1.0 × 106 conidia into the
haemocoel and incubated in the dark at 37 °C, and survival was monitored daily for 7 days. Kaplan–Meier curves were generated and compared
using log rank (Mantel–Cox) test. *P < 0.0001

Table 2 Mutations detected in the azole-resistant Aspergillus fumigatus isolate

Gene Description mutation pattern

Afu1g09770 uncharacterized protein Y622S

Afu2g00910 NB-ARC domain protein S77S

Afu2g02120 phosphopentomutase activity F551L

Afu2g03450 uncharacterized protein G745G

Afu6g05300 HapE(CCAAT-binding factor complex subunit) c.154-1G > A
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and hematopoietic stem cell transplantation [39]. It has
also been associated with poor prognosis in patients with
CPA [11]. There are many cases of infections with ARAf
exhibiting a cyp51A mutation that does not affect growth
and virulence [39]. Our study results suggest that ARAf
with non-cyp51A mutation may not necessarily need to be
treated in patients who are not severely immunocom-
promised, depending on their clinical course.
Although we present the phenotype of an ARAf isolate

with a HapE splice site mutation, our study has some
limitations. First, clinically derived ARAf isolates have
multiple mutations, and phenotypic changes are not ne-
cessarily due to a single gene change. Second, our report
describes the result of the analysis of a single strain with
a HapE mutation in one case.
In conclusion, this is the first to report a case dem-

onstrating the clinical manifestation of a patient with
CPA infected with an ARAf isolate with a HapE splice
site mutation, which was consistent with the in vitro
and in vivo attenuated virulence of the ARAf isolate.
Our results imply that not all ARAf isolates obtained
from immunocompetent patients should be consid-
ered targets for antifungal treatment. Further studies
on the virulence of non-cyp51A mutations are war-
ranted to better understand the resistance mecha-
nisms in A. fumigatus.
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