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Abstract

[11C]CURB is a novel irreversible radioligand for imaging fatty acid amide hydrolase in the

human brain. In the present work, we validate an algorithm for generating parametric map

images of [11C]CURB acquired with a high resolution research tomograph (HRRT) scanner.

This algorithm applies the basis function method on an irreversible two-tissue compartment

model (k4 = 0) with arterial input function, i.e., BAFPIC. Monte Carlo simulations are em-

ployed to assess bias and variability of the binding macroparameters (Ki and λk3) as a func-

tion of the voxel noise level and the range of basis functions. The results show that for

a [11C]CURB time activity curve with noise levels corresponding to a voxel of an image

acquired with the HRRT and reconstructed with the filtered back projection algorithm, the

implementation of BAFPIC requires the use of a constant vascular fraction of tissue (5%)

and a cutoff for slow frequencies (0.06 min-1). With these settings, BAFPIC maintains the

probabilistic distributions of the binding macroparameters with approximately Gaussian

shape and minimizes the bias and variability for large physiological ranges of the rate con-

stants of [11C]CURB. BAFPIC reduces the variability of Ki to a third of that given by Patlak

plot, the standard graphical method for irreversible radioligands. Application to real data

demonstrated an excellent correlation between region of interest and BAFPIC parametric

data and agreed with the simulations results. Therefore, BAFPIC with a constant vascular

fraction can be used to generate parametric maps of [11C]CURB images acquired with an

HRRT provided that the limits of the basis functions are carefully selected.

Introduction

Fatty acid amide hydrolase (FAAH, EC3.5.1.99) is the major metabolizing enzyme responsible

for terminating the action of the endocannabinoid anandamide (N-arachidonoylethanola-

mide, AEA) and other fatty acid amides (e.g., oleoylethanolamide (OEA) and palmitoylethano-

lamide (PEA)). As such, FAAH sets the tone for endocannabinoid signaling and therefore
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modulates what is believed to be a range of human behaviors and processes including motor,

pain, inflammation, pregnancy, appetite, mood, cognition, and addiction. We recently devel-

oped and evaluated [11C-carbonyl]URB694 ([11C]CURB) for positron emission tomography

(PET) quantification of FAAH binding in the human brain[1, 2]. Using a region of interest

(ROI) analysis and an arterial plasma input function, we found that the irreversible 2-tissue

compartment model (2-TCMi) provided an accurate fitting of the time activity curves (TAC).

Additionally, the net influx constant Ki and the composite parameter λk3 with λ = VND = K1/k2

had a coefficient of variation (CoV) less than 5% with 60 minutes of scan data and the uptake

of [11C]CURB was far from being flow-limited (k3/k2~0.55) [3]. Using PF-04457845[4, 5], a

highly specific FAAH inhibitor, we confirmed that the first compartment of the 2-TCMi repre-

sents free and non-specific binding[2].

While the ROI level analysis is the preferred method when the anatomical localization of

the areas of interest can be hypothesized, the voxel level analysis maximizes the potential of

exploratory and/or data driven analyses. However, voxel level quantification is challenging as a

result of the inherent noisy data. Due to the computational demands and numerical deficien-

cies to converge to the global minimum, non linear fittings of compartmental models are not

usually a viable option for the creation of parametric maps (i.e. images containing the kinetic

parameter value for each voxel) and as a result several approaches have been developed [6].

The classical methods are based on linearization of the kinetic equations (i.e. graphical analy-

sis), which strongly reduces the computational demands. The most widely used method for

irreversible radioligands with an input function is the Patlak plot[7]. This method does not

assume a number of reversible compartment; however, it requires that the slowest reversible

compartment is in effective equilibrium with the tracer in plasma[8], otherwise the estimation

of the net uptake constant (Ki) will be biased. At the high noise level of a small voxel’s TAC,

the Patlak plot produces unacceptable variability for the images studied here (see results), dem-

onstrating the need for an alternative method. Basis function methods (BFM)[9–11] allow for

the linearization of the kinetic model equations using a family of basis functions. BFMs are

known for reducing the variability of the parameter estimations. The application of BFMs, for

an irreversible two-tissue compartment model with arterial input function, was recently intro-

duced as BAFPIC[12]. While the outcome of Patlak plot is limited to Ki, BAFPIC can produce

estimations of the individual rate constants. The members of the basis function family are the

convolution of monoexpontial functions of different decay time constants (sometimes referred

to as “frequencies”) with the arterial input function. BFMs can be seen as a specific case of

spectral analysis[13] in which the number of monoexponential convolutions to model a radi-

oligand is known (e.g. radioligands, whose kinetics are described by the 2-TCMi, will activate

only a single frequency of the frequency spectrum when analyzed with spectral analysis[14]). .

Low frequency exponentials in spectral methods are known to produce biases in the estimation

of the parameters[15]. This bias, however, has not been studied for BAFPIC, in which the fre-

quencies (θ) have a simple expression as function of the rate constants (θ = k2+k3).

The goal of the present work is to validate the generation of parametric maps of [11C]CURB

using BAFPIC with images acquired on a high resolution research tomograph (HRRT, CPS/

Siemens, Knoxville, TN, USA). The small crystal dimension in the HRRT tomograph results in

improved spatial resolution, though with a concomitant reduction in the reconstructed voxel

signal to noise. This reduction in voxel signal to noise is the direct consequence of the crystal

dimension which defines the sinogram sampling distance. A smaller voxel size, additionally,

allows a more precise description of the anatomical structure. Hence it is both, an excellent

and challenging tool to investigate radioligand binding at the voxel level.

In this work, we first determined the optimal setting for BAFPIC using simulations and

later, using experimental human data, we validated the predictions of the model. The shape of

Parametric maps of [11C]CURB
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the probability distribution, bias and variability of Ki, λk3 and the fractional blood volume (VB)

were studied using computer simulations which included: TACs with multiple sets of realistic

combinations of the rate constants values, TACs with different noise levels, basis function with

different ranges and numbers, and the use of VB as a constant or as a variable. Results were

compared with those from Patlak plot. Finally, the simulated results were confronted with real

data. A comparison between region of interest analysis and voxel by voxel analysis was per-

formed using a Bland-Altman plot for 6 healthy subjects at baseline and in the blocked condi-

tion using the FAAH inhibitor, PF-04457845. The expected performance of BAFPIC predicted

by the simulations are presented as a function of voxel noise level and FAAH concentrations;

therefore, the results of the work can immediately be applied to images of [11C]CURB obtained

with other scanners, algorithms of reconstruction or denoising filters post-reconstruction.

Material and methods

Kinetic analysis

Following the definitions proposed in the consensus nomenclature for radioligands[16], the

TAC CT(t) of a radioligand described by an irreversible 2TCM with metabolites-corrected

arterial input function Ca(t) and radioactivity in the vascularity Cb(t) can be described as [17]:

CTðtÞ ¼
ð1 � VBÞ

y
K1k3

Rt

0

CaðtÞdtþ
ð1 � VBÞ

y
K1k2e

� yt 
 CaðtÞ þ VBCbðtÞ ð1Þ

Where

y ¼ k2 þ k3 ð2Þ

Using a family of basis functions (BFj, j = 1..n) of n exponential convolution of the input func-

tion:

BFjðtÞ ¼ e� yjt 
 CaðtÞ ð3Þ

with θj logarithmically spaced in the range [θmin, θmax][11, 18], Eq 1 can be converted in n lin-

ear equations of the shape:

�1

�2

Vb

2

6
6
4

3

7
7
5 ¼ A� 1

j WCT ð4Þ

Where Aj = W[
R

Ca(t) BFj(t) Cb(t)], ϕ1 = (1-VB)K1k3/θ, ϕ2 = (1-VB)K1k2/θ and W is a diagonal

matrix of weight of the data points. A� 1
j can be computed using QR decomposition.

The linear equation for the value θj that minimizes the weighted residual sum of squares is

chosen as the optimal solution. The rate constants can be computed as:

K1 ¼ ð�1 þ �2Þ=ð1 � VBÞ; k2 ¼ �2y=ð�1 þ �2Þ; k3 ¼ �1y=ð�1 þ �2Þ and Ki ¼ �1=ð1 � VBÞ

Eventually, VB can be assumed as a constant rather than a variable, and thus the vascular contribu-

tion can be subtracted from the TAC prior to solving the equation. In this case, Aj = W[
R

Ca(t)
BFj] and we will merely have two variables (ϕ1 and ϕ2). While in a large gray matter region, which

is composed of a mixture of capillaries and brain tissue, it is expected that VB~5%, this simplifica-

tion is conflictive at a voxel level as it can be entirely inside of an artery (VB = 100%).

Ki of irreversible radioligands is usually estimated with the Patlak plot[7]. KPatlak
i corre-

sponds to the slope of the plot CT(t)/Ca(t) vs
R

Ca(t)/Ca(t) after a time t� in which it reaches
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linearity. It takes place after all the reversible compartments in the system have reached effective

equilibrium with the plasma compartment[8]. Patlak plot is usually applied subtracting a vascu-

lar contribution with a given VPatlak
B from the TAC. Our previous ROI analysis of [11C]CURB

showed that the Patlak plot underestimates the Ki value given by the 2TCMi [1]. In the present

work, Patlak plot was applied after correcting the TAC for a 5% of vascular contribution.

Simulations

Rate constants for TAC. Monte Carlo simulations were performed to assess 1) the shape

of the distribution, bias and variability of Ki, λk3 and VB as a function of noise and range [θmin,

θmax], 2) bias and variability introduced by fixing VB to an incorrect value. Patlak plot was also

performed for comparison.

The main simulations used in this work were based on the 60 minutes decay corrected TAC

created by the rate constant of an average “putamen” (KP
1

= 0.31 mL�cm-3�min-1, kP
2

= 0.1 min-1

and kP
3

= 0.049 min-1)[1].

Changes in regional cerebral blood flow (rCBF) were simulated by changing K1. Our previous

results1 led to a very low rCBF (~20 mL�100 mg-1�min-1) with K1 = 0.16 mL�cm-3�min-1 and a

very high rCBF (~110 mL�100 mg-1�min-1) with K1 = 0.36 mL�cm-3�min-1. Changes in VND were

simulated by changing k2 for a given K1 value. Previous results showed that VND is within the

range 2 to 4 mL�cm-3. Additional simulations were performed with combination of those maxi-

mum and minimum rCBF and VND values and with typical rCBF (K1 = 0.31 mL�cm-3�min-1) and

very high VND = 4.5 mL�cm-3.

Changes in Bmax (FAAH activity) were modeled by multiplying kP
3

by 0.1, 0.2, 0.35, 0.5,

0.75, 1, 1.25, 1.5 and 2.

The same arterial unmetabolized radioligand in plasma (input function) and whole blood

curve of a typical subject were used for all the simulations. In all simulations, VTAC
B = 5% except

in the simulation for examining the bias caused by fixing VB to a wrong value in BAFPIC

(VTAC
B = 0%, 5%, 10% and 25%).

Setting for the basis functions (BFs): Range and number

Given that θ = k2+k3 and k3 = konBmax, a BF with ymin < kmin
2

applied to Eq 1 should describe

the TAC of a voxel without FAAH (k3 = 0) and a BF with ymax > kmax
2
þ kmax

3
should describe

the TAC of the maximum expected Bmax. While θmin = min (θ) will produce the BF that washes

out slowest, θmax = max(θ) will produce the quickest BF washing out (Fig 1).

From our ROI based analysis of [11C]CURB, we have learned that by accounting for one

standard deviation, kmin
2

= 0.07 min-1 (caudate), kmax
2

= 0.13 min-1 (temporal ctx) and kmax
3

=

0.067 min-1 (cerebellum)1. Therefore, the BF set explored in this work includes: θmin = 0.01,

0.02, 0.03, 0.04, 0.05, 0.06 and 0.07 min-1 and θmax = 0.2, 0.5, 1 2, 3 min-1. We studied BF with

n = 50, 100 250, 500 and 1000 member logarithmically separated between θmin and θmax.

For clarity, in the rest of the manuscript, the BF will be described as n = 50 frequencies loga-

rithmically spaced between [θmin, θmax]

Noise and weight for fittings

Noise for the frame i from time ts
i to te

i was modeled with a Gaussian distribution with standard

deviation (SDi):[19]

SDi ¼ sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

elcðte
iþts

i Þ=2Ci

ðte
i � ts

i Þ

s

ð5Þ
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where Ci is the noise-free simulated radioactivity, λc = 0.0339 min-1 is the decay constant of
11C and sf is the scale factor that controls the noise level. The mean percent noise contained in

the noisy data was calculated as[20]: %∑iSDi/∑iCi. sf = 7 is characteristic of noise in a typical

sized ROI, sf = 20 of a very small ROI (i.e. anterior cingulate cortex) and sf = 100~120 of a sin-

gle voxel in the gray matter of an image acquired and reconstructed as previously published[1,

2] (i.e acquired by an HRRT following a bolus injection with 10 mCi of [11C]CURB and recon-

struction using the 2D filtered-back projection (FBP) algorithm, with a HANN filter at Nyquist

cutoff frequency. For details see [1]). The Coefficient of variation (CoV) reported in the simu-

lation was calculated as the standard deviation/mean.

Human studies

The human analysis presented here is a parametric maps analysis of a study previously pub-

lished using a region of interest (ROI) approach[2]. The protocol was approved by the Center

Fig 1. Exponential convolution of the input function of a single subject for different time constant θ compared with a regional TAC (temporal ctx) for the

same subject. The TAC’s peakwidth is mostly given by a single basis function. Taking into account different regional TACs, it gives an idea about the set of elements

to include in the basis.

https://doi.org/10.1371/journal.pone.0192410.g001
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for Addiction and Mental Health Ethics Review Board and conformed to the Declaration of

Helsinki. All subjects provided written informed consent after all study procedures were fully

explained. Images of six healthy volunteers (3 men and 3 women; aged 19–53 years) were ac-

quired before and 2 hours after an oral dose of a potent specific FAAH blocker, PF-04457845.

A saline solution of 370 ± 40 MBq (10± 1 mCi) of [11C]CURB was injected over a 1-minute

period at a constant rate using a Harvard infusion pump (Harvard Apparatus, Holliston, MA,

USA) into an intravenous line placed in an antecubital vein. The images were reconstructed

into 22 time frames. The first frame was of variable length dependent on the time between the

start of acquisition and the arrival of [11C]CURB in the tomograph field of view (FOV). The

subsequent frames were defined as 5x30 sec, 1x45 sec, 2x60 sec, 1x90 sec, 1x120 sec, 1x210 sec

and 10x300 sec. All images were decay corrected. The arterial blood analysis, input function

creation and delay and dispersion calculation were previously described[1, 2]. Results of the

blocking study in the white matter (WM) were not previously explored. WM delineation was

performed following the algorithm described in Bencherif et al.[21], which includes WM pre-

dominately from the corpus callosum, allowing for a maximum of 5% partial volume effect

from the gray matter. Head movement in the dynamic PET acquisition was corrected using a

frame-by-frame realignment of images reconstructed iteratively unweighted OSEM (3 itera-

tions, subset 6, span 3) without attenuation correction[22]. TACs were fitted assuming VB =

5% [23] and data point weighted based on the trues in the field of view[24].

Results

Simulations

Fig 1 shows the BFj(t) for a typical input function and a set of values θj. The position of the

peak of BFj(t) increases when θj decreases.

Considering Fig 1 and Eq 1, the position and width of the peak of the TAC of [11C]CURB is

given mainly by BFj(t). Therefore, comparing the position of the peak of BFs respect to the TAC

can help to verify whether the range [θmin, θmax] is reasonable. Typical TACs for [11C]CURB

show a peak between 120 to 260 seconds after injection[1]. For θ�0.2 min-1 the peak, before

180 sec after injection, will be too early for some regional TACs. For θ�0.02 min-1 the peak will

be too late (after 500 seconds). Thus, θ = [0.06, 0.2] min-1 represents a conservative initial esti-

mation for the range of θ for a TAC of [11C]CURB in a gray matter region of a healthy subject.

Results of the simulations are reported in a Microsoft Office Excel file (S1 File).

Number of simulations

The percentage error of the mean (E) in nc Monte Carlo simulations for a given confidence

interval with critical value zc can be estimated as E ¼ 100zcSx
�x ffiffiffinc
p , where �x and Sx are the sample

mean and sample standard deviation for a large number of simulations. As it will be seen

below, �x and Sx were highly dependent on the data simulated, the noise level and the model

used for quantification. The results presented in this work have been calculated using nc =
5000, which using a confidence level of 95% (zc = 1.96) led to E<<5% in most of the scenarios

studied. Exceptions occurred in cases with a very low �x and a very high Sx, which have been

observed using BAFPIC with a low θmin (0.01 min-1) or Patlak model on data with high levels

of noise (sf = 120) and low specific binding (k3=kP
3

= 0.1 or 0.2).

Simulation results using BAFPIC with constant VB = 5%

Minimal basis set. Basis set including n = 2,3,4,5,10,25,50,100,250,500 and 5000 members

were evaluated in the largest range of θ = [0.01, 3] min-1 studied and the optimal range of θ =

Parametric maps of [11C]CURB
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[0.06, 3] min-1 (see below). At any noise level sf>7, n>50 does not produce further evolution

in the probability distribution of Ki and λk3 (regarding mean, standard deviation (std), kurtosis

(kurt) and skewness (skew)). Results presented in this manuscript were calculated using n = 50.

Interestingly, when the noise level decreases, more BFs are required. At sf = 7, a noise level

of a middle sized ROI TAC (i.e putamen), n = 100 was required when the largest range [0.01,

3] min-1 was used. The discretization of θ becomes more inefficient for TACs with lower

noise: the noise of the TAC induces variability in ϕ1 and ϕ2 but not in θ. Increasing n corrects

this problem. For very low noise (sf = 1), when n<500, only two BFs with neighbor exponents

are chosen and the distributions of rate constants presents more than one peak.

Probability distribution of Ki as a function of sf and [θmin, θmax]

A visual presentation of the bias and CoV of Ki and λk3 is presented in Fig 2. For sf = 20, Ki

showed a non-biased normal distribution (bias<1%,CoV~6%, skew ~-0.3, kurt~3.1–3.5) prac-

tically independent of θmin and θmax.

At higher levels of noise, the variability of Ki progressively increases and an underestima-

tion of Ki progressively appears. The distribution of probability of Ki, becomes a non Gaussian

shape (negative skew and kurt>3). This effect depends more strongly on θmin than on θmax (i.e

more underestimation when slower frequencies of the BF are included, but the faster frequen-

cies play a secondary role). Reasonable normal distributions (-1<skew<0, 3<kurt< = 4) can

be seen for basis function ranges [0.04< = θmin< = 0.07, θmax> = 0.2] min-1. At these ranges,

for a given noise level, bias and CoV increase nearly linearly when θmin decreases and it is prac-

tically independent of θmax (Fig 2A). [θmin�0.06, θmax�1] minimized the underestimation

and CoV (e.g. for [0.06, 3] min-1 the bias is limited to -5.6% and CoV = 40% for the maximum

noise studied (sf = 120)). On the other extreme, the worse scenario is for θmin�0.02 min-1 (e.g.

for [0.02, 3] min-1 the underestimation was quadruple and CoV double compared to [0.06, 3]

min-1).

Probability distribution of λk3 as a function of sf and [θmin, θmax]

At sf = 20, the noise level of a TAC of a very small ROI, λk3 shows a normal distribution with-

out bias and CoV~10% at any BF range.

For sf�40, λk3 distributions showed a high kurtosis (e.g. 4�kurt� 8 for sf = 40, 8�kurt�
145 for sf = 60) and for sf>60 the distribution showed a high skewness as well.

Similar to the case of Ki, λk3 bias depends more strongly on the selection of θmin than θmax.

Bias (underestimation) can be reduced by selecting the range of θ (higher θmin and lower

θmax); however, the COV follows the opposite trend (e.g at higher noise (sf = 120) for θ = [0.06,

3] min-1, the bias = -15% and CoV = 77% and for θ = [0.06, 0.2] min-1, bias = -12% and

CoV = 103%). It should be noted that, at the same noise level, even a “low” CoV for λk3 is

higher than a typical CoV for Ki (Fig 3, Fig 2B vs Fig 2D).

Effects of VB fixed to a wrong value on the probability distribution of Ki

In the previous section, we fixed VB = 5% and VTAC
B = 5%. In the present section, Ki distribu-

tions were analyzed when TACs were simulated with VTAC
B = 0%, 5%, 10% and 25% and BAF-

PIC was implemented with VB = 5%. Simulations were done at high noise levels (sf = 100 and

120) and BAFPIC using [0.06, 3] min-1.

The result (S1 File, sheet “VB”) demonstrated that an error of X = VTAC
B � VB percentage

points in VB will induce an extra bias in Ki of approximately -X%. Interestingly, for VTAC
B = 0,

Parametric maps of [11C]CURB
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(X = -5), the noise-induced underestimation will cancel out the overestimation due to the

error in the VB.

Probability distribution of Ki and λk3 for different Bmax

In this section, BAFPIC with VB = 5% and θ = [0.06, 3] min-1 and θ = [0.07, 3] min-1 was used

on simulated highly noisy TACs (sf = 120). k3 was changed to model different FAAH activities;

k3=kP
3

= 0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.25, 1.5 and 2 were studied. At higher values of k3, the irre-

versible radioligand start to show delivery limitation effects.

Fig 2. Visual representation of the simulated results using BAFPIC with Vb�5%. Each vertical line represent the effect of noise in the bias and coefficient of variation

(CoV) for a given range [θmin, θmax] of the basis functions. Noise is expressed as the value of the scale factor in Eq 5. Results show that bias and CoV depend more on

θmin than θmax.

https://doi.org/10.1371/journal.pone.0192410.g002
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Results showed that Ki presents a relative bias that depends on the value of Ki and the

BF range (Fig 4, green and yellow lines). For θ = [0.06, 3] min-1, when k3 is in the range

0.35<k3=kP
3
< 2, Ki bias changes from ~-10% to ~-4%. But when k3=kP

3
< 0.35, corresponding

to the cases when the noisy TAC can be fitted equally well by a 1TCM and 2TCMi, the Ki bias

and CoV become more pronounced (Fig 4 yellow line). In contrast for θ = [0.07, 3] min-1, the

underestimation of Ki is lessened and bound within 10% for any k3 (Fig 4, green line). It should

Fig 3. Bias = (mean(Ki simulation)/Ki simulated-1)% and CoV = std(Ki simulations)/mean(Ki simulation) as a

function of the noise level (Eq 5). As a reference, we included the approximate voxel noise level of a PET/CT camera

(Biograph HiRez XVI. Siemens Molecular Imaging) and a HRRT (CPS/Siemens, Knoxville, TN, USA).

https://doi.org/10.1371/journal.pone.0192410.g003

Fig 4. Noise induced bias for Ki and λk3 estimated by BAFPIC and for Ki estimated by Patlak plot as function of k3=kP
3

. The simulated noise corresponds to

TACs that are regularly observed at the HRRT voxel level (sf = 120). Bias is computed as ((measured-simulated)/simulated)%. Note that the yellow line in this

figure corresponds to the yellow line in Fig 5.

https://doi.org/10.1371/journal.pone.0192410.g004
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be noted that the use of relative bias (%) and CoV can be misleading for small k3 values, and actu-

ally the absolute bias and standard deviation present the opposite trend (S1, S2 and S3 Figs).

λk3 presented a more complex and varied pattern of bias under k3 changes and the θ range

used (Fig 4, blue and purple lines). Importantly, the bias is bound within ±5% for small

changes around kP
3

(e.g. λk3 bias increases from ~-8% to ~-19% when k3=kP
3

increases from

0.75 to 1.25 using θ = [0.07, 3] min-1 and the direction of change is such that a simulated

reduction of ~40% would be measured by BAFPIC as attenuated to ~32%). CoV(λk3) pre-

sented a minimum >67% for k3=kP
3
~0.5 (S1 Fig).

Probability distribution of Ki for low and high rCBF and VND values as a

function of Bmax

These simulations were only performed for VB = 5%, VTAC
B = 5%, noise level sf = 120, and BF

with θ = [0.06, 3] min-1. The distribution shape of Ki is reasonably Gaussian, based on kurtosis

and skewness. A systematic bias of Ki as a function of a simulated Ki value is observed in the

continuous lines of Fig 5. At high k3 values, all the simulations underestimated Ki. At a low k3,

the underestimation of Ki was lower (Fig 5, blue, green and red lines) or in some cases there

Fig 5. Bias as a function of Ki. The simulated results are represented by the solid symbols connected with lines. In these cases, the x-axis represents the simulated Ki
value while the y-axis is the mean Ki of the simulation minus the simulated value. Symbols along the line are simulations with the same K1 and VND but a different k3.

K1 = 0.16 mL�cm-3�min-1 (Low rCBF), K1 = 0.36 mL�cm-3�min-1 (high rCBF), VND = 2, 4 and 4.5 mL�cm-3(Low, High, very high respectively). Scattered points are

data from real images (6 subjects/9 ROIs/2 scans per subject). In these cases, Ki in the x-axis is the result of the 2TCMi on the regional TAC while the y-axis is the

regional mean of Ki in the BAFPIC based parametric map minus the regional 2TCMi estimation. BAFPIC was applied with 50 function with θ in the range [0.06 3]

min-1 and VB = 5%.

https://doi.org/10.1371/journal.pone.0192410.g005
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was an overestimation (Fig 5, cyan and black lines). Bias values depend on the simulated rCBF

and VND. While for most of the simulations the bias was limited to circa ±5% of the baseline

Kiðk
3
=kP

3
¼1Þ, a particularly marked overestimation was observed for the case of low rCBF/High

VND (Fig 5, black line, K1 = 0.16 mL/cm3/min, k2 = 0.04 min-1) when k3 is low as a consequence

of θmin = 0.06 min-1 > k2+k3.

Simulation results using BAFPIC with VB variable

Fig 6 represents the summarized result of the simulations.

Probability distribution of VB as a function of sf and [θmin, θmax]

Members of the basis function with higher frequencies look more similarto the input function

(Fig 1). High frequencies are related to the rapid transit time of the tracer in the vasculature

within the ROI and effects of dispersion in the arterial line [13]. In presence of noise (sf>40),

the mean value of VB is practically determined by θmax (Fig 6E) and θmax between 0.2 min-1

and 0.5 min-1 keeps VB closer to 5% (minimized the bias). Independent of the range of the

basis, VB presents a Gaussian distribution with high variability (for the optimal θ range for

each sf, CoV increases from ~140% at sf = 40 to CoV~400% at sf = 120) (Fig 6D).

Probability distribution of Ki as a function of sf and [θmin, θmax]

At noise levels of a typical ROI (sf = 7) or even of a tiny ROI (sf = 20), Ki shows a normal distri-

bution with low bias (<1%) and CoV = 2.5% and 7.5 for sf = 7 and sf = 20, respectively (Fig 6A

and 6B, Fig 3A yellow and blue lines). For higher noise levels (sf�40), the shape of the distribu-

tion (kurtosis and skewness) depends strongly on the range of θ considered. The distributions

are leptokurtic (kurt>3). The kurtosis goes to 3 for higher θmin. The bias of the mean is always

negative (underestimation) and becomes stronger for higher θmax. The CoV (and skewness)

presents a minimum in the range 0.2< θmax <1 for each sf and θmin. θ = [0.06, 0.2] min-1 pres-

ents a good trade off, keeping a distribution shape closer to the normal and reducing bias and

CoV (eg. for sf = 100, bias = -3.7%, CoV = 43%, kurt = 7, skew = 1.1)

While CoV(Ki) increases linearly with the noise level when applying BAFPIC with a fixed

VB (Fig 3B, red line), it increases exponentially when VB is variable, using the optimal BF sets

for each case (Fig 3B, blue line). For sf< = 60, the difference is not important, but for sf = 120,

CoV(Ki)�40% using VB constant vs CoV(Ki)�56% using VB variable.

Probability distribution of λk3 as a function of sf and [θmin, θmax]

BAFPIC estimations for λk3 when VB is variable were similar to those when VB is constant, but

with higher CoVs (Fig 6C and 6D). At sf = 20, λk3 shows a normal distribution without bias

and CoV~11% for any base function considered. For sf�40, λk3 distributions showed a high

kurtosis (8�kurt�11 for sf = 40, 17�kurt� 300 for sf = 60 and higher for higher noise). For

sf�60, the distribution presents a high skewness as well. For sf>60, the variability is so large

(CoV>67%) that the precise bias (usually underestimation) is difficult to determine. The bias

depends more strongly on the selection of θmin than θmax; higher θmin decreases the underesti-

mation. For each θmin, CoV is minimized for a θmax between 0.5� θmax� 2 min-1 (e.g. for

sf = 120 and θ = [0.06, 0.5], min-1 the bias is -11% and CoV = 126%.

Patlak plot as a function of sf and Bmax

Patlak plot reached linearity for t� = 27.25 min in TACs with k3=kP
3

= 1. Using this t�, KPatlak
i

showed a low underestimation (between -2% and -5%), practically independent of sf. The CoV
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of KPatlak
i increased linearly with sf. CoV was more than 3 times higher than CoV of Ki with

BAFPIC using a constant VB (Fig 4, black vs red line). For sf = 120, the mean of KPatlak
i was still

fluctuating within ±2% after 5000 simulations.

At sf = 120, changes in k3 did not induce a significant effect on the bias in the range of 0.5�

k3=kP
3
� 2 (Fig 4, black line). However, for k3=kP

3
< 0.5, when the TAC can be fitted with 1TCM,

a significant underestimation appeared reaching -76% for k3=kP
3

= 0.1.

BAFPIC with constant VB = 5%: Application to real images

Parametric maps were generated for 6 subjects in the baseline and block conditions using the

optimal parameters found in the simulations (θ = [0.06, 3] min-1, #basis functions = 50, Fig 7).

Histograms of values inside the large homogeneous ROIs (e.g. cerebellum cortex, ~104 voxels)

showed normal distributions (S4 Fig). Mean values in the parametric maps of each ROI corre-

lated excellently with estimations given by the ROI analysis (r2 = 0.992 including all ROIs in

baseline and blocked conditions, and r2 = 0.996 in the baseline condition only). Simulation-

predicted bias as a function of Ki value was observed (Fig 5, color symbols). Overall the bias in

Fig 5, including all ROIs data points, can be fitted by the linear regression: hKpar
i i � KROI

i ¼

� 0:092 KROI
i þ 0:0072 min� 1 mL�cm-3�min-1 for 0<KROI

i <0.15 mL�cm-3�min-1. However, this

relationship is more complex than linear; in a blocked condition, regions containing white

matter (Pons and Middle brain) showed a higher overestimation using BAFPIC than ROI,

most likely due to k2+k3<0.06 min-1. On the other hand, it should be noted that in the blocked

condition, the gray matter regions present a large dispersion in the bias without a clear pattern.

The bias slightly decreases the differences measured in the parametric map (e.g. for a ROI

with a KROI
i of 0.1 a change ±20% would be measured in the parametric maps as ±18.5%, a

change of ±40% as ±37%, and a change of ±90% as ±83%). However, for a WM area, the linear

relationship is not maintained (see Fig 5): a reduction of 83% from KROI
i = 0.06 to 0.01 would

be measured in the parametric ~60% rather than the linear prediction of 73%. In summary,

the bias would strongly depend on the relation of k2+k3with θmin.

The bias found in the real data follows approximately the pattern predicted with the simula-

tions. WM regions (low rCBF) fall in the middle of the simulations of low rCBF/high VND and

low rCBF/low VND. However, gray matter ROIs behave as having a VND = 4.5 mL/mL, which

is higher than reported in Rusjan et al. [1], yet closer to what was measured in blocking condi-

tions in Boileau et al [2].

Previously, we have published in our gray matter ROI analysis a reduction of λk3>90%

after 2 hours of an oral dose of�1 mg of PF-04457845[2]. It should be noted that while λk3 is

proportional to k3, Ki is not directly proportional and is less sensitive to changes in k3 depend-

ing on the ratio of k3/k2. A 90% reduction in k3 should reduce Ki by 82% when k3 = k2 (e.g.

gray matter) and 75% when k3 = 2k2 (e.g. white matter).

Fig 7 represents the average parametric Ki maps of the 6 subjects in the baseline and block-

ing conditions. In the gray matter, the reduction of Ki in the blocking condition is above

80%, which is consistent with our previously published result of a reduction of λk3>90%. In

contrast, the reduction in WM is merely ~40%, from hKbaseline
i i ¼ 0:057 mL�cm-3�min-1 to

hKblock
i i ¼ 0:034 mL�cm-3�min-1. These Ki values are within the range in which the bias behaves

linearly and correspond to a reduction in k3 of 45%-50%. In order to confirm these results, a

Fig 6. Visual representation of the simulated results using BAFPIC with variable VB. Each vertical line represent the effect of noise for a

given range [θmin, θmax] of the basis function. Noise is expressed as the value of the scale factor in Eq 5. Results in A to D show that bias and CoV

of Ki and λk3 depend more on θmin than θmax. In contrast plot E shows that at high noise levels, VB is practically determined by the “high

frequency” θmax (simulated VTAC
B = 0.05).

https://doi.org/10.1371/journal.pone.0192410.g006
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large ROI of the WM was delineated (see methods) and the TAC was quantified using 2TCMi

(Fig 8). While occupancy in gray matter was > 95% and was practically dose-independent, the

white matter presented a lower occupancy that was apparently dose dependent. Fig 7 shows

that parametric maps of Ki estimated with Patlak or with λk3 estimated with BAFPIC are more

pixelated than Ki estimated by BAFPIC as a consequence of higher variability.

BAFPIC with variable VB: Application to real images

Parametric maps using BAFPIC, with variable VB, were consistent with the results of the simu-

lations. BF with θ = [0.06, 0.2] min-1 provides realistic VB values (~5%) with high variability. In

contrast, the average parametric Ki values correlate weaker with the ROI estimation than when

BAFPIC with a fixed VB is used. Correlation of Ki becomes stronger for the BF with θ = [0.06,

0.5] min-1, but estimations of VB becomes too low to be considered realistic. VB in the block

condition is lower and more variable than in baseline. It should be remarked that VB loses

identifiability in the ROI analysis for the blocked TAC as well.

Fig 7. Axial slice (MNI z = +2mm) of the averaged (n = 6) parametric maps of Ki (Patlak and BAFPIC) and λk3 (BAFPIC). The images in the upper row are at

baseline condition, while the images on the lower row were acquired 2 hours after an oral dose�1 mg of PF-04457845. Note that while the gray matter changed

substantially, the change is less marked in the white matter. Units are mL�cm-3�min-1.

https://doi.org/10.1371/journal.pone.0192410.g007
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Discussion

The present work examined the bias induced by the noise when using BAFPIC to quantify

voxel wise images of [11C]CURB, a 2TCM irreversible radioligand. This work explicitly dem-

onstrated the validation and limitations of the parametric maps of [11C]CURB as a function of

the range [θmin, θmax] when brain images are acquired with an HRRT and reconstructed using

a FBP algorithm with Hann filter at Nyquist frequency.

The high level of noise in HRRT images does not allow for much flexibility in the selection

of the member of the basis functions. The selection of [θmin, θmax] affects the shape of the dis-

tribution of probability of the parameters of interest (Ki and λk3). Noise induces a systematic

bias in the mean of the distribution of Ki and λk3, which would underestimate differences in

FAAH concentration. From a parametric mapping perspective, it is convenient to focus on Ki

rather than λk3. Variability of Ki is lower and the dependence of the bias with a change in Bmax

is lower. BAFPIC strongly reduces the variability of the standard method (Patlak plot).

For parametric maps, it is convenient to apply BAFPIC with VB fixed rather than variable. At

those high levels of noise, VB does not present identifiability (CoV~400%) its mean values are a

function of the highest frequency in the basis (θmax, c.f. section “high frequency components” in

ref [13]) and the macroparameters derived when VB is variable present higher variability. While a

fixed VB (e.g. to 5%) is incorrect in a voxel corresponding to a big artery (e.g. VB = 100%), tech-

niques of analysis of parametric images look for cluster of voxels rather than single voxels, thus

Fig 8. The change in FAAH activity, as measured with λk3 (open symbols), following an oral dose of 1, 4 and 20 mg of PF-04457845 in the gray matter

(temporal cortex) and white matter of 6 subjects. Solid symbols show the relative reduction of [11C]CURB Ki in the same experiments. A small offset was

applied for each oral dose in order to visualize overlapping symbols.

https://doi.org/10.1371/journal.pone.0192410.g008
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this error is nearly negligible. It should be noted that in the graphical methods for parametric

mapping (i.e. Patlak or Logan plot), it is common practice to either ignore or subtract the vascular

contribution with a fixed VB value from the TAC prior to the application of the model.

An exaggerated selection for the slowest frequencies (e.g. θmin = 0.01 min-1) will produce

non-normal distributions of Ki and λk3 with a mean presenting significant underestimations.

Our results are consistent with previous work that has shown: 1) that the spectral analysis

method is known to be affected by the cutoff for slow frequencies[15] and 2) that using SRTM

(BFM), the non-normal distribution of rate constants using BF can be observed for k0
2

[25].

Based on the simulations, we found that the parametric images of Ki can be generated with

BAFPIC using constant VB (= 5%) and a BF of n�50 members with frequencies distributed log-

arithmically within [0.06, 3] min-1. Consistently, our real images demonstrated that these set-

tings were useful to look at 90% changes in the gray matter. Despite having a lower ability to

quantify similar changes in the white matter, the potential of the parametric maps analysis was

illustrated after the revelation of results in the white matter following FAAH inhibition with

PF-04457845 that were not hypothesized in the ROI analysis. In clinical populations, in which

changes in Bmax are expected to be moderate (e.g. subjects with single nucleotide polymor-

phism (rs324420, C385A) show 23% lower [11C]CURB binding (λk3) in brain[26]), it is

expected that those settings for BAFPIC will work well for both gray and white matter ROIs.

However, the results presented in this work will eventually allow to customize the BAFPIC

parameters for different scenarios (macroparameters, expected values of rate constants based

on rCBF, VND and Bmax), while understanding the limitations.

The mathematical expression in the 2TCMi of λk3 has advantages over Ki a) it is propor-

tional to k3 (Bmax), and b) it does not depend explicitly on rCBF. Despite the fact that all the

irreversible radiotracers can suffer from delivery limitation effects, the proportion between

rate constant (k3~k2/2) for healthy controls is such that in the gray matter, [11C]CURB binding

is not sensitive to rCBF. The white matter (k3~k2) might be more compromised; however, the

TACs still present a peak followed by a plateau that allows to differentiate the contribution of

the delivery and specific binding. In contrast, Ki is, by definition, affected by rCBF. In [11C]

CURB, its effect is not strong: a significant change of rCBF from 90 mL�100 mL-1�min-1 (K1 =

0.28 mL�cm-3�min-1) to 40 mL�100 mL-1�min-1 (K1 = 0.22 mL�cm-3�min-1)[1] would reduce Ki

by 10% (using a high VND = 4 ml�cm-3 and kp
3). When expected changes in rCBF may affect the

interpretation of the results of a study, parametric maps of λk3 are still feasible but the optimal

range for the BF is [0.06, 0.5] min-1. However, the statistical power will decrease as a conse-

quence of the increase in variability and bias correlated with k3 values.

There is a discrepancy between the simulation and the real data regarding VND. Fig 5 seems

to indicate that the real data in the baseline condition (VND~3 mL�cm-3) corresponds to the

simulated data with VND = 4.5 mL�cm-3. We have also observed in the ROI analysis that 1)

VND in the blocked condition is slightly higher[2], 2) with>90% specific binding blocked

2TCMi still fits the TACs better than 1TCM, 3) 1TCM model of the blocked TAC gives a

slightly higher VND. Therefore, the simulated TACs with 2TCMi (1 reversible compartment

for non displaceable binding and other irreversible for specific binding) could be an oversim-

plification. On the other hand, a straightforward comparison may be affected by a number of

factors: 1) simulated changes in VND kept k3 fixed and simulated changes in Bmax kept k2 fixed,

but in our experiments we noted that k2 correlated with k3 in healthy controls, 2) while data

points in the simulation were weighted based on Eq 5, in the real data true concentration Ci is

unknown, thus the weight is based on trues in the field of view, 3) simulated noise level could

overestimate/underestimate the noise level of the HRRT, 4) tissue heterogeneity in the ROI

could affect the comparison between parametric maps and ROI results.
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The results presented here for TACs with intermediate noise level can be applied to [11C]

CURB images acquired with different scanners or algorithms for reconstruction. However, it

should be noted that the simulations presented here assumed Gaussian noise, which eventually

may not be the case for images coming from other algorithms of reconstruction (e.g. non-neg-

ative constrained iterative algorithm when the number of counts in detectors is low).

The present results can provide a guideline for application to other radioligands; however,

every radioligand will require an independent validation. For example, for a radioligand with a

slower delivery to tissue, the vascular component may be more visible in the TAC and VB can

be fitted.

Conclusion

BAFPIC with constant VB can be used to generate Ki parametric maps of [11C]CURB images

acquired with the HRRT provided that the range of the BF is carefully adjusted. The noise

induces an underestimation proportional to the FAAH concentration, which will reduce the

potential differences between groups. Thus, BAFPIC reduces more than 60% the variability

relative to the Patlak plot. While λk3 parametric maps are feasible, they present higher bias and

variability. In images with lower noise (e.g. different scanner or reconstruction algorithm)

these effects will decrease.

Supporting information

S1 Fig. Noise induced variability expressed as CoV = 100%�Stdev/mean for Ki and λk3 as a

function of k
3
=kP

3
for BAFPIC with different ranges of the exponent θ of the basis function

compared to Patlak plot. The simulated noise in the TACs is similar to the noise regularly

observed at the HRRT voxel level (sf = 120).

(TIF)

S2 Fig. Noise induced variability expressed as Stdev for Ki and λk3 as function of k
3
=kP

3
for

BAFPIC with different ranges of the exponent θ of the basis function compared to Patlak

plot. The simulated noise in the TACs is similar to the noise regularly observed at the HRRT

voxel level (sf = 120).

(TIF)

S3 Fig. Noise induced bias for Ki and λk3 as function of k
3
=kP

3
for BAFPIC with different

ranges of the exponent θ of the basis function compared to Patlak plot. The simulated noise

in the TACs is similar to the noise regularly observed at the HRRT voxel level (sf = 120). Bias is

computed as (measured-simulated). c.f. Fig 3 in manuscript. Note that yellow line in this figure

corresponds with yellow line in Fig 4 in manuscript.

(TIF)

S4 Fig. Histograms of Ki values in the cerebellar cortex of a single subject parametric map.

Comparison of the distribution produced by BAFPIC (VB = 5%) θ = [0.06, 3] min-1, BAFPIC

(VB = 5%) θ = [0.01, 3] min-1, and Patlak plot. The mean values are indicated with triangles

together with the Ki estimation from 2TCMi for the ROI analysis. While the Patlak distribution

presents no bias, it shows a higher variability. The skewed distribution for BAFPIC (VB = 5%),

θ = [0.01, 3] min-1 produce a large bias in the mean values of the distribution. BAFPIC (VB =

5%), θ = [0.06, 3] min-1 gives a tradeoff between bias and variability.

(TIF)

S1 File. Monte Carlo simulations. This MS-Excel file contains all the simulations performed.

(XLSX)
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