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Background: Triple-negative breast cancer remains a highly malignant disease

due to the lack of specific targeted therapy and immunotherapy. A growing

body of evidence supports the role of pyroptosis in tumorigenesis and

prognosis, but further exploration is needed to improve our understanding

of the tumor microenvironment in patients with triple-negative breast cancer.

Methods: Consensus clustering analysis was performed to construct pattern

clusters. A correlation analysis was conducted between the pattern clusters and

the tumor microenvironment using GSVA, ESTIMATE, and CIBERSORT. Then, a

risk score and a nomogram were constructed and verified to predict overall

survival.

Results: Two pyro-clusters and three pyro-gene clusters that differed

significantly in terms of prognosis, biological processes, clinical features, and

tumor microenvironment were identified. The different clusters corresponded

to different immune expression profiles. The constructed risk score predicted

patient prognosis and response to immunotherapy. Patients with low risk scores

exhibited favorable outcomes with increased immune cell infiltration and

expression of immune checkpoint molecules. Compared to other models,

the nomogram was extremely effective in predicting prognosis.

Conclusion: In the landscape of the immune microenvironment, pyroptosis-

mediated pattern clusters differed markedly. Both the developed risk score and

the nomogram were effective predictive models. These findings could help

develop customized treatment for patients with triple-negative breast cancer.
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Introduction

Triple-negative breast cancer (TNBC) is a highly aggressive

malignant tumor with a poor prognosis that lacks expression of

estrogen and progesterone receptors, as well as the

overexpression of the HER2 protein (Dent et al., 2007). For

patients with locally advanced or metastatic TNBC, the clinical

outcome is not promising, as these patients do not respond to

hormonal therapy or targeted agents (Andre and Zielinski, 2012).

TNBC is a highly heterogeneous cancer, and researchers have

been developing a variety of molecular subtypes that may

contribute to individualized therapy (Garrido-Castro et al.,

2019). Therefore, a thorough understanding of the

pathogenesis and biological characteristics of TNBC can

contribute to establishing effective individualized treatment

strategies.

Unlike other forms of programmed cell death, pyroptosis is

triggered by inflammation (Fang et al., 2020). Pyroptosis is

controlled by pyroptosis-related genes (PRGs) involved in

signaling pathways, and changes in PRG expression and

function play an important role in pyroptosis (Xia et al., 2019;

Hou et al., 2020). Tetraarsenic hexoxide may induce pyroptosis

by activating the mitochondrial ROS-mediated GSDME

pathway, thus inhibiting tumor growth and metastasis of

TNBC cells (An et al., 2021). Cisplatin induces pyroptosis by

activating the MEG3/NLRP3/caspase 1/GSDMD pathway in

TNBC to exert antitumor effects (Yan et al., 2021).

The composition of the tumor microenvironment (TME) is

related to tumorigenesis and progression (Turley et al., 2015;

Fridman et al., 2017). Recent studies have confirmed that tumor-

infiltrating lymphocytes (TILs) of untreated breast cancer

patients can effectively predict response to treatment. TNBC

is known as lymphocyte-dominant breast cancer, and infiltration

of CD8+ T and CD4+ T cells can predict a survival benefit in

TNBC (Stanton and Disis, 2016). Immunotherapy has shown

only modest clinical efficacy in breast cancer, and PD-L1

expression has been shown to be associated with TIL

infiltration and better clinical outcomes (Cimino-Mathews

et al., 2016). Several published reports have demonstrated that

pyroptosis interacts with antitumor immune cells to trigger

robust antitumor immunity in the TME (Xi et al., 2019;

Wang et al., 2020; Zhang et al., 2020). However, current

research is restricted to a few pyroptosis modifiers and

lymphocytes, and a thorough examination of the TME

infiltration features mediated by pyroptosis could contribute

to a better understanding of antitumor immunity.

In this study, we identified different pattern clusters mediated

by pyroptosis and found that specific clusters differed

significantly in terms of prognosis, biological process, clinical

features, and TME. Ultimately, we constructed a risk score and a

nomogram that effectively predicted overall survival (OS). These

findings could aid in the development of personalized treatment

for TNBC patients.

Materials and methods

Data sources

Figure 1 shows a map of the process of the present work. The

inclusion criteria for datasets were based on the following: 1)

datasets with a sufficient sample size greater than 80 were

selected; 2) ER, PR, and HER2 status were all negative. The

exclusion criteria for datasets were based on the following: 1)

patient sample data with an overall survival time of <30 days
were excluded; 2) patient samples without clinical characteristics

were removed. Ultimately, date of patients with TNBC extracted

from TCGA (n = 108) (https://portal.gdc.cancer.gov/),

METABRIC (n = 318) (http://www.cbioportal.org/), and

GSE58812 (n = 106) (https://www.ncbi.nlm.nih.gov/geo/) were

included in the study. The clinicopathological information of

these 511 patients is presented in Supplementary Table S2. Forty-

four pyroptosis-related genes (PRGs) were retrieved from the

Molecular Signatures Database (https://www.gsea-msigdb.org/)

and presented in Supplementary Table S1.

Pyroptosis-based consensus clustering
analysis

Based on the expression of PRGs, a consensus

unsupervised cluster analysis was performed to ensure the

stable classification of patients into different clusters

(Wilkerson and Hayes, 2010). A correlation analysis was

conducted between pattern clusters and TME using GSVA,

ESTIMATE (Yoshihara et al., 2013), and CIBERSORT

(Newman et al., 2015).

Construction of the risk score

TCGA and METABRIC datasets were used as training sets,

and the GSE 58812 dataset was used as a validation set.

Differentially expressed genes (DEGs) identified from distinct

clusters were subjected to univariate, multivariate, and stepwise

regression analysis. To define the risk score, we used the formula

risk score = Σ (Expi * coefi).

Cell culture and quantitative real-
time PCR

Breast cancer cell MDA-MB-231 was obtained from the

America Type Culture Collection (ATCC, Manassas, VA,

United States) and cultured in Dulbecco’s modified eagle’s

medium (DMEM) with 10% fetal bovine serum (FBS)

(HyClone, Logan, UT, United States). The cells were

maintained at 37 °C with 5% CO2 in an incubator. Total
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RNA was extracted from cells by using the TRIzol reagent

(Invitrogen) and was used to synthesize cDNA by using the

Quantscript RT Kit (Promega). Real-time PCR was performed

using SYBR Green (BioRad) on the CFX96 system (BioRad

Laboratories, Hercules, CA, United States). β-actin was

exploited as an internal reference. The 2–ΔΔCt method was

used to calculate mRNA expression. The primer sequences used

for analysis are listed in Supplementary Table S3.

Construction and validation of the
nomogram

Clinicopathological characteristics related to OS and risk

score were used to construct a nomogram in the training set

(Iasonos et al., 2008). The predictive power of the nomogram was

also validated in the TCGA and METABRIC sets.

Statistical analyses

All statistical analyses were performed using R (version

4.1.3). Statistical significance was established at p < 0.05.

Results

The landscape of genetic and
transcriptional alterations of PRGs in
TNBC

The prevalence of PRG gene alterations was investigated in

the TCGA-TNBC cohort. As shown in Figure 2A, somatic PRG

mutations occurred in 84 of the 99 samples, with a mutation

frequency of 84.85%. The most mutated gene was TP53

(approximately 83%), followed by AIM2, and CASP8

(approximately 1%). Figure 2B indicated that most genes were

differentially expressed in TNBC. We performed prognostic

analysis for each PRG and the OS-related PRGs are shown in

Supplementary Figure S1. The expression of GZMA, AIM2,

NLRP1, NLRP3, NLRP7, GZMB, TNF, IRF1, CASP1, NOD2,

IL1B, and CASP4 was linked to better OS.

Identification of pyro-clusters in TNBC

Data sets TCGA-TNBC, GSE 58812, and METABRIC-TNBC

were combined into a single study cohort. TNBC patients were

FIGURE 1
Overview of the analytical process of the study.
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assigned to two distinct pyroptosis-mediated pattern clusters based

on 44 PRG (Supplementary Figure S2). These were designated as

pyro-cluster A and pyro-cluster B, with 320 and 191 patients,

respectively. PCA analysis revealed that the two clusters could be

significantly clustered according to the pyroptotic transcriptional

profile (Figure 2E). We subsequently performed survival analysis

FIGURE 2
Landscape of genetic and transcriptional alterations and pyro-clusters in patients with TNBC. (A)Genetic alteration of PRGs in 99 patients from
TCGA cohort. (B) Distribution of 44 PRG expression in normal and TNBC tissues. (C) Heat map of clinicopathologic features and expression of PRGs
between two distinct clusters. (D) Kaplan–Meier curves of OS for TNBC patients of the two distinct clusters. (E) PCA analysis showing the marked
difference in transcriptomes across pyro-clusters. (F) Correlations between pyro-clusters and the TME score. (G) Abundance of 22 infiltrating
immune cell types in the two pyro-clusters. (H) Expression \ of PD-1 in the two pyro-clusters. (I) Expression of PD-L1 in the two pyro-clusters. *p <
0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3
Identification of pyro-gene clusters based on DEGs. (A)GO enrichment analyses of DEGs between the two pyro-clusters. (B) KEGG enrichment
analyses of DEGs between the two pyro-clusters. (C) GSVA of biological pathways between two pyro-clusters, in which red and blue represent
activated and blue inhibited pathways, respectively. (D) Kaplan–Meier curves of OS for TNBC patients between three distinct pyro-gene clusters. (E)
Abundance of 22 infiltrating immune cell types in the three pyro-gene clusters. (F)Correlations between pyro-gene clusters and the TME score.
*p < 0.05, **p < 0.01, ***p < 0.001.
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and the KM curves showed patients in pyro-cluster B had a longer

OS (Figure 2D). Furthermore, the association of mRNA profiles of

different pyro-clusters with clinicopathological characteristics is

shown in Figure 2C. The GSVA results indicated that pathways

relevant to immunology and inflamed processes were considerably

enriched in pyro-cluster B, such as interferon alpha, interferon-

gamma, and the complement (Figure 3C; Supplementary

Table S4).

Correlations of pyro-clusters with the TME
in TNBC

The immune score of the patients of pyro-cluster B was higher

than that of pyro-cluster A, implying that the TME of the pyro-

cluster B had higher immunocyte components (Figure 2F). There

were differences in 15 of the 22 lymphocyte subsets in all pyro-

clusters, according to the CIBERSORT analysis (Figure 2G). PD-1

FIGURE 4
Construction of the risk score in the training set. (A) Alluvial diagram of cluster distributions in groups with different risk scores and survival
statuses. (B) Differences in risk score between the pyro-clusters. (C) Differences in risk score between the pyro-gene clusters. (D,E) Ranked dot and
scatter plots showing the risk score distribution and patient survival status. (F)Differences in the expression of nine genes of the prognostic signature
between the two pyro-clusters. (G) PCA analysis shows a remarkable difference in transcriptomes between the risk groups. (H) ROC curves to
predict the sensitivity and specificity of 2-, 4-, 6-, and 8-year survival according to the risk score. (I) Kaplan–Meier analysis of the OS between the risk
groups.
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and PD-L1 expression was also found to be greater in pyro-cluster B

(Figures 2H,I).

Identification of pyro-gene clusters and
exploration of their correlations with
the TME

A total of 1778 overlapping DEGs were identified between

the two clusters. The results of the functional enrichment analysis

are shown in Figures 3A,B; Supplementary Tables S5, 6.

Immunology and inflammation pathways were found to be

substantially enriched, implying the importance of pyroptosis

in the TME.

We further conducted an unsupervised consensus clustering

analysis to identify three gene clusters based on DEGs: pyro-gene

clusters A, B, and C, comprising 161, 252, and 98 samples,

respectively (Supplementary Figure S3). Each pyro-gene

cluster produced dramatically different clinical outcomes,

according to prognostic analyses (Figure 3D). As shown in

Figure 3E, 18 of 22 types of immune cells had notable

differences in infiltration. Pyro-gene cluster A had greater

infiltration of anti-cancer lymphocytes compared to clusters B

and C. The same result was observed in Figure 3F, where the

scores of pyro-gene cluster A patients were higher than those of

clusters B and C. The above findings revealed separate immune

infiltration features among pyro-gene clusters, with pyro-gene

cluster A being an immune-inflamed phenotype, cluster B being

an immune-desert phenotype, and cluster C being an immune-

excluded phenotype.

Construction and validation of the risk
score

To measure the degree of pyroptosis-mediated patterns in

each patient, a risk score was constructed. A total of 603 OS-

related genes were filtered using univariate Cox regression

analysis including the DEG. Following the LASSO regression

analysis, 13 genes remained as candidate genes (Supplementary

Figure S4). Next, we used multivariate Cox regression analysis to

obtain a list of nine genes. The following algorithm was devised

using nine genes coefficients:

Risk score = (−0.3233977* expression of CD109) +

(0.2387019*expression of DPCD) + (−0.1973012*expression of

GTSF1) + (−0.3239561*expression of KLRC3) +

(0.1398530*expression of P4HA1) + (−0.2835991*expression of

PNMAL1) + (0.1631214*expression of SPRED2) + (−0.1820728

*expression of STAMBPL1) + (−0.2394826*expression of

TMEM176A).

The TNBC patients were divided into various risk groups

based on their median values in the training set. Figure 4A

revealed the distribution and interaction in the two pyro-

clusters, three pyro-gene clusters, two risk score groups, and

survival status. Figures 4B,C illustrated the distribution of the

risk scores in the two pyro-clusters and three pyro-gene

clusters, demonstrating that risk scores may be linked to

the characteristics of immune infiltration. High-risk groups

were more likely to have worse clinical outcomes than low-

risk groups, according to the ranked dot and scatter plots

(Figures 4D,E). Figure 4F showed the differential expression

of nine genes among risk groups. The expression of nine

genes varied dramatically between risk groups, as well as

between normal groups (Supplementary Figure S5). Two risk

groups exhibited discrete aspects, according to the PCA

analysis (Figure 4G).

In the training group, the AUCs of the 2-, 4-, 6-, and 8-year

ROC were 0.721, 0.729, 0.721, and 0.746, respectively,

showing good predictive ability (Figure 4H). Patients of the

validation dataset and of the entire dataset were also separated

into two risk sets based on the formula and cut-off values

implemented in the training set (Supplementary Figures

S6–8). The PCA analysis and scatter plots are shown in

Supplementary Figures S6–8, indicating that each patient

could also be significantly clustered and their outcome

predicted. For all patients in the combined dataset,

Supplementary Figures S6–8 confirmed that survival

differences were evident across the risk sets. AUCs of the

2-, 4-, 6-, and 8-year ROC (Supplementary Figures S6–8)

indicated that the risk score exhibited excellent predictive

abilities in the validation and the combined datasets as well.

Clinical correlation analysis of the risk
score

Univariate and multivariate analyses were applied to

incorporate OS with the risk score, and clinicopathological

characteristics including age, T stage, menopause status,

histopathological type, chemotherapy, and N stage. N stage

and risk score were potential predictive indicators.

As shown in Supplementary Figure S9, a stratified analysis to

evaluate the prediction performance of the risk score in divergent

clinical subsets revealed differences in OS for age (p < 0.0001),

T1-2 (p < 0.0001), T3-4 (p = 0.1), N0 and N1 (p < 0.0001), and

N2-3 (p = 0.019).

Correlations of the risk score with the TME
in the TNBC

M2 macrophages, activated mast cells, Tregs, plasma cells,

resting CD4 memory T cells, and resting mast cells were

considerably and favorably correlated with the risk score,

while gamma delta T cells, activated memory CD4 +

T cells, CD8 + T cells, M1 macrophages, and naive B cells
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were unfavorably correlated (Figure 5A). In addition, a low

risk score was associated with higher stromal, immune, and

estimation scores (Figure 5B), which matched the findings in

Figures 4B,C. Among the risk groups, there were also

substantial differences in the infiltration of 12 of

22 immune cell types (Figure 5C).

Estimation of the role of risk score in the
efficacy of chemotherapy and
immunotherapy

We evaluated several drugs widely used in TNBC

treatment across different risk groups by comparing

FIGURE 5
Evaluation of the TME and estimation of the role of the risk score in immunotherapy and chemotherapy efficacy. (A) Correlations between the
risk score and immune cell types. (B)Correlations between the risk score and the TME score. (C) Abundance of 22 infiltrating immune cell types in the
two risk groups. (D) Relationship between the risk score and chemotherapeutic sensitivity. (E) Relative distribution of immunotherapy efficacy in the
high-risk group versus the low-risk group. (F) Expression of immune checkpoints in the high and low-risk groups. *p < 0.05, **p < 0.01, ***p <
0.001.
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FIGURE 6
Construction and validation of the nomogram. (A) Nomogram for predicting the 2-, 4-, 6-, and 8-year OS of TNBC patients. (B,C) Nomogram
and calibration curves of the nomogram for predicting the 2-, 4-, 6-, and 8-year OS of TNBC patients in the training set. (D,E) Nomogram and
calibration curves of the nomogram for predicting the 2-, 4-, 6-, and 8-year OS of TNBC patients in the METABRIC set. (F,G) Nomogram and
calibration curves of the nomogram for predicting the 2-, 4-, 6-, and 8-year OS of TNBC patients in the TCGA set. (H) AUCs of the nomogram
and TNM stage for predicting the 2-, 4-, 6-, and 8-year OS of TNBC patients.
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IC50 values and found notable differences between risk

groups for lapatinib, vinorelbine, cisplatin, and gemcitabine

(Figure 5D).

A recent study demonstrated the ability of IPS to predict the

effectiveness of immunotherapy (Charoentong et al., 2017). We

assessed differences in risk groups receiving different treatments

using the IPS retrieved from the TCIA. In line with our

expectations, patients in the low-risk group performed better,

which supported our hypothesis that the risk score could be

valuable in evaluating the effectiveness of immunotherapy

(Figure 5E).

In anti-cancer immunotherapy, immune checkpoint blockers

targeting PD-1/CTLA-4 have made a significant contribution,

and these immune checkpoints are currently the most widely

acknowledged biomarkers for predicting treatment response

(Doroshow et al., 2021). Figure 5F shows that 26 of

30 molecules were markedly elevated in the low-risk

group. Together, these observations revealed a correlation

between the risk score and chemotherapy and immunotherapy

efficacy.

Development of a nomogram to
predict OS

We created a nomogram that combines core risk factors

and clinical features to predict 2-, 4-, 6-, and 8-year OS rates to

simplify the practical application of the risk score. The risk

score, age, menopausal status, T stage, and N stage were

analyzed as candidate predictors by Cox regression

analysis, and the risk score and N stage were ultimately

considered the ultimate prognostic elements in the

nomogram (Figure 6A). In both the training and external

validation sets, the calibration chart, as well as the AUC values

for OS at 2, 4, 6, and 8 years, provided evidence supporting the

significant discriminatory power of the nomogram (Figures

6B–G). Furthermore, we also compared the predictive

accuracy of the nomogram with TNM staging of prognosis,

and the nomogram showed better predictive power

(Figure 6H). These findings demonstrated that the

nomogram had a remarkable capacity to predict survival in

patients with TNBC.

The mRNA relative expression of nine
genes in cells

We compared the mRNA levels of nine genes in breast

cell line MDA-MB-231 by qRT-PCR analysis. The results

showed no detectable expression of TMEM176A and high

relative expression of P4HA1, CD109, and STAMBPL1,

which may require us to expand the sample size for

subsequent functional studies (Supplementary Figure S10).

Discussion

In this study, based on PRG expression patterns, patients with

TNBC were clustered into two distinct pyro-clusters and significant

differences were found between the two groups in terms of prognosis

and TME characteristics. Pyro-cluster B was remarkably rich in

antitumor lymphocyte cell subpopulations, while pyro-cluster A

was rich in plasma cells. DEGs identified among pyro-clusters

were significantly enriched in immune and tumor-related

pathways, demonstrating that the DEGs produced a gene

signature leading to different groups mediated by pyroptosis.

Based on the DEGs, TNBC patients were assigned to three

different pyro-gene clusters. Similarly, alternations in prognostic

and TME characteristics between clusters were observed, which

were consistent with the results of pyro-clusters. Thus, we

constructed a risk score based on DEGs and detected their

predictive capacity. Risk scores were distributed according to the

different gene expression clusters. Additionally, different risk groups

showed significant differences in survival and TME characteristics.

Subsequent investigation revealed a substantial correlation between

the risk score and immune checkpointmolecules, chemotherapy, and

immunotherapy, indicating that the risk score might be an indicator

of treatment efficacy. Finally, we constructed a nomogram based on

clinicopathological characteristics and risk scores that may be used in

clinical practice to predict individual prognosis.We hypothesized that

pyroptosis patterns can be used in medical management to detect

immunological patterns and guide treatment interventions.

The TME is composed of stromal cells, innate and adaptive

immune cells, fibroblasts, and extra-endothelial cells and plays a

critical role in tumor progression (Hinshaw and Shevde, 2019).

Several reports have indicated that the type and relative content of

antitumor lymphocytes are associated with the clinical outcomes of

various types of tumors (Dieu-Nosjean et al., 2008; Pages et al., 2009;

Denkert et al., 2010; Hwang et al., 2012). Breast cancer presents

extensive immunological features, and the phenotype and

magnitude of TILs vary between subtypes, with TNBC being the

subtype most associated with lymphocyte-predominant breast

cancer (Stanton et al., 2016; Denkert et al., 2018). Although

CD8+ TILs are associated with a better prognosis in TNBC, they

show no correlation in patients with hormone receptor-positive

tumors (Stanton and Disis, 2016). Natural killer (NK) cells are

important effectors of anti-cancer immunity, and their specificity

may play an important role in immunotherapy (Imai et al., 2000;

Nair and Dhodapkar, 2017). Differences in the infiltration of

CD8+T and NK cells were found between the two groups, which

were related to OS, a finding in agreement with previous studies. As

immunosuppressive cells, increased Treg cell infiltration is

associated with unfavorable outcomes and advanced-stage of

breast cancer (Plitas et al., 2016). Tumor-associated macrophages

(TAMs) are a double-edged sword and interact with TME in the

development of breast cancer (Tang, 2013; Yang and Zhang, 2017).

TAMs tend to display an M2-like macrophage phenotype, and the

abundance of M2-TAMs in breast tumors is correlated with a poor
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outcome (Wu et al., 2020). Our study came to the same conclusion

that pyro-cluster A with a high abundance of Tregs and

M2 macrophages exhibited poorer survival, implying their

deleterious impact on TNBC progression. These observations

suggested that PRGs were intimately linked to the modulation of

TME in patients with TNBC.

Immunotherapy is rapidly developing with the advancement of

research on tumor immunology. Immune checkpoint inhibitors

(ICIs) targeting CTLA-4, PD-1, and PD-L1 have been used in the

treatment of other solid tumors, but have shown little success in breast

cancer. Several studies have shown partial clinical responses to ICIs in

TNBC, including some complete responders (Nanda et al., 2016).

Therefore, it is challenging to screen patients who can benefit from

immunotherapy. In this study, two pyro-clusters and three pyro-gene

clusters with different immunological profiles were identified. We

considered that pyro-gene cluster A was immune-inflamed and

corresponded to the lowest risk score, pyro-gene cluster B was an

immune-desert phenotype, and pyro-gene cluster C was an immune-

excluded phenotype, corresponding to the highest risk score. Further

analysis confirmed that a low risk score correlated with the expression

of immune checkpoint molecules and the response to

immunotherapy. Pyroptosis is an inflammatory and immunogenic

response that activates TILs to eliminate cancer cells, as well as resist

antitumor immunity (Zhang et al., 2020). Gasdermins are currently

thought to be mediators of pyroptosis, and their expression enhances

the effects of TAMs and TILs. The above findings confirmed the

importance of pyroptosis in the TME, as well as the prediction of

sensitivity to immunotherapy. The constructed risk score could assess

the heterogeneity of pyroptosis patterns and differences in the

characteristics of the TME between individuals. Therefore, the risk

score achieved a dual predictive power in terms of survival and

sensitivity to treatment.

Although the findings of this study present good clinical

utility, they still presented certain limitations. Our analysis of the

TMEwas based onmRNA expression, and there may be a genetic

overlap between different immune cells, nonetheless, our results

were still consistent with previous studies. Prospective data and

basic experiments for theoretical verification are still needed in

the future to confirm our findings. Furthermore, many important

clinical data were not available for further analysis in the dataset,

which may have affected the accuracy of our model.

Breast cancer is markedly heterogeneous, while the TNBC

phenotype has a unique immunobiological profile compared to

other subtypes. Previous studies have focused on identifying the

signature of pyroptosis-related genes in breast cancer, and as far

as we know, this was the first study to specifically focus on TNBC

and establish a prognostic prediction model.

Conclusion

This study suggests that pyroptosis plays a multifaceted role

in TNBC. Pyroptosis-mediated pattern clusters may partially

explain the heterogeneity of TNBC. Determining the risk score of

a tumor for individual patients can help predict the prognosis

and effectiveness of immunotherapy. These findings could aid in

the development of customized treatment for patients with

TNBC.
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