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Adaptation of the human auditory cortex
to changing background noise
Bahar Khalighinejad1,2, Jose L. Herrero3,4, Ashesh D. Mehta3,4 & Nima Mesgarani1,2

Speech communication in real-world environments requires adaptation to changing acoustic

conditions. How the human auditory cortex adapts as a new noise source appears in or

disappears from the acoustic scene remain unclear. Here, we directly measured neural

activity in the auditory cortex of six human subjects as they listened to speech with abruptly

changing background noises. We report rapid and selective suppression of acoustic features

of noise in the neural responses. This suppression results in enhanced representation and

perception of speech acoustic features. The degree of adaptation to different background

noises varies across neural sites and is predictable from the tuning properties and speech

specificity of the sites. Moreover, adaptation to background noise is unaffected by the

attentional focus of the listener. The convergence of these neural and perceptual effects

reveals the intrinsic dynamic mechanisms that enable a listener to filter out irrelevant sound

sources in a changing acoustic scene.
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Speech communication under real-world conditions requires
a listener’s auditory system to continuously monitor the
incoming sound, and tease apart the acoustic features of

speech from the background noise1. This process results in an
internal representation of the speech signal that enables robust
speech comprehension unaffected by the changes in the acoustic
background2.

Studies of the representational properties of vocalization
sounds have confirmed the existence of a noise-invariant repre-
sentation in animal auditory cortex. Specifically, it has been
shown that the auditory cortical responses in animals selectively
encode the vocalization features over the noise features3–7. A
noise-invariant representation of speech in the human auditory
cortex has also been shown8,9, but the encoding properties of
speech in noise in humans are less clear due to the limited spa-
tiotemporal resolution of noninvasive neuroimaging methods.
Previous studies of the neural representation of speech or
vocalizations-in-noise have used constant background noises3–9.
As a consequence, their findings only show the aftereffects of
adaptation and the properties of the neural representation once
the noise has been removed. Therefore, it remains unclear how,
when, and where adaptation unfolds from moment to moment as
a new background noise suddenly appears in or disappears from
the acoustic scene. For this reason, many important questions
regarding the dynamic properties of adaptation to noisy speech in
the human auditory cortex remain unanswered, such as (I) how
the invariant representation of vocalizations emerges over the
time course of adaptation, (II) how the neural representation and
perception of phonetic features change over the time course of
adaptation, and (III) how cortical areas with different response
properties adapt when transitioning to a new background con-
dition. Answering these questions are crucial for creating a
complete dynamic model of speech processing in the human
auditory cortex.

Here, we combine invasive electrophysiology and behavioral
experiments to shed light on the dynamic mechanisms of speech-
in-noise processing in the human auditory cortex. We recorded
from high-resolution depth and surface electrodes implanted in
the auditory cortex of neurosurgical patients. Using an experi-
mental design in which the background noise randomly changes
between four different conditions, we report rapid suppression of
noise features in the cortical representation of acoustic scene,
resulting in enhanced neural representation and perception of
phonetic features in noise.

Results
Neural adaptation to changing background condition. We
recorded electrocorticography data from six human subjects
implanted with high-density subdural grid (EcoG) and depth
(stereotactic EEG) electrodes as a part of their clinical evaluation
for epilepsy surgery. One subject had both grid and depth elec-
trodes, four subjects had bilateral depth electrodes, and one
subject had only grid electrodes (Fig. 1a). Subjects listened to 20
min of continuous speech by four different speakers (two male
speakers and two female speakers). The background condition
changed randomly every 3 or 6 s between clean (no background
noise), jet, city, and bar noises and was added to the speech at a 6
dB signal-to-noise ratio (Fig. 1b). These three types of common
background noise were chosen because they represent a diversity
of spectral and temporal acoustic characteristics (Supplementary
Fig. 1), as is evident from their average acoustic spectrograms
shown in Fig. 1d. For example, the jet noise has high frequency
and high temporal modulation power, the city noise has uni-
formly distributed power over frequencies, and the bar noise has
mostly low-frequency power. In total, there were 294 transitions

between background conditions, distributed evenly among the 4
conditions. The background noise segments were not identical
and were randomly taken from a minute-long recording. To
ensure that the subjects were engaged in the task, we paused the
audio at random intervals and asked the subjects to report the last
sentence of the story before the pause. All subjects were attentive
and could correctly repeat the speech utterances. All subjects were
fluent speakers of American English and were left-hemisphere
language dominant (as determined with Wada test).

We extracted the envelope of the high-gamma band (75–150
Hz), which has been shown to reflect the average firing of nearby
neurons10,11. For all analyses, the electrodes were selected based
on a significant response to speech compared with silence (t-test,
false discovery rate [FDR] corrected, p < 0.01). This criterion
resulted in 167 electrodes in perisylvian regions, including
Heschl’s gyrus (57 electrodes), the transverse temporal sulcus
(12 electrodes), the planum temporale (26 electrodes), and the
superior temporal gyrus (STG, 39 electrodes), from both brain
hemispheres (97 left, 70 right) (Fig. 1a, Supplementary Fig. 2).

To study how the neural responses to speech are affected when
the background condition changes, we aligned the responses to
the time of the background change and averaged over all
transitions to the same background condition. The average
response in Fig. 1c shows a short-term transient peak, which
occurs immediately after the background changes (average
duration= 670 ms, t-test, FDR corrected, p < 0.01, Supplemen-
tary Fig. 3). This short-term response appears in all four
conditions, even in the transition to the clean condition (e.g.,
from speech with jet noise to clean speech). Figure 1c also
illustrates that the selectivity and magnitude of this adaptive
response to different background conditions varies across
neural sites.

Adaptation suppresses the representation of noise features. To
study what features of the acoustic scene are encoded in the
responses over the time course of adaptation, we used the method
of stimulus reconstruction12,13. Reconstruction methods typically
rely on learning the linear mapping that relates evoked neural
population responses to a time-frequency (spectrogram) repre-
sentation of sound. This method enables a direct comparison
between original and reconstructed spectrograms, making it
possible to analyze what spectrotemporal features are encoded at
the neural population level. We first trained the reconstruction
model on responses to clean speech without the added back-
ground noise for each subject separately and used it to reconstruct
the spectrograms from the neural responses to speech with added
background noises. The reconstructed spectrograms were then
averaged across all subjects. We aligned the original and recon-
structed spectrograms to the time of the background changes and
calculated averages over all trials that shared the same new
condition. Comparison of the average original (Fig. 1d) and
reconstructed (Fig. 1e) spectrograms shows that immediately after
a transition, the neural responses encode the acoustic features of
the background noise, which can be seen from the similarity of
the reconstructed and original spectrograms after a transition
(e.g., the high-frequency energy in jet noise or the low-frequency
energy in bar noise). The acoustic features of noises in the
reconstructed spectrograms, however, fade away quickly when the
adaptation is over, resulting in a noise-invariant representation of
speech sounds. This noise-invariant representation is better illu-
strated in Fig. 1f which shows the temporal shape of recon-
structed spectrograms by averaging over their frequency
dimension. For comparison, we also presented the same speech
materials to the subjects but without any added background
noises (clean speech task). The similarity of average
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reconstructions from the responses in noisy speech task and clean
speech task after the adaptation interval is shown in Fig. 1f.
Additionally, we also directly compared the neural responses in
the noisy and clean speech task and observed the same initial
transient divergence of responses after transitioning to a new
noise which then converged to the neural response to the clean
speech task after the adaptation interval (Fig. 1g).

To illustrate the appearance of the spectral features of noise
more explicitly, we averaged the reconstructed and the original
spectrograms over two time intervals, during adaptation (DA,
0–0.39s after transition) and after adaptation (AA, 2–2.39s after
transition), and we normalized each to its maximum value. We
defined the adaptation interval for the reconstructed speech by
comparing the envelope of the reconstructed and clean spectro-
grams (average duration= 390ms, t-test, p < 0.01). For compar-
ison, Fig. 2a shows the average frequency power from the original

spectrograms. Figure 2b (left panel) shows that the average
reconstructed frequency profile during adaptation resembles the
frequency profiles of the noises (R2= 0.64 using 5− fold cross-
validation for each condition, t-test, p < 10−6). However, the
average reconstructed frequency profile after adaptation in all
three noise conditions (Fig. 2b, right panel) converges to
the frequency profile of clean speech (R2= 0.91 using 5− fold
cross-validation for each condition, t-test, p < 10−6). Figure 2c
also shows this shift for individual trials. We quantified the time
course of this effect by measuring the coefficient of determination
(R2) between reconstructed spectrograms with both original noisy
and original clean spectrograms over time. In addition, the degree
of overlap between the reconstructed spectral profile during
adaptation (DA) and the spectral profile of clean speech varies
across noises, as quantified by R2 between reconstructed and
clean speech spectrograms in Fig. 2d. The overlap was highest for
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the bar noise and lowest for the jet noise, meaning that during the
adaptation phase, the bar noise masks the acoustic features of
clean speech more than the jet noise does. This difference is a
direct result of acoustic similarity between bar noise and clean
speech (Supplementary Fig. 1). The R2 differences over time are
shown in Fig. 2e, where they show an average time of switching
between the similarity of reconstructed spectrograms from noisy
to clean at 420 ms (std= 70 ms). This finding shows a brief and
significant decrease in the signal-to-noise ratio (SNR) of the
representation of speech in the auditory cortex as the neural
responses are undergoing adaptation, but the SNR is subsequently
increased after the adaptation is over (analysis of individual
subjects is shown in Supplementary Fig. 4).

Moreover, we confirmed that the decreased response to
background noise is not due to the lack of responsiveness of
electrodes to the noise stimulus relative to speech6, as we
observed a sustained response to noise-only stimuli when it was
presented to the subject without adding the foreground speech (t-
test, p < 0.001, Supplementary Fig. 5). This means that the
suppression of the background noise is not an inherent tuning
property of the neural response to the noises and instead is
contingent upon the presence of foreground speech14,15.

Adaptation enhances phonetic distinctions. The reconstruction
analysis showed the encoding of spectrotemporal features of the
stimulus in the population neural responses. Speech, however, is a
specialized signal constructed by concatenating distinctive units
called phonemes, such as the /b/ sound in the word /bad/16. In
addition, the human auditory cortex has regions specialized for
speech processing that respond substantially more to speech than
to other sounds17,18. Using a separate speech-nonspeech task, we

also found many electrodes that responded significantly more to
speech than to nonspeech sounds (54 out of 117 in four subjects,
t-test, FDR corrected, p < 0.05, Supplementary Fig. 6). We
therefore extended the spectrotemporal acoustic feature analysis
to explicitly examine the encoding of distinctive features of
phonemes during and after adaptation intervals.

To examine how the cortical representation of phonetic
features is affected when the background condition changes, we
segmented the original and reconstructed spectrograms into
individual phonemes and averaged the spectrograms of pho-
nemes that occurred in the time intervals of during (DA) and
after adaptation (AA). Figure 3a shows the original and
reconstructed spectrograms of four example phonemes. The
distinctive spectrotemporal features of these phonemes16 in
reconstructed spectrograms are distorted during adaptation but
are significantly enhanced afterward. For example, the phoneme
/b/ is characterized by an onset gap followed by low-frequency
spectral power. Both the gap and the low-frequency feature are
masked during adaptation but are subsequently restored after
adaptation. Another example is the vowel /ih/, which is
characterized by its first two formant frequencies. The frequency
peaks of /ih/ vowels that occurred after the adaptation interval are
enhanced compared to those during the adaptation interval.
Quantifying the similarity of the reconstructed phoneme spectro-
grams during and after adaptation with the clean phoneme
spectrograms shows a similar effect (Fig. 3b). Furthermore, using
the high-gamma activity, we examined the relative distances
between the neural representations of phonemes during and after
adaptation. We generated a phoneme dissimilarity matrix19,
which summarizes the pairwise correlation between all phoneme
pairs. We found that the relative phoneme distance in the neural
responses collapses during adaptation but is significantly
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increased after the adaptation interval (Fig. 3c). The discrimin-
ability of different reconstructed phonetic features is also reduced
during adaptation to a new background condition but is increased
thereafter (Supplementary Fig. 7).

Motivated by this observation, we designed a psychoacoustic
task to study the perception of phonetic features during and
after adaptation intervals (Fig. 4a, Supplementary Fig. 8). The
task consisted of six consonant-vowel pairs (CVs, /pa,ta,ka,ba,
da,ga/), chosen to cover a wide range of frequency profiles (low-
frequency labials /pa,ba/, mid-frequency velar /ka,ga/, and
high-frequency alveolar /ta,da/16,20). The CVs were embedded
in the same changing background noise as the speech in the
noise task. Half of the CVs were uttered during adaptation to a
new background noise (DA, colored in orange), and the other
half of the CVs were uttered after the adaptation interval was
over (AA, colored in blue). We observed that the recognition
score of the CVs during adaptation was significantly lower than
that of the CVs after adaptation (Fig. 4b, Yate’s corrected chi-
square test, p < 0.01). The match between neural (Fig. 3b) and
perceptual (Fig. 4b) degradation of phonetic features during
adaptation suggests an important role for neural adaptation in
enhancing the discriminative features of speech that may
ultimately contribute to the robust perception of speech in
noise in humans21. Figure 4c shows the behavioral effect of
adaptation in each background condition separately. The
improvement in the recognition accuracy is highest for bar
and lowest for the jet noise. This difference correlates well with
the masking of speech features in the neural responses during
adaptation to each noise (Fig. 2d). Interestingly, we also found
an increase in the recognition rate after adaptation to the clean
condition, meaning that phoneme recognition accuracy is also
decreased immediately after the noise stops, similar to the
findings of forward masking studies22.

Adaptation magnitude varies across neural sites. Our analysis
so far has focused on the encoding of the acoustic features of
speech and noise by the population of neural sites. To examine
how individual electrodes respond when the background condi-
tion changes, we first compared the magnitudes of the responses
during (DA) and after adaptation (AA) by pooling electrodes
across all subjects. We found variable numbers of electrodes with
significant response changes during transitions to different
background conditions (104 for jet, 120 for city, 122 for bar, and
78 for clean conditions, t-test, FDR corrected, p < 0.05; Supple-
mentary Fig. 9). We also found 16 electrodes that showed no
significant transient response to any of the background condi-
tions, even though these electrodes were similarly responsive to
speech (t-test between responses to speech vs. silence, FDR cor-
rected, p < 0.01).

To explain the variability of adaptive response patterns across
electrodes, we first defined an adaptation index (AI) as the t-value
of a paired t-test between the magnitude of the responses during
and after adaptation intervals. The AI for each electrode is
calculated for each background condition and is normalized by
subtracting the minimum over all conditions. We performed
unsupervised hierarchical clustering (minimum variance algo-
rithm, Euclidean distance) on AIs to group electrodes based on
the similarity of their adaptive responses across the four
background conditions (Fig. 5a). Comparison of the top two
clusters of electrodes in Fig. 5b shows that the primary difference
between adaptation patterns is the presence or absence of an
adaptive response in transition to the clean condition (e.g.,
transition from speech in jet noise to clean speech). The
secondary factor that further separates electrodes is their selective
adaptation to different background noises. This is evident in the
average responses of electrodes in each cluster, shown in Fig. 5c.
For example, the first three clusters all show minimal adaptation
to the clean condition but have significant adaptation to jet, city,
and bar noise, respectively. Clusters 4 and 5, on the other hand,
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show significant adaptation to the clean condition (see Supple-
mentary Fig. 10 for variation across subjects). Furthermore,
Fig. 5d shows that the latency of the response is significantly
higher for clusters of electrodes with high adaptation to clean
conditions (clusters 4 and 5 in Fig. 5b) and nonadaptive clusters.
Given that the response latency approximates the number of
synapses between the auditory periphery and the neural site, this
suggests that nonadaptive sites and sites with larger adaptation
responses to clean condition are in the higher processing stages of
the auditory pathway.

Adaptation is unaffected by the attentional focus. To examine
the effect of subject’s attention on adaptive responses to back-
ground noise changes, we engaged the subjects in a demanding
visual task as they heard the speech in noise sounds (Fig. 6a). We
then repeated the speech in noise task without the visual task and
asked the subjects to attend to speech instead. Figure 6b shows a
significant difference between the speech comprehension accu-
racy with and without the secondary visual task and confirms the
efficacy of the secondary task in distracting the subjects from the
auditory task (Fig. 6b). Despite the large difference between the
attentiveness of the subjects to the auditory task in these two
experimental conditions (Yate’s corrected chi-square test, p <
0.001), we did not observe a significant difference between the
neural responses to speech and the adaptation patterns with and
without the secondary visual task (Fig. 6c and d, individual
subjects in Supplementary Fig. 11). The similarity of responses in
the two attention conditions suggests that adaptation to changing
background noise may primarily be a bottom-up phenomena3,4.

Spatial organization of the adaptation patterns. We examined
the spatial organization of the adaptive responses to different
background conditions. Figure 7a shows the spatial organization
of AIs for jet, city, bar, and clean conditions on the average brain
MRI (FreeSurfer template brain, ICBM152). Each pixel in Fig. 7a
is a 2mm × 2mm square, and the color of the square at each
location is chosen based on the maximum AI at that location
across the four background conditions (AIs of individual elec-
trodes are shown in Supplementary Fig. 12). Figure 7a shows that
adaptation to jet noise is strongest in the medial (deep) electrodes
on both hemispheres, while adaptation to bar noise is stronger in

the lateral (superficial) electrodes. The spatial organization of
adaptive responses shown in Fig. 7a is largely due to the spatial
organization of tuning properties (Supplementary Fig. 13). Fur-
thermore, an intriguing observation from Fig. 7a is that electrodes
with the largest adaptation to the clean condition are mostly
located in the STG and in the left brain hemisphere. The spatial
organization of the two tiers from the unsupervised clustering in
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Fig. 5a is also consistent with the spatial organization of the
adaptation to the noises and to the clean because tier two mostly
consists of electrodes that show the strongest adaptation in
transition to the clean condition (Fig. 7b). Moreover, the stronger
adaptation to the clean condition in higher-level cortical areas,
such as the STG, is highly correlated with the spatial organization
of speech specificity of electrodes (Fig. 7c, r= 0.51, p < 10�9).

To study why neural sites adapt differently to the background
conditions, we examined the relationship between adaptation
patterns and both the spectrotemporal tuning and the speech
specificity of electrodes. We characterized the tuning properties of
an electrode by calculating its spectrotemporal receptive field
(STRF)23. We measured two parameters from each STRF to
describe the electrodes’ preferred frequency (best frequency) and
preferred temporal modulation (best rate). The best-frequency
parameter differentiates tuning to high versus low acoustic
frequencies and is defined as the spectral center of the excitatory
region of the STRF. The best-rate parameter is measured from the
modulation transfer function24 (Supplementary Fig. 14) and
differentiates tuning to slow and fast acoustic features. In
addition, we also measured the degree of speech specificity of
the electrodes, defined as the t-value of a paired t-test between the
responses of each electrode to speech and nonspeech sounds (see
supplementary Fig. 6 for the list of nonspeech sounds).

To study the contribution of each tuning dimension in
predicting how an electrode responds in transition to a particular
background condition, we used linear regression to predict AIs
from the tuning parameters. Figure 6d shows the predictive
power for each tuning parameter and the overall correlation
between the actual and predicted AIs of each background condition.
The AIs of all conditions except city (the least stationary noise,
Supplementary Fig. 1) are highly predictable from electrodes’
response properties (R2

jet ¼ 0:41; p < 10�12; R2
city ¼ 0:02; p < 0:01;

R2
bar ¼ 0:4; p < 10�12; R2

clean ¼ 0:42; p < 10�12). Figure 7d also
shows that electrodes with tuning to higher frequencies also
show higher adaptation to the high-frequency jet noise (positive
main effect, 0.27). On the other hand, lower-frequency neural
sites show higher adaptation to low-frequency bar noise (negative
main effect, −0.46, t-test, p < 0.001). Temporal modulation
tuning of electrodes is positively correlated with the AI of jet

noise (positive main effect, 0.38, t-test, p < 0.001), which is also
the condition with fastest temporal modulation (Supplementary
Fig. 1). Temporal modulation (rate) is negatively correlated with
the AI of the clean condition (negative main effect, −0.47, t-test,
p < 0.001), meaning that electrodes with a longer temporal
integration window had the highest adaptive response in
transition to the clean condition. The speech specificity of
electrodes was positively correlated with the AI of the clean
condition (positive main effect, 0.48, t-test, p < 0.001), indicating
that the electrodes that show the highest adaptation in transition
from noisy to clean speech are the ones that also respond more
selectively to speech over nonspeech sounds. Together, these
results show that the adaptation patterns across electrodes are
largely predictable from the response properties of those
electrodes, such that electrodes that are tuned to the acoustic
properties of a background condition also show the strongest
adaptation to that condition.

Discussion
We examined the dynamic reduction in background noise in the
human auditory cortex using invasive electrophysiology com-
bined with behavioral experiments. We found that when a new
background noise appears in the acoustic scene during speech
perception, the auditory neural responses momentarily respond
to noise features, but rapidly adapt to suppress the neural
encoding of noise, resulting in enhanced neural encoding and
perception of phonetic features of speech. We found a diversity of
adaptation pattern across electrodes and cortical areas, which was
largely predictable from the response properties of electrodes.
Moreover, adaptation was present even when the attention of the
subjects was focused on a secondary visual task.

Previous studies have shown that the auditory cortex in animals
and humans encodes a noise-invariant representation of vocali-
zation sounds3–9,25. Our study takes this further by examining the
dynamic mechanisms of this effect and how they change the
representation of the acoustic scene as adaptation unfolds. Our
finding of reduced neuronal responses to noise is consistent with
studies that propose adaptation as an effective coding strategy that
results in an enhanced representation of informative features
when the statistical properties of the stimulus change26–28.
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Although the adaptive encoding of a particular stimulus dimen-
sion has been shown in several subcortical29–32 and cortical
areas3,4, our study goes further by identifying the specific acoustic
features of speech and background noise that are encoded by the
neural responses over the time course of adaptation.

We found that the magnitude of adaptation to different
background noises varied across neural sites, yet it was pre-
dictable from the spectrotemporal tuning properties of the sites.
This observation was made possible by the sharp spectral contrast
between the three background noises used in our study. This
means that the neural sites whose spectral tuning match the
spectral profile of a particular noise also have a stronger adaptive
response to that noise. We also found a population of neural sites
that did not show any adaptation to the noises in our study,
which could be due to the sparse sampling of the spectrotemporal
space caused by the limited number of noises we used. In addition
to the spectral overlap, previous studies have shown that separ-
ating an auditory object from a background noise that has a
temporal structure requires integration over time33,34. Experi-
ments that systematically vary the temporal statistics of the
background noise35 are needed to fully characterize the depen-
dence of adaptation on the statistical regularity and the history of
the stimulus36.

We found that adaptation in transition from noisy to clean
speech occurred only in higher cortical areas, such as in the left-
hemisphere STG. While previous studies have already established
the specialization of the STG for speech processing17,18, our
finding uncovers a dynamic property of this area in response to
speech. The magnitude of the adaptive response in transition to
the clean condition was highly predictable from the speech spe-
cificity of electrodes, which is a nonlinear tuning attribute. It is
worth mentioning that these sites were also highly responsive to
foreign languages that were incomprehensible to the subjects.
Therefore, the speech specificity of neural sites in our study is
likely caused by tuning to speech specific spectrotemporal fea-
tures and not by higher order linguistic structures37. The tran-
sient response to the clean condition observed in the speech-
specific electrodes may indicate adaptation of these sites to the
unmasked features of speech, which reappear when the noise
stops and indicate the recovery of speech-selective responses from
their noise-adapted state38. This result is also consistent with
studies of the neural mechanism of forward masking, which has
been reported in the auditory periphery39 and the auditory cor-
tex38, where the neural response to a clean target sound changes
depending on the sound that preceded the target.

Using a behavioral paradigm, we show that the recognition of
phonemes is degraded during the adaptation interval to a new
background condition. Moreover, we found that the decrease in
the phonetic feature recognition was greater when transitioning
to a background noise that overlaps spectrally with speech, such
as in the case of bar noise. This reduced phoneme recognition
accuracy was consistent with the observed degradation of the
phoneme representation in the neural data. This finding confirms
the role that adaptation plays in enhancing the signal contrast
with the background40, which results in an improved identifica-
tion of its distinct features that are relevant for perception.
Interestingly, we also observed a reduced behavioral accuracy in
the perception of the phonemes when transitioning from a noisy
background to the clean condition. This behavioral observation is
consistent with the psychophysical studies of forward masking,
where the detection of a target sound can be impaired by the
preceding sound22, particularly when the acoustic properties of
the noise and target overlap41.

We found that the strength of adaptation to background noises
was stronger when listening to speech in noise compared to lis-
tening to noise alone. This means that the presence of speech was

necessary for the observed suppression of noise features in the
neural responses. The representation of speech in the human
auditory cortex is also modulated by top-down signals, including
the semantic context42–45 and attention46–48. It was therefore
plausible that a momentary lapse in the subjects’ attention at the
point of background switch could cause the transient neural
responses we observed. Controlling for this possibility, we found
that adaptation results are equally present even when the atten-
tion of the subject was directed towards a demanding secondary
visual task. Although the behavioral performance of the subject
during the auditory task significantly decreased with the added
visual task, there was no detectable difference in adaptation
patterns in the two experimental conditions. Moreover, While we
used speech stories in the native language of the subjects, our
behavioral experiment showed a decrease in phoneme recognition
accuracy even when nonsense speech (CVs) was used, suggesting
that the enhanced effect of adaptation exists independent of lin-
guistic context37,45. As a result, the adaptation results we observed
are likely due to bottom-up nonlinear mechanisms such as
synaptic depression4,49 and divisive gain normalization3,50. These
mechanisms can separate an acoustic stimulus with rich spec-
trotemporal content, such as speech, from the more stationary
noises that are commonly encountered in naturalistic acoustic
environments4,6,7.

In summary, our findings provide insights on the dynamic and
adaptive properties of speech processing in the human auditory
cortex that enables a listener to suppress the deleterious effects of
environmental noise and focus on the foreground sound, there-
fore making speech a reliable and robust means of
communication.

Methods
Intracranial recordings. Eight adults (five females) with pharmacoresistant focal
epilepsy were included in this study. Subjects 1 to 6 were presented with the
complete noisy speech task (Figs 1–5, 7). Subjects 7 and 8 were presented with the
visual distraction task (Fig. 6). All subjects underwent chronic intracranial ence-
phalography (iEEG) monitoring at North Shore University Hospital to identify
epileptogenic foci in the brain for later removal. Six subjects were implanted with
stereo-electroencephalographic (sEEG) depth arrays, one with grids and strip
arrays, and one subject with both (PMT, Chanhassen, MN, USA). Electrodes
showing any sign of abnormal epileptiform discharges, as identified in epileptol-
ogists’ clinical reports, were excluded from the analysis. All included iEEG time
series were manually inspected for signal quality and were free of interictal spikes.
All research protocols were approved and monitored by the institutional review
board at the Feinstein Institute for Medical Research, and informed written consent
to participate in research studies was obtained from each subject before implan-
tation of electrodes.

Intracranial EEG (iEEG) signals were acquired continuously at 3kHz per
channel (16-bit precision, range±8mV, DC) with a data acquisition module
(Tucker–Davis Technologies, Alachua, FL, USA). Either subdural or skull
electrodes were used as references, as dictated by recording quality at the bedside
after online visualization of the spectrogram of the signal. Speech signals were
recorded simultaneously with the iEEG for subsequent offline analysis. The
amplitude of the high-gamma response (75–150 Hz) was extracted using the
Hilbert transform51 and was resampled to 100 Hz. The high-gamma responses
were normalized based on the responses recorded during a 2-min silent interval
before each recording.

Brain maps. Electrode positions were mapped to brain anatomy using registration
of the postimplant computed tomography (CT) to the preimplant MRI via the
postop MRI52. After coregistration, electrodes were identified on the post-
implantation CT scan using BioImage Suite53. Following coregistration, subdural
grid and depth electrodes were snapped to the closest point on the reconstructed
brain surface of the preimplantation MRI. We used the FreeSurfer automated
cortical parcellation54 to identify the anatomical regions in which each electrode
contact was located within ~3mm resolution (the maximum parcellation error of a
given electrode to a parcellated area was <5voxels/mm). We used Destrieux’s
parcellation, which provides higher specificity in the ventral and lateral aspects of
the medial lobe55. Automated parcellation results for each electrode were closely
inspected by a neurosurgeon using the patient’s coregistered postimplant MRI.
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Stimulus and auditory spectrogram. Speech material was short stories recorded
by four voice actors (two male and two female voice actors; duration: 20 min,
11025 Hz sampling rate). The three noises were taken from the NOISEX-92 cor-
pus56. Different three- or six-second segments of the noise were chosen randomly
for each transition and were added to the speech at a 6 dB signal-to-noise ratio
(noisy speech task). The SNR of 6 dB was chosen to ensure the intelligibility of
foreground speech57. In three of the subjects, we ran an additional task after the
adaptation task, where they listened to the same speech utterances without the
additive noises (clean speech task).

All stimuli were presented using a single Bose SoundLink Mini 2 speaker
situated directly in front of the subject. To reduce the inevitable acoustic noise
encountered in uncontrolled hospital environments, all electrical devices in
patients’ room were unplugged except the recording devices and the door and
windows were closed during the experiment to prevent interruption. We also
recorded the clean speech task without the noise in three of the subjects for direct
comparison of neural responses in the same hospital environment. Speech volume
was adjusted to a comfortable listening volume.

The time-frequency representation of speech sounds was estimated using a
model of cochlear frequency analysis, consisting of a bank of constant 128
asymmetric filters equally spaced on a logarithmic axis. The filter bank output was
subjected to nonlinear compression, followed by a first order derivative along
spectral axis (modeling inhibitory network), and finally an envelope estimation
operation. This resulted in a two dimensional representation simulating the pattern
of activity on the auditory nerve24. The Matlab code to calculate the auditory
spectrogram is available at https://isr.umd.edu/Labs/NSL/Software.htm. The output
of the filter bank was then resampled to 13 bands.

Speech-specificity task. To quantify the speech specificity of each neural site, four
of the subjects (subjects 1, 2, 4, and 6) performed the speech-nonspeech task.
Subjects listened to 30 min of audio containing 69 commonly heard sounds
(Supplementary Fig. 6). The sounds consisted of coughing, crying, screaming,
different types of music, animal vocalization, laughing, syllables, sneezing,
breathing, singing, shooting, drum playing, subway noises, and speech by different
speakers. To determine the speech-specificity index, we first normalized the
response of each site using the mean and variance of the neural data during the
silent interval. We then averaged the normalized responses over the presentation of
each sound. Finally, we performed an unpaired t-test between the averaged
responses of all speech and all nonspeech sounds to obtain a t-value for each site
denoting the selectivity to speech over nonspeech sounds.

Visual attention task. To control for the effect of attention on the adaptation
patterns, we designed a visual experiment which we tested on two subjects (subject
7 and 8). We used 10 min of the adaptation task and presented it in two conditions
to the subject: I) when the subject was engaged in the visual task (auditory dis-
tracted) and II) without the visual task (auditory attended). The subjects were
presented with the distracted condition first where they were asked to perform a
visual search task and ignore the sound (the speech in noise task) that was pre-
sented simultaneously. The visual search task was a two-choice test. The subjects
had a maximum of seven seconds to answer each question and had to count either
the number of colors (Question 1) or the number of shapes (Question 2) and
respond whether the answer shown on the screen was right or wrong. In the visual
condition, subject 1 could answer 132 questions in 10 min with 74% accuracy, and
subject 2 could answer 164 questions in 10 min with 87% accuracy. In the Attended
experimental condition, the subject attended to the sound (the adaptation task)
without the visual secondary task. To control for the possible confounding effect of
visual stimulus in the distracted experimental condition, we asked the subject to
fixate on the visual search task while different questions were shown, but the
subject was not required to answer any of those questions. To measure the efficacy
of the visual task in engaging the attention of the subject, at the end of each
experimental block we asked the subjects contextual questions about the speech
stories. The subject had three options: (1) Right, (2) Wrong and (3) Unsure. The
total number of questions was 72.

Behavioral task. 12 subjects (seven males, five females) with self-reported normal
hearing participated in this experiment. The task consisted of six consonant-vowel
pairs (CVs, /pa,ta,ka,ba,da,ga/) spoken by two male and two female speakers (a
total of 24 tokens). The tokens were embedded in changing background noise
identical to the main speech in the noise experiment shown in Fig. 1b. Half of the
CVs were uttered immediately after the transition to a new background noise
(during adaptation, DA), and the other half of the CVs were uttered 1.5 s after
transition (after adaptation, AA). Noises were added to CVs at SNR of −4 dB. The
task was presented to the subjects using Matlab. The participants responded via a
multiple-choice graphical user interface (GUI) in Matlab that included the six CVs
in addition to an unsure option. Subjects were required to report the CV con-
tinually and were all able to keep up with the rapid speed of CV presentation. All
subjects provided written informed consent. The Institutional Review Board (IRB)
of Columbia University approved all procedures.

Stimulus reconstruction. We used a linear model to map the neural responses (R)
to the auditory stimulus (S). We trained the model on clean speech that was played
to the subject after the noisy speech experiment. We used time lags from −250 to 0
ms of the neural data as the input to the ridge regression (R). The model (g) is
calculated by minimizing the MSE between reconstructed and original spectro-
grams, which results in the cross-correlation of the stimulus and the ECoG data
normalized by the autocorrelation of the ECoG data.

We then applied the model to the noisy neural data. For the analyses shown in
Figs 1 and 2, we first generated the reconstruction model for each subject
individually and then averaged the reconstructed spectrograms across subjects58.

Spectrotemporal receptive fields. STRFs were computed by normalized reverse
correlation algorithm59 using STRFLab59. Regularization and sparseness para-
meters were found via cross-validation. The best-frequency and response latency
parameters were estimated by finding the center of the excitatory region of STRF
along frequency and time dimensions. The best-rate parameter was estimated from
the 2-dimensional wavelet decomposition of the STRF24,60. The wavelet decom-
position extracts the power of the filtered STRFs at different temporal modulations
(rates)24,60. The modulation model of STRFs has four dimensions: scale, rate, time,
and frequency. To estimate rate, we first averaged the model over three dimensions
of time, frequency, and scale to calculate a rate vector. Next, we found the weighted
average of the rate vector, where weights are the rate values.

Phoneme responses. We segmented the speech material into time-aligned
sequences of phonemes using the Penn Phonetics Lab Forced Aligner Toolkit61,
and the phoneme alignments were then manually corrected using Praat software62.
The spectrograms were aligned to the onset of phonemes with a time window of
200 ms. To minimize the preprocessing effects, we did not normalize the natural
variation in phoneme length. The phoneme pairwise distances were calculated
based on the Euclidean distance between each pair of phonemes.

Calculating adaptation indices. To characterize the adaptation index (AI), we
measured the t-value of a paired t-test between the neural response of each neural
site in time intervals of 0 to 0.7 s (during adaptation, DA) and 2 to 2.7 s (after
adaptation, AA) after the transition to each background condition (time 0). AIs
were normalized by subtracting the minimum over all conditions, followed by a
division by their sum.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
The data that support the findings of this study are available on request from the
corresponding author [N.M.]. A reporting summary for this Article is available as a
Supplementary Information file.

Code Availability
The codes for performing phoneme analysis, calculating high-gamma envelope, and
reconstructing the spectro gram are available at http://naplab.ee.columbia.edu/naplib.
html63.
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