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Abstract

Behavioral resistance protects insects from microbial infection. However, signals inducing

insect hygiene behavior are still relatively unexplored. Our previous study demonstrated

that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals

even induce the behavior. In this paper, we postulated a cross-talk between behavioral

resistance and innate immunity. To examine this hypothesis, we employed a previously vali-

dated behavioral test to examine the function of taste signals in inducing a grooming reflex

in decapitated flies. Microbes, which activate different pattern recognition systems upstream

of immune pathways, were applied to see if there was any correlation between microbial

perception and grooming reflex. To narrow down candidate elicitors, the grooming induction

tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type

peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning

behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC.

Introduction

Insect defenses against pathogens have been mostly studied from an immunological point of

view, unravelling the biochemical components as well as the signaling pathways involved in

triggering these responses [1]. However, little data is available concerning the role of behavior

in these innate defenses. Although hygienic activities like grooming (have been shown recently

to be) are remarkably developed in social insects [2–4], little is known about grooming reflexes

in Drosophila. Drosophila clean themselves vigorously (i.e. grooming) when touched with bac-

terial extracts, or with bitter chemicals (like quinine), but not with sugar or water [5]. Our

objective was to study self-grooming in a solitary insect amenable to genetic studies. We

used Drosophila melanogaster to establish whether grooming behavior relies on the immune

system, and if so, which chemical signals from microbes (bacteria, fungi) might stimulate self-

grooming.
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In Drosophila, antimicrobial defense mechanisms include maintenance of physical barri-

ers (epithelia), secretion of humoral mediators (antimicrobial peptides, reactive oxygen spe-

cies), activation of proteolytic cascades leading to melanisation and cellular functions

including phagocytosis and encapsulation [1]. The regulation of the antimicrobial peptide

gene expression during systemic infection has been studied in great detail. Production of

antimicrobial peptides by the fat body, an analogue of the mammalian liver, is orchestrated

through two signaling modules: the Toll and Imd pathways are activated in response to

microbial infection and lead to activation of NF-κB-like factors. Two types of pattern recog-

nition systems assure microbial sensing upstream of the Toll and Imd pathways. Peptidogly-

can recognition proteins (PGRPs), which can be soluble or membrane-bound, activate both

Toll and Imd, and soluble Glucan-binding proteins (GNBPs), which recognize yeast glucans

and activate exclusively Toll pathways. All PGRPs recognize bacterial peptidoglycan (PGN)

but with specificity towards the nature of peptidoglycan: Lysine-type PGN from Gram-posi-

tive bacteria engages the soluble form PGRP-SA in hemolymph and leads to Toll activation,

while the Imd pathway, active against Gram-negative bacteria, is triggered by the binding of

DAP-type PGN to PGRP-LC in cooperation with PGRP-LE [6–8]. The Imd pathway mainly

responds to Gram-negative bacterial infection and controls antibacterial peptide genes via

the activation of the Rel protein Relish. PGRP-LB is an amidase specific of DAP-type PGN

and its expression is controlled by the Imd pathway [9, 10]. PGRP-LB negatively regulates

the Imd pathway by scavenging extracellular peptidoglycan. PGRP-LC is a transmembrane

receptor with three alternative splice isoforms (PGRP-LCa, -LCx and -LCy) that have some-

what different ligand specificities. Antimicrobial peptides are also expressed in many epithe-

lia in contact with the external world such as the gut, genital tracts and trachea. Tissue-

specific expression of surface and intracellular receptors ensures a correct level of immune

activation in tissues exposed to the environment versus tissues in contact with the sterile inte-

rior milieu [11, 12].

Here we postulated that microbial factors, notably peptidoglycan from Gram-negative

bacteria, plays an important role in inducing hygiene behavior in Drosophila. Grooming

behavior in Drosophila may contribute to diminishing the exposure of flies to pathogens.

Previous studies have shown that a stereotyped grooming reflex can be triggered in decapi-

tated flies by tactile [13, 14] or chemical stimulation [5, 15, 16]. As a consequence, use of

decapitated flies enable simple but reliable assessments of grooming activity upon stimula-

tion of sensilla [17, 18]. We have carefully modified the method to remove the influence

from mechanical stimulus together with water influence and confirmed it with several

approaches using UAS-GAL4 experiments and optogenetic experiments[5], then applied

this classical method to assess the reflex triggered by chemical stimuli associated with patho-

gens. We scored the occurrence of grooming responses following a contact with a solution of

water mixed with different solutions. First, microbes, which activate different pattern recog-

nition systems, were applied to decapitated flies to assess the function of bacterial compo-

nents in the induction of grooming. Then the grooming induction tests were conducted with

highly purified bacterial components to pinpoint specific elicitors. These tests support an

important role of DAP-type PGN in eliciting grooming. Lastly we showed that two pattern-

recognition receptor capable of recognizing DAP-type PGN working upstream of the Imd

pathway are required for grooming. In contrast, PGRP-LB and intracellular components of

the Imd pathway, Relish, and the Imd adaptor [19] were not involved in the grooming reac-

tion (Fig 1A). In this paper, we successfully demonstrate that DAP-type PGN from Gram-

negative bacteria triggers the cleaning behavior when it is recognized by its receptor

PGRP-LC.

PGRP-LC contributes to grooming induction in D. melanogaster

PLOS ONE | https://doi.org/10.1371/journal.pone.0185370 November 9, 2017 2 / 15

http://www.rish.kyoto-u.ac.jp/mission_e/

mission5/. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0185370
http://www.rish.kyoto-u.ac.jp/mission_e/mission5/
http://www.rish.kyoto-u.ac.jp/mission_e/mission5/


Fig 1. (A) Grooming induction test. Circles on body parts indicate location of gustatory receptors. Tested locations of

gustatory receptor are indicated by red circle (front legs, hind legs and wing). (B)–(E) show the results. Grooming behavior

induced by (B) heat-killed E. coli on w1118, (C) A. aceti on CS flies, (D) L. bulgaricus on CS flies and (E) B. bassiana on CS

flies. n = 40 (n = 20 from each sex). G-/+ means Gram-negative/positive bacteria. Significant increase from the control

response (water) is indicated by asterisks: * indicates p <0.05, **indicates p < 0.01 and *** indicates p < 0.001 (Dunnett’s

test). Data represent mean ± standard error (SE). (F) shows results of Chi-square test on grooming induction by various

microbes in wild type flies. Microbes, which induced significant concentration-dependent behavioral increase were in white

zone, and no-significance in gray zone. White zone in a table shows significant difference (p < 0.05), and grey zone

indicates no-significance (p > 0.05).

https://doi.org/10.1371/journal.pone.0185370.g001
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Results

Contact with microbes induces grooming

To determine whether microbial compounds elicit grooming behavior in Drosophila, groom-

ing activity in decapitated flies was examined after applying different microbial species. Gram-

negative bacteria, gram-positive bacteria, and pathogenic fungi were tested.

Grooming induction by E. coli, a representative Gram-negative bacterium, was already

shown in Canton S (CS) flies [5] (Figure a in S1 Fig). Since it cannot be excluded that the

grooming behavior is highly dependent on the genetic background of the flies, we tried to

reproduce E. coli–induced grooming in another wild-type strain, w1118. E. coli suspension suc-

cessfully induced the behavior in w1118 in a dose dependent manner (Fig 1B). In addition, we

employed another common Gram-negative bacterium, Acetobacter aceti, to confirm that

Gram-negative bacterial components induced the cleaning behavior in flies. A. aceti, exhibited

a concentration dependent behavioral induction upon contact with hind legs (p = 0.02,

x2 = 11.51, Chi-square test, Fig 1F) and wing margins (p < 0.01, x2 = 28.34, Chi-square test,

Fig 1F), but not with front legs (p = 0.90, x2 = 1.05, Chi-square test, Fig 1F) (Fig 1C). There

was no difference in behavioral induction between females and males both in CS and W1118

flies to Gram-negative bacteria (front legs: p > 0.10, hind legs: p> 0.05, wing margins:

p> 0.10, Chi-square test, Fig 1F), so we pooled male and female responses in all further

experiments.

On the other hand, no grooming induction was observed upon contact with Gram-positive

bacteria, Lactobacillus bulgaricus and Mycoplasma fermentans (Fig 1D, Figure b in S1 Fig,

respectively) and fungi, Beauveria bassiana (Fig 1E) (p> 0.1 for all body parts regardless of

concentration and sex parameters).

These results indicate that bacterial components from Gram-negative bacteria contribute to

inducing grooming behavior in decapitated flies.

Highly purified microbial components induce grooming

To determine which molecules from Gram-negative bacteria are detected by Drosophila,

grooming activity in decapitated flies was examined using a standard solution of LPS from

SIGMA containing also bacterial peptidoglycan and lipopeptide (referred to as Sigma ‘LPS’)

[20] and highly purified microbial elicitors, including Lipopolysaccharide (LPS), two prepara-

tions of peptidoglycans and glucan.

Although we had previously seen a clear grooming induction by a standard solution of

Sigma ‘LPS’ from E. coli (L2630, Sigma) (Fig 2A) [5], this behavioral induction disappeared

with a highly purified solution of LPS from E. coli (tlrl-eblps, InvivoGen) (p> 0.1 for all

body parts regardless of concentration) (Fig 2B). In contrast, peptidoglycan from E. coli (gift

from Dominique Mengin-Lecreulx) induced the cleaning behavior significantly (p< 0.01,

x2 = 15.95 at concentration parameter, p< 0.01, x2 = 0.39 at sex parameter, Chi-square test)

(Fig 2C). Grooming induction was also observed after stimulation with tracheal cytotoxin

(TCT, gift from Dominique Mengin-Lecreulx) (p = 0.02, x2 = 12.22 at concentration parame-

ter, p< 0.01, x2 = 8.43 at sex parameter, Chi-square test) (Fig 2D). TCT is a soluble fragment

of peptidoglycan composed of a monomer with an anhydro bound released from the cell wall

of proliferating Gram-negative bacteria [21]. It has been shown to be the minimal peptidogly-

can unit capable of activating an immune response [20, 22]. However, peptidoglycan from

the DAP-type Gram-positive bacterium, Bacillus subtilis (tlrl-pgnb3, InvivoGen) induced

grooming less conclusively (Figure c in S1 Fig: p> 0.1 for all body parts at concentration

parameter) and the soluble ß-glucan laminarin (tlrl-lam, InvivoGen) did not induce the

PGRP-LC contributes to grooming induction in D. melanogaster
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behavior (Figure d in S1 Fig: p> 0.1 for all body parts at concentration parameter). Results of

Chi-square test are listed in Fig 2E. Of note, a low behavioral induction was observed in the

comparison between control and peptidoglycan of B. subtilis when it was deposited on hind

legs, but only at the highest concentration (Figure c in S1 Fig, Dunnett’s test). The results of

Chi-square test are listed in Fig 2E and S1 Table.

Taken together, these results suggest that peptidoglycan from Gram-negative bac-

teria plays a role in inducing the grooming reflex. In all following experiments, we

kept using the standard LPS from Sigma because it is a cheap and convenient source of

peptidoglycan.

Fig 2. Grooming behavior induced by microbial components in wild-type flies, (a) standard LPS from E. coli on w1118 flies (b) pure

LPS from E.coli on CS flies, (C) peptidoglycan from E. coli, (D) TCT on CS flies. High grooming response was induced by Standard

LPS from E. coli on CS flies. The data was available in Yanagawa et al. [5] A significant increase in response from that of the control

(water) is indicated by asterisks: * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 (Dunnett’s test). (E) shows

results of Chi-square test on grooming induction by highly purified microbial components in wild type flies. Compounds, which

induced significant concentration-dependent behavioral increase were in white zone, and no-significance in gray zone. White zone in

a table shows significant difference (p < 0.05), and grey zone indicates no-significance (p > 0.05).

https://doi.org/10.1371/journal.pone.0185370.g002
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Grooming induction is lost in mutants of pattern-recognition receptors

but not of signaling components of the Imd pathway

Since Drosophila senses Gram-negative bacterial peptidoglycan via two PGRPs, membrane-

bound PGRP-LC and intracellular PGRP-LE [7, 8, 11, 12], we used mutants of these receptors

(w;;PGRP-LCE12 and y, w, PGRP-LE112) to test their role in the activation of grooming by DAP-

type PGN. Additionally, we tested a mutant of other Imd pathway components, namely the

negative regulator PGRP-LB (w;;PGRP-LBΔ), a secreted amidase which binds to and degrades

extracellular peptidoglycan (Fig 3A)[23, 24]. The results of Chi-square test are listed in Fig 3D

and S2 Table.

Grooming induction was significantly suppressed in all mutants lacking PGRPs (either

PGRP-LCs or PGRP-LE), indicating an involvement of these pattern-recognition receptors in

the activation of grooming upon DAP-type PGN (Fig 3B, S2 Fig). In this study, we confirm

PGRP-LC function in grooming induction both in 4-day old flies and 10 day-old flies (Fig 4A

and Figure a in S3 Fig) since, in previous results, age dependent increase was observed in

grooming induction [5]. To control for potential background effects, we first used several

strains deleted for PGRP-LC in different wild-type backgrounds (w1118, CanS) and obtained

similar results. The response was rescued by the reinsertion of the PGRP-LC locus into the

PGRP-LCE12 mutant background (full genotype: w;P[acman]-PGRP-LC;PGRP-LCE12) (Fig 3C).

There was no significant difference in the response in mutants w;;PGRP-LCE12 and y, w,

PGRP-LE112 (p = 0.41, x2 = 0.68 at strain parameter, Chi-square test), while w;;PGRP-LBΔ

showed drastic behavioral increase. Grooming was still observed in PGRP-LB deficient flies at

normal levels, suggesting that PGRP-LB is not involved in this process. Moreover w;P[acman]-
PGRP-LC;PGRPLCE12 rescue clearly recovered the response in comparison with w;;PGRP-LC
mutants (p < 0.01, x2 = 162.43 at strain parameter, Chi-square test)(Fig 3C). We also checked

whether grooming induction by gustatory stimulus (quinine, bitter taste) was dependent on

the same receptor, PGRP-LC. However, it seemed to be independent (Fig 4B, Figure b in S3

Fig). The results of Chi-square test are listed in Fig 4C and S3 Table.

Next, we performed ubiquitous mis-expression of PGRP-LCx using the Gal4-UAS system

and RNAi/overexpression constructs. Flies expressing RNAi against PGRP-LC did not show

the response (Fig 5A, Figure a in S4 Fig), in agreement with what was observed in PGRP-LC
mutants. When PGRP-LCx was overexpressed, flies became highly sensitive and induced

behavior at 1000 times lower peptidoglycan concentration (Fig 5B, Figure b in S4 Fig). Then

the grooming reflex had diminished. This pattern of output decrease appears sometimes also

in other insect behaviors. It is considered as the neural adjustment cause by too strong stimu-

lus, which caused bursts of electrophysiological signals in the neural circuit or by the system-

atic inhibition to regulate a reaction. The results of Chi-square test are listed in Fig 5C and

S4 Table.

Taken together, these observations suggest that sensing of peptidoglycan from Gram-nega-

tive bacteria by PGRPs induces cleaning behavior. All results suggested a role of PGRP-LC in

the induction of grooming behavior.

Discussions

We examined the reflex of hygiene behavior of flies to microbial contact. Bacterial cell wall

components were applied to decapitated flies to see the behavioral reflex to soluble bacterial

compounds5. Drosophila senses Gram-negative bacteria via PGRP-LC and PGRP-LE and

relays sensing of extracellular or intracellular DAP-type PGN to the Imd pathway [7, 25]. This

study demonstrates that initial sensing of Gram-negative bacteria at epithelial surfaces may

serve to resist microbial infection by inducing grooming behavior.

PGRP-LC contributes to grooming induction in D. melanogaster
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It is often said that insects combine behavioral resistance and immune activity [4, 26]. Since

behavior likely has the lowest cost to prevent pathogenic infection for insects, they might use

behavior as the first protection together with the cuticle barrier, and spend less resource on

immune responses in the gut or the haemolymph, which might be a good trade-off system to

Fig 3. (A) Schematic indicating how the Imd pathway is activated by Gram-negative bacteria. Grooming behavior induced by LPS

contact on wings in (B) black square: w;;PGRP-LCE12 with Cantonized 2nd chromosome, green square: y,w,PGRP-LE112 and grey

circle: w;;PGRP-LBΔ (C) black square: w;;PGRP-LCE12 and orange square: w;P[acman]-PGRP-LC;PGRPLCE12 rescue flies.

Standard LPS was used as a stimulus. A significant increase in response from that of the control (water) is indicated by asterisks:

* indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 (Dunnett’s test); n = 40 (n = 20 for each sex). Data represents

mean +/- SE, analyzed as in Fig 1. (D) shows results of Chi-square test on grooming induction. Mutants, which showed significant

concentration-dependent behavioral increase were in white zone, and no-significance in gray zone. White zone in a table shows

significant difference (p < 0.05), and grey zone indicates no-significance (p > 0.05).

https://doi.org/10.1371/journal.pone.0185370.g003
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save bio-energy [26]. We have reported that contacting wing marginal sensilla with E. coli and

standard LPS solution induced grooming activity [5], which suggested that hygiene behavior

in Drosophila can be triggered by a detection of microbial surface compounds by similar mech-

anisms/receptors to those involved in triggering immune responses. Using highly purified bac-

terial cell wall components, we could show that grooming can be induced upon deposition of

peptidoglycan extracts derived from gram-negative bacteria. Peptidoglycan is recognized by

PGRPs, which activate the Imd pathway [27, 28]. In this study, using the same methods that

we applied to see the role of gustatory perception in grooming induction reflex in decapitated

flies, we showed that the innate immune system also serves in behavioral resistance at surface

level in D.melanogaster. The results show that classical components involved in bacterial rec-

ognition can be re-used to induce behavioral response.

Insect perception of microbes is still ambiguous. As for relations between the immune and

the sensory systems, several transcriptomic studies noted that microbial infections are associ-

ated with changes of expression of olfactory-related genes like odorant binding proteins [29,

30]. Previously, we demonstrated that grooming in response to microbes relies in part on the

Fig 4. (A) Grooming behavior induced in 10-day old PGRP-LCE12 mutants in orange circle with orange line: CS background and

white circle with blue line: w1118 background. (B) Grooming behavior induced by quinine in PGRP-LCE12 mutants of orange circle with

orange line: CS background and white circle with blue line: w1118 background flies. A significant increase in response from that of the

control (water) is indicated by asterisks: * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 (Dunnett’s test). (C)

shows the results of Chi-square test in PGRP-LC mutants to Quinine and in 10-day old PGRP-LC mutants. Mutants, which showed

significant concentration-dependent behavioral increase were in white zone, and no-significance in gray zone. White zone in a table

shows significant difference (p < 0.05), and grey zone indicates no-significance (p > 0.05).

https://doi.org/10.1371/journal.pone.0185370.g004

PGRP-LC contributes to grooming induction in D. melanogaster

PLOS ONE | https://doi.org/10.1371/journal.pone.0185370 November 9, 2017 8 / 15

https://doi.org/10.1371/journal.pone.0185370.g004
https://doi.org/10.1371/journal.pone.0185370


activation of taste neurons because poxn70 did not show any cleaning behavior by touching

with bacterial extracts [5]. Poxn mutation in poxn flies induces a failure in the development of

external chemoreceptors [31], and therefore, they are tasteless. Interestingly, we now show

that grooming induction by microbes seems to depend on pattern-recognition receptors

involved in immunity, since PGRP-LC and PGRP-LE mutants stopped responding to peptido-

glycan. Whether PGRP-LC is expressed in taste neurons is presently unknown. To learn PGRP

expression and interactions in the hemolymph of sensory sensilla, further studies are needed.

It suggests that the surface immune-components serve in behavioral resistance. This is proba-

bly to prevent the loss of bioenergy because behavioral resistance works most effectively over

the first contact with microbes. The interaction among signals and their cascades can much

more complicated than we have thought. Even many other signals and its related genes can be

involved in this behavior [16, 32] cooperating with local neurons [18]. Grooming induction by

Sigma LPS was dramatic, while that by pure PGN was rather modest. In addition, sex depen-

dent difference appeared more in behavioral responses induced by the compounds including

those from gram-positive bacteria. It indicated that not only DAP-type PGNs but also the

other bacterial surface compounds like lipopeptide would have some impacts on this behav-

ioral reflex [5, 15, 32]. Moreover, although whether PGRP-LC is expressed in taste neurons is

Fig 5. (A) Grooming behavior induced in offspring of act-Gal4 x PGRP-LCRNAi flies black circle with black line: actGal4x

-PGRP-LCRNAi and white circle with red line control (siblings). Standard LPS was used as a stimulus. (B) Grooming behavior induced

by LPS contact on wing and front/hind legs in PGRP-LCx overexpressing flies by Gal4-UAS system. Concentration dependent 40

repetitions were conducted by two concentration range: 10−5–10−2 mg/ml range of standard LPS and 10−1–10 mg/ml range of

standard LPS. Open circles illustrated the grooming induction in control flies (siblings). Standard LPS was used as a stimulus. A

significant increase in response from that of the control (water) is indicated by asterisks: * indicates p < 0.05, ** indicates p < 0.01,

and *** indicates p < 0.001 (Dunnett’s test). n = 40 (n = 20 for each sex). Data represents mean +/- SE, analysed as in Fig 1. (C)

shows the results of Chi-square test. Mutants, which showed significant concentration-dependent behavioral increase were in white

zone, and no-significance in gray zone. White zone in a table shows significant difference, and grey zone indicates no-significance.

https://doi.org/10.1371/journal.pone.0185370.g005
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unknown, it is highly possible that standard LPS contains some substances perceived as aver-

sive stimulus by Drosophila since the ion channel, which relates with aversive gustation, is

known to have some interaction with standard LPS [33].

The role of grooming behavior seems diverse and many factors involved in this behavior

are still unknown [32]. Grooming possibly helps removing dust particles [34] and also cleaning

external chemosensory receptors [35]. Although self-grooming activities can be induced by a

number of situations involving aversive stimuli, mechanical [36], chemicals [37] or complex

behaviors like feeding and oviposition [38, 39], its importance for the survival of the species

has rarely been considered. The hypotheses of grooming function to protect themselves against

microbial infection were expressed independently in recent papers but not within a common

unifying frame. In 2016, Soldano et al. [33] demonstrated that the role of ion channel dTRPA1

in the behavior after the chemical contact with Lipopolysaccharides (LPS), and in our knowl-

edge, it is the first report of detailed mechanism on the link between behavioral immunity and

insect perception. Vice versa, bacteria is known to use insect perception, and control its behav-

ior to aid their survivals [40]. There is still a long way to go to recognize behavior as an integral

part of the strategies used by insects to cope with pathogens [2, 3]. The behavioral process of

grooming is highly complex and further study will open highly interesting aspects on the strat-

egy for survival in insects which can bring new technique in the way of organic agriculture

using biocontrol agents, insect mass production and sanitations in medical field.

Materials and methods

Fly stocks

D.melanogaster was maintained on a standard cornmeal agar food at 20˚C and at 80% humid-

ity. CantonS (CS) and white w1118 flies were used as wild-type controls. As for immunity

mutants, w;;PGRP-LCE12 (in w1118 background or with Cantonized 2nd chromosome) y, w,

PGRP-LE112 and w;;PGRP-LB4 were used. PGRP-LCE12, PGRP-LBΔand PGRP-LE112 lines have

been described previously [6, 7, 9, 41–43]. 4 day old flies were used.

The Gal4-UAS system [44] was used to mis-express PGRP-LC. The y, w;act5-Gal4 driver

line (DGRC# 107727) was crossed to w;;UAS-PGRP-LCx or to w;;UAS- PGRP-LCRNAi. In

Gal4-UAStests, balanced siblings were employed as controls.

Microbial preparations

We tested the Gram-negative bacteria Escherichia coli and Acetobacter aceti, the Gram-positive

bacteria Lactobacillus bulgaricus, Listeria monocytogenes and Mycoplasma fermentans, and the

entomopathogenic fungus Beauveria bassiana.

The E. coli strain of TOP 10 was grown in liquid LB medium at 37˚C. For heat-killed prepa-

rations, E. coli was washed with distilled water and heated at 95˚C for 5 minutes. A. aceti
ATCC 53264 was grown in liquid SH medium at 28˚C. A. aceti was washed by distilled water

and heated at 95˚C for 5 minutes. 7.9 x 109 /ml bacterial suspension was diluted 100, 102, 104

and 106 fold. L. bulgaricus was grown in liquid MRS medium at 40˚C, then it was washed by

distilled water and heated at 95˚C for 5 minutes.

Heat-killed Listeria monocytogenes and Mycoplasma fermentans were purchased from Invi-

voGen, (InvivoGen, Lot # HKLM-35-03 and HKMF-32-01, respectively) and adjusted to 1.0 x

109 / ml. The suspensions were diluted 100, 102, 104 and 106 fold. B. bassiana was grown in liq-

uid LB medium for fungi. B. bassiana was washed by distilled water and heated at 95˚C for 5

minutes. All microbial suspensions were adjusted to highest concentration, and then was

diluted 100, 102, 104 and 106 fold. They have a pH of about 7.0.
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Chemicals

Standard LPS from E. coli was purchased from Sigma (L2630)[5], and highly purified LPS

from E. coli was purchased from InvivoGen (tlrl-eblps). Peptidoglycan from the Gram-positive

bacterium Bacillus subtilis and the soluble ß-glucan laminarin were purchased from InvivoGen

(tlrl-pgnb3, tlrl-lam, respectively). Peptidoglycan from E. coli and TCT were gifts from Domi-

nique Mengin-Lecreulx (University of Orsay, Orsay, France). All chemical suspensions have a

pH of about 7.0.

Grooming induction and scoring

Briefly, 10 flies were beheaded by a single cut made at the neck with micro-scissors. Micro-

scissors were washed and wiped by 70% ethanol before and after use. Beheaded flies were

placed in an upright position on a clean paper sheet and allowed to recover. To stimulate

them, the wings, front legs, or hind legs were gently touched with a sharpened toothpick that

was previously soaked in a test solution. To avoid contamination, the paper sheet was changed

between each test, and a new toothpick was sharpened before each test. Grooming behavior

after touching by toothpick was observed, and its intensity scored as 0, 1, 2, or 3. A score of 0

indicated no grooming, and a score of 1 or greater indicated that grooming occurred. Because

grooming duration has been shown varied widely in previous studies, the strength of induction

was scored as follows: 1, grooming that stopped within 10 seconds; 2, grooming that lasted

more than 10 seconds and less than 20 seconds; and 3, grooming that lasted over 20 seconds.

Four-day-old flies were used in testing. Each substance was tested on 20 females and 20 males

(n = 40).

Statistical analysis

To examine concentration-dependent increases in grooming behavior in headless flies with

respect to sex, chemical, and fly strain, Chi-square test (JMP 10.0 software, SAS) was applied.

Additionally, Dunnett’s test (JMP 10.0 software, SAS) was conducted to examine behavioral

induction at each concentration.

Supporting information

S1 Fig. Grooming behavior induced by heat-killed microbes and its related chemicals in

CS flies, (a) E.coli (b) M. fermentans (c) peptidoglycan from B. subtilis (d) ß-glucan from

algae (laminarin) on CS flies were used for all tests, which employed w1118. A significant

increase in response from that of the control (water) is indicated by asterisks: � indicates

p< 0.05, �� indicates p< 0.01, and ��� indicates p< 0.001 (Dunnett’s test). Please note that

the data of CS flies to E. coli is provided as a reference. This data belongs to the previous publi-

cation in Front. Behav. Neurosci. [5].

(TIF)

S2 Fig. Grooming behavior induced by LPS contact on front legs and hind legs in black

square: w;;PGRP-LCE12 with Cantonized 2nd chromosome, green square: y, w, PGRP-
LE112, grey circle: w;;PGRP-LBΔ, black square: w;;PGRP-LCE12 and orange square: w;P
[acman]-PGRP-LC;PGRP-LCE12 rescue flies. Standard LPS was used as a stimulus. n = 40

(n = 20 for each sex). Data represents mean +/- SE, analyzed as in Fig 2. A significant increase

in response from that of the control (water) is indicated by asterisks: � indicates p< 0.05,
�� indicates p< 0.01, and ��� indicates p< 0.001 (Dunnett’s test).

(TIF)
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S3 Fig. (a) Grooming behavior induced in 10-day old PGRP-LCE12 mutants in orange circle

with orange line: CS background and white circle with blue line: w1118 background. (b)

Grooming behavior induced by quinine in PGRP-LCE12 mutants of orange circle with orange

line: CS background and white circle with blue line: w1118 background flies. Standard LPS was

used as a stimulus. n = 40 (n = 20 for each sex). Data represents mean +/- SE, analysed as in

Fig 2. A significant increase in response from that of the control (water) is indicated by aster-

isks: � indicates p< 0.05, �� indicates p< 0.01, and ��� indicates p< 0.001 (Dunnett’s test).

(TIF)

S4 Fig. (a) Grooming behavior induced in offspring of act-Gal4 x PGRP-LCRNAi flies black cir-

cle with black line: actGal4x-PGRP-LCRNAi and white circle with red line control (siblings).

(b) Grooming behavior induced by LPS contact on front/hind legs in PGRP-LCx overexpres-

sing flies by Gal4-UAS system. Concentration dependent 40 repetitions were conducted by

two concentration range: 10−5–10−2 mg/ml range of standard LPS and 10−1–10 mg/ml range

of standard LPS. (c) and (d) illustrated the grooming induction in control flies (siblings). Stan-

dard LPS was used as a stimulus. n = 40 (n = 20 for each sex). Data represents mean +/- SE,

analysed as in Fig 2. A significant increase in response from that of the control (water) is indi-

cated by asterisks: � indicates p< 0.05, �� indicates p< 0.01, and ��� indicates p< 0.001 (Dun-

nett’s test).

(TIF)

S1 Table. Results of Chi-square test on grooming induction by G+ microbe and highly

purified microbial compounds in wild type flies. Microbes, which induced significant con-

centration-dependent behavioral increase were in white zone, and no-significance in gray

zone. White zone in a table shows significant difference (p< 0.05), and grey zone indicates

no-significance (p> 0.05).

(TIF)

S2 Table. Results of Chi-square test on grooming induction in IMD pathway related

mutants. Mutants, which showed significant concentration-dependent behavioral increase

were in white zone, and no-significance in gray zone. White zone in a table shows significant

difference (p< 0.05), and grey zone indicates no-significance (p> 0.05).

(TIF)

S3 Table. Results of Chi square test on grooming induction in PGRP-LC mutants to qui-

nine and in 10-day old PGRP-LC mutants. Mutants, which showed significant concentra-

tion-dependent behavioral increase were in white zone, and no-significance in gray zone.

White zone in a table shows significant difference (p< 0.05), and grey zone indicates no-sig-

nificance (p> 0.05).

(TIF)

S4 Table. Results of Chi square test on grooming induction in PGRP-LC related mutants.

Mutants, which showed significant concentration-dependent behavioral increase were in

white zone, and no-significance in gray zone. White zone in a table shows significant differ-

ence (p< 0.05), and grey zone indicates no-significance (p> 0.05).

(TIF)
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6. Choe KM, Werner T, Stöven S, Hultmark D, Anderson KV. Requirement for a peptidoglycan recognition

protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 2002;

296: 359–362. https://doi.org/10.1126/science.1070216 PMID: 11872802

7. Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S. Peptidoglycan recognition protein (PGRP)-

LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J. 2004; 23: 4690–4700. https://

doi.org/10.1038/sj.emboj.7600466 PMID: 15538387

8. Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, et al. PGRP-LC and PGRP-LE have essen-

tial yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan.

Nat. Immunol. 2006; 7: 715–723. https://doi.org/10.1038/ni1356 PMID: 16767093
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