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Abstract: Polydopamine (PDA), as a mussel-inspired material, exhibits numerous favorable per-
formance characteristics, such as a simple preparation process, prominent photothermal transfer
efficiency, excellent biocompatibility, outstanding drug binding ability, and strong adhesive prop-
erties, showing great potential in the biomedical field. The rapid development of this field in the
past few years has engendered substantial progress in PDA antibacterial materials. This review
presents recent advances in PDA-based antimicrobial materials, including the preparation methods
and antibacterial mechanisms of free-standing PDA materials and PDA-based composite materials.
Furthermore, the urgent challenges and future research opportunities for PDA antibacterial materials
are discussed.
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1. Introduction

Bacteria, as tiny ancient creatures, have a huge impact on human daily life. Except for
some beneficial probiotics, most bacteria result in infectious diseases, which are one of the
most serious health problems in the world, threatening human life [1–3]. The development
of antibiotics has been one of the major advances in medical science over the last century,
and since penicillin was first discovered, antibiotics have been a top priority in treating bac-
terial infections [4]. However, bacteria rapidly develop drug resistance with the widespread
use of antibiotics [5]. They have evolved target modification mechanisms, inactivating
enzymes and osmotic barriers to evade the attack of antibiotics [6,7]. In addition, antibiotics
cause great damage to the nervous system and liver, and have severe impacts on eyesight
and hearing, which are extremely unhealthy [8,9]. Therefore, many other antibacterial
agents, from natural biomacromolecules, such as antibacterial enzymes [10,11] and antibac-
terial peptides [12,13] to synthetic compounds or polymers, such as quaternary ammonium
compounds [14,15], metal ions [16] and graphene oxide sheets [17], have been gradually
developed and have shown highly effective antibacterial ability. These antibacterial drugs
can be divided into the contact antibacterial type and the release antibacterial type, ac-
cording to antibacterial strategies. Nevertheless, each of the above antibacterial agents has
some drawbacks. For instance, antibacterial enzymes or antibacterial peptides are highly
sensitive to proteolysis and are therefore unstable in vivo. Synthetic polycations have poor
biocompatibility, complicated synthesis/purification processes, and may also cause drug
resistance after long-term therapy [18]. The uncontrolled release and severe cytotoxicity
of metal ions limit their wide application [19]. Moreover, these antibacterial agents also
have other disadvantages such as a high cost of raw materials, potential biological risks
and possible environmental pollution. For the above reasons, it is particularly important to
develop new antibacterial materials that are safe, effective and environmentally friendly. At
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the same time, the preparation process of the materials need to be as simple and convenient
as possible in order to facilitate the promotion of the materials.

Polydopamine (PDA), an artificial melanin-like biopolymer, is a mussel-inspired ma-
terial from mussel adhesion proteins, which has excellent adhesion to almost all types of
substrates. Since the emergence of mussel-inspired PDA, it has attracted more and more
interest due to its simple preparation procedure, outstanding biocompatibility and low
cytotoxicity, and it has been extensively utilized in the fields of biomaterials, energy and
catalysts [20–24]. It is worth noting that the excellent performances of PDA in terms of
photothermal conversion, ultraviolet shielding, electrochemistry and biocompatibility are
mainly attributed to the hierarchical physical and chemical performances [25]. Specifically,
the active catechol groups and primary amine groups on PDA endow it with outstanding
adherence and metal coordination [26,27]. The catechol groups can form covalent bonds
with amino- or thiol-terminal reagents through different chemical reactions, which facili-
tates the grafting of small molecules, biomolecules and polymers to PDA surfaces [28,29].
Furthermore, catechol can also act as a building block for biomaterials through metal
chelation effects, hydrogen bonding, electrostatic interactions, etc., providing efficient mod-
ification sites [30–32]. Based on the inherent qualities of PDA, it has gradually emerged as
a promising candidate for antibacterial materials. On the one hand, it has a superior pho-
tothermal conversion effect and it adheres to almost all types of surfaces. On the other hand,
it provides a simple and universal method for functionalizing material surfaces to gain vari-
ous multifunctional materials. To date, metal ions and antibacterial drugs can be connected
with PDA substances to build an antibacterial interface [33–37]. In conclusion, PDA-based
materials are a superior choice for building multifunctional antimicrobial platforms.

Research on the modification of PDA to various materials is progressing rapidly, and
the goal of this review is to determine antibacterial mechanisms based on PDA materials
(Scheme 1). First, we describe the preparation and antibacterial mechanism of PDA as a free-
standing antibacterial material. After that, we present extensive research on the excellent
antibacterial properties of PDA-based composites, including PDA-metal ions, quaternary
ammonium salts (QAS), nitric oxide (NO), antibacterial drugs, carbon nanotubes and
graphene oxide (GO). At the end, we summarize and prospect the challenges and future
research directions of PDA-based antibacterial materials.
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2. Free-Standing PDA Anti-Bacteria

PDA has become a promising antibacterial material because of its unique antimicrobial
properties. To date, there have been numerous studies on the antimicrobial mechanism
of PDA. Basically, the main antibacterial mechanisms of PDA can be classified into the
following three types: (1) Photothermal antibacterial therapy—PDA has a broad range
of light absorption from ultraviolet to near-infrared wavelengths, and it has an outstand-
ing photothermal conversion effect [38]; (2) photodynamic antibacterial therapy—due to
the abundant active catechol groups in PDA, ROS can be generated to destroy bacterial
cell walls [39]; (3) N-halamine antibacterial therapy—PDA can be chemically modified
to N-halamine by halogenation reaction, which can provide efficient PDA antibacterial
performance through the destructive effect of halide ions [40].

2.1. Photothermal Antibacterial Therapy

In recent years, photothermal therapy (PTT) based on photothermal conversion ma-
terials has been widely used in the field of antibacterials. It is a non-invasive method
of inducing local hyperthermia using light irradiation, which destroys the integrity of
pathogenic bacteria [41]. Compared with some traditional classical antibacterial methods,
PTT has a broad spectrum of antibacterial activity without bacterial resistance [42,43]. The
antibacterial mechanism of the photothermal effect is to utilize enough heat to destroy
the cell membrane of microorganisms, resulting in the leakage of the contents, which is a
non-invasive therapeutic effect through the cell thermal ablation pathway. Therefore, PTT,
as a novel heating way with excellent biocompatibility and high selectivity, is considered
to be a safe, efficient and environmentally friendly strategy for the therapy of bacterial
infections [44,45]. These desirable properties of PTT have attracted considerable attention
by opening up the possibility of utilizing non-invasive treatment technologies to fight bac-
terial infections and avoid drug resistance. The photosensitizer plays the most important
role in the sterilization system of PTT. It is of great significance to explore new photosensi-
tizers with superior photothermal conversion properties, especially with biocompatible
and environmentally friendly antibacterial materials [46].

PDA-based photothermal nanomaterials have shown a widespread range of biomedi-
cal applications in killing bacteria [47–49]. PDA-based antibacterial therapy has recently
been recognized as a very feasible and effective method for eradicating bacterial biofilm
infections. Recently, Peng et al. [50] investigated the loading of zeolite-based imidazole
framework (ZIF-8) consisting of zinc ions and 2-methylimidazole on the surface of meso-
porous PDA to form a core–shell structure with polydopamine as the core and imidazole
framework as the shell. The near-infrared light excitation of the core–shell nanostructures
can effectively destroy bacterial biofilms, thereby realizing a low-temperature PTT (~45 ◦C)
nanosystem with beneficial antibacterial properties (Figure 1a). Subsequently, Yu and
coworkers [51] utilized natural melanin nanoparticles extracted from cuttlefish ink (CINP)
with antioxidant and photothermal functions to achieve PTT. Furthermore, CINPs were
encapsulated within an amorphous silica shell as a source of bioactive SiO4

4− to stimulate
skin tissue regeneration. Because of the physical penetration properties of the microneedles,
the CINP@SiO2-HA MNs gained can achieve photothermal inhibition of S. aureus infection
(Figure 1b). In addition, combining fluorescence resonance energy transfer analysis and
the photothermal properties of PDA, a smart nanoprobe with fluorescence imaging and
antibacterial properties can be constructed. For example, Shen’s group [52] established
a stimuli-responsive intelligent nanoprobe for efficient S. aureus fluorescence monitoring
and near-infrared photothermal activity on-demand sterilization through the outstanding
photothermal ability of PDA. PDA can also be directly doped into the hydrogel as a pho-
tothermal agent. Lu and co-workers [53] prepared a mussel chitosan/silk fibroin cryogel
with near-infrared light-responsive PDA-NPs, which can be used as a multifunctional
platform to adjust the wound microenvironment and promote effective wound healing
(Figure 1c). Furthermore, this cryogel exhibited photothermal-assisted antibacterial activity
to prevent bacterial invasion.
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Figure 1. (a) Schematic of imidazole framework (ZIF-8)-coated mesoporous polydopamine (MPDA)
core–shell nanoparticle-loaded Pifithrin-µ (PES). Reprinted with permission from [50] (copyright: The
Royal Society of Chemistry). (b) Schematic representation of biomineralized melanin nanoparticles
by SiO2 (CINP@SiO2). Reprinted with permission from [51] (copyright: Wiley-VCH GmbH, 2022).
(c) Schematics of mussel-inspired PDA-NP-chitosan/silk fibroin (PDA-NPs-CS/SF) cryogels.
Reprinted with permission from [52] (copyright: The Royal Society of Chemistry, 2019).

2.2. Photodynamic Antibacterial Therapy

Due to the overuse of antibiotics, the problem of bacterial resistance has become in-
creasingly serious in recent years, resulting in an increasing mortality rate from infectious
diseases. Therefore, there is an urgent need to seek new drugs and new means that can
effectively alleviate the problem of drug resistance. With the advancement of optical tech-
nology and the development of new photosensitizers, photodynamic therapy (PDT) has
recaptured the attention of researchers because of its advantage of not easily developing
drug resistance. It can effectively produce a great deal of reactive oxygen species (ROS),
improve the antibacterial effect, and provide a promising method for eliminating biofilm,
becoming one of the most promising treatments for drug-resistant bacterial infection [54,55].
It was reported more than a decade ago that melanin might have redox activity that could
sustain ROS generation by catalyzing electron transfer from the endogenous extracellular
domain to O2, thereby providing an additional active antimicrobial mechanism [56]. Being
melanin-like, PDA can both accept electrons from reducing agents and transfer them to oxi-
dizing agents. Liu et al. [39] used electrochemical reverse engineering to confirm that PDA
can both accept electrons from reducing agents and donate electrons to various oxidants.
They observed that if the electron donor is oxygen, PDA could generate ROS; if the donor
was a free radical, it could quench oxidative free radicals. The electron-donating ability
of PDA was determined by its redox state and greatly affected by external factors such as
metal ion binding and near-infrared irradiation. The ROS generated by PDA might disrupt
the bacterial cell wall and membrane, eventually resulting in bacterial death. On this basis,
Hao et al. [57] prepared a stable dopamine (DA)–metal organic frameworks (MOF) compos-
ite structure under visible light irradiation by one-step mixing of DA with MOF in a neutral
aqueous solution, and generated reactive oxygen, which provided excellent photodynamic
antibacterial ability against Gram-positive S. aureus and Gram-negative E. coli (Figure 2a).
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Subsequently, Su and colleagues [58] constructed PDA–curcumin (Cur) nanocomposites
based on the self-polymerization of oxidative dopamine hydrochloride and Cur under
alkaline conditions, exhibiting excellent antibacterial performance against Gram-positive
and Gram-negative bacteria. Furthermore, He and coworkers [59] constructed intelligent
Fe3O4-modified PDA hybrid nanozymes, which can continuously convert oxygen into
highly toxic hydroxyl radicals via a glutathione cascade redox reaction for chemodynamic-
therapy-mediated bacterial clearance and wound disinfection (Figure 2b).
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Synthesis of PDA/Fe3O4 hybrid nanozymes. Reprinted with permission from [59] (copyright: Wiley-
VCH, 2022).

2.3. N-Halamine Antibacterial Therapy

As a significant halogen-based antimicrobial agent, N-halamine has obtained increas-
ing attention for its chemical properties and practical applications. Compared with other
antimicrobial agents, N-halamine is superior in many ways, including effectiveness against
a broad spectrum of microorganisms, long-term physicochemical stability, and high struc-
tural durability [60–63]. Generally, N-halamine contains halogenated amides, imines, or
amine groups that can act directly on thiols or amino groups in protein biological receptors,
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eventually causing cell inactivation [64]. Because of the abundance of amino groups in
PDA, PDA can be an ideal precursor for the preparation of antibacterial N-halamine.

Based on this, Chien et al. [65] prepared a PDA and polyethyleneimine coating by
co-deposition, which could then be chlorinated. They observed better bactericidal effects
against S. aureus and E. coli as the chlorine content gradually increased (Figure 3a). Similarly,
Chiu and coworkers [40] also adopted this strategy, and the obtained N-halamine PDA
coating exhibited not only good stability and reproducibility, but also excellent antibacterial
activity. Further, Chouvy et al. [66] reported the formation of chloramine functional groups
on the coating surface by soaking PDA coatings in aqueous NaOCl solution for chlorination.
Compared to the unchlorinated PDA coating, the antibacterial effect of the chlorinated
PDA coating was improved significantly (Figure 3b). These studies indicate that PDA can
exhibit better antibacterial properties through halamine, providing a new possibility for
constructing high-efficiency antibacterial materials.
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strategy of formation and regeneration of an N-halamine coating based on polydopamine. Reprinted
with permission from [66] (copyright: American Chemical Society, 2020).

3. PDA Composite Synergistic Antibacterial Therapy

Owing to its rich chemical properties and excellent biocompatibility, as well as its
photothermal, antioxidant and adhesion capacities, PDA has seen widespread application
in antibacterial research on functional composite materials [37,67]. PDA, as a surface
modification material, can be combined with other antibacterial agents to produce a more
efficient antibacterial effect. Here, we have compiled studies on the surface modification
of metal ions, antibiotics and other antibacterial substances by PDA, which can be easily
linked by chemical modification or physical adsorption to achieve controlled release,
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detoxification and other effects. The advantages of PDA surface modification are not only
a strong interaction with the substrate as well as outstanding long-term stability in most
environments, but also mild reaction conditions and non-destructivity to substrates [68].
Metal ions can be chelated with the catechol group on PDA, and the silver/gold ions
chelated on the surface of PDA can be directly reduced to silver/gold nanoparticles because
of the strong redox activity of PDA [35]. Antibacterial drugs can be loaded onto the surface
of PDA through π-π stacking, electrostatic attraction and hydrogen bonding [69]. PDA has
gained increasing attention not only for the adhesion to almost all types of surfaces, but
also as it provides a simple and universal method for functionalizing material surfaces as
excellent antibacterial materials.

3.1. PDA/Metal Composite Synergistic Antibacterial Therapy

Currently, metals have been developed for antibacterial applications due to their
unique metallic properties. For example, Ag NPs have strong antibacterial properties due
to their extremely small size, which can effectively penetrate bacterial cell membranes [70].
In addition, Ag NPs have broad-spectrum antibacterial activity without causing drug
resistance, and are widely used in the development of antibacterial materials. However,
when modifying Ag NPs for antibacterial applications, it is a challenge to maintain the
antibacterial properties of nanoparticles, due to disadvantages such as easy aggregation.
To address this issue, researchers have found that the catechol groups in PDA can reduce
metal salts to metal NPs, and then the metal NPs can be fixed on a scaffold, preventing their
aggregation. PDA has strong hydrophilicity because of the abundant catechol and amine
groups, which makes it attract great attention as a general surface modifier [71,72]. When
immobilized with Ag NPs, the surface of the PDA-modified membrane exhibits superior
antibacterial performances. Besides, Ag NPs formed by the reduction of Ag ions with
catechol have a more durable antibacterial effect due to their insensitivity to oxygen [73].
On this basis, Chen et al. [74] fabricated PDA-Ag NPs to study antibacterial activity. They
found that the synergistic effects between the PDA coating and Ag NPs significantly
enhanced the efficacy of Ag NPs against E. coli. This was due to the interaction of PDA
with Ag that increased the production of ROS, causing significant damage to bacterial
membranes (Figure 4a). Similarly, PDA-assisted Au nanomaterials can be prepared based
on the large surface area, good biocompatibility and surface modification versatility of Au
NPs [75].

Cu2+ has also attracted widespread attention due to its low preparation cost, but its
toxicity at high concentrations limits further development [76]. The researchers found that
the release of Cu2+ can be controlled by combining with PDA to achieve mild and long-
lasting antibacterial ability. Based on this, Ao and coworkers [77] designed an antibacterial
material based on PDA- and Cu2+-loaded bacterial cellulose, and the antibacterial rate
of the composite material against S. aureus and E. coli was as high as 99.9% (Figure 4b).
In addition, PDA-assisted Cu2+ antibacterial materials can also be an option for wound
healing. Zhang’ group [78] prepared a nanocomposite material loaded with Cu2+ and
tetracycline in mesoporous PDA NPs, which prevented the uncontrolled release of Cu2+

and TC and achieved the efficacy of efficient sterilization and promotion of wound healing
(Figure 4c). PDA can also enhance antibacterial activity by combining with other metals.
Gedanken’s group [79] prepared a PDA composite by depositing Zn-doped CuO (Zn@CuO)
particles on PDA, which demonstrated excellent antibacterial ability. PDA can stabilize
metal ions through chelation to maintain original performance. Most importantly, the
addition of PDA not only does not increase the biotoxicity of the composites, but also
greatly enhances the antibacterial properties. Therefore, PDA provides a new route for the
construction of antibacterial composites.
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Figure 4. (a) Schematic illustration of the PDA deposition on PVP-AgNPs to form PDA-AgNPs.
Reprinted with permission from [74] (copyright: American Chemical Society, 2020). (b) Schematic
diagram of the preparation of Cu2+@PDA/BC composites. Reprinted with permission from [77]
(copyright: Elsevier, 2021). (c) Schematic diagram of polydopamine nanocomposites loaded with
Cu2+, phase change materials and tetracycline(PPMD@Cu/TC). Reprinted with permission from [78]
(copyright: American Chemical Society, 2022).

3.2. PDA/Polycation Composite Synergistic Antibacterial Therapy

With the development of antibacterial agents, a large number of new cationic antibac-
terial agents have been widely studied and reported. Cationic antibacterial polymers can
kill/inhibit the growth of microorganisms on surfaces or in the surrounding environment,
change the permeability of bacterial walls, and destroy bacterial structures [80]. Cationic
compounds such as quaternary ammonium, phosphonium salts, imidazolium, and pyri-
dinium are widely used for their biocidal effect against a broad spectrum of bacteria [81–83].
However, their short-term antibacterial effect and leaching of potentially environmentally
toxic antibacterial agents limit their further application. Since the abundant chemical
performances of PDA provide lots of reaction sites, these problems can be easily solved
by the connection of PDA with polycation through copolymerization, physical adsorp-
tion or chemical modification. The participation of PDA can also bring good cell/ tissue
adhesion properties.

Inspired by this, Lu et al. [84] prepared a contact-active antibacterial hydrogel by
copolymerizing methacrylamide dopamine (MADA) with 2-(dimethylamino)ethyl
methacrylate and quaternized chitosan to form an interpenetrating network. The re-
active catechol group of MADA endowed the hydrogel with contact-enhanced bactericidal
activity, as it increased the contact of bacterial cells with the positively charged groups
of the hydrogel, enhancing bactericidal ability (Figure 5a). This contact-active antimi-
crobial hydrogel was reported to be a prospective material for wound healing, with the
dual functions of facilitating tissue regeneration and avoiding bacterial infection. Besides,
Li et al. [85] constructed an injectable self-healing hydrogel with antibacterial and antifoul-
ing properties via the self-assembly of a triblock copolymer containing catechol and QAS.
For the physical adsorption of PDA coating, Zhu and coworkers [86] firstly combined the
photosensitizer eosin Y (EY) with QAS to fabricate a novel cationic polymer based on the
ring-opening reaction. The polymer was then coupled to the PDA-coated surface, resulting
in a multifunctional system with synergistic antibacterial and antifouling abilities under
light irradiation (Figure 5b). Moreover, the polycation can also be grafted onto the PDA
coating by chemical modification. For example, Xu and coworkers [68] firstly coated a
hydrophobic polypropylene (PP) porous membrane with a PDA layer, and then modified
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it through multiple hydrogen bonds between poly(N-vinyl pyrrolidone) (PVP) and PDA to
develop an antifouling and antibacterial polymer membrane (Figure 5c). Shen’s group [87]
combined bromoalkyl initiators with PDA-coated PET sheets and then used the ATRP
reaction to polymerize polycarboxybetaines and polysulfobetaines in situ (Figure 5d). The
amphoteric polymer formed on the surface of the PET sheet exhibited excellent blood com-
patibility and anti-biofouling properties. PDA/polycationic composite materials provide
an effective method for antibacterial and antifouling effects, and the addition of PDA not
only promotes the biocompatibility of antibacterial materials, but also brings excellent
cell/tissue adhesion properties.
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Figure 5. (a) Design strategy of cell-affinitive and contact-antibacterial AMD-QCS hydrogel.
Reprinted with permission from [84] (copyright: Wiley-VCH, 2018). (b) Schematic illustration
of the antibacterial coating formed by eosin Y (EY)-based antibacterial polycation via polydopamine.
Reprinted with permission from [86] (copyright: Wiley-VCH, 2018). (c) Scheme of coating poly-
dopamine (PDA) on a PP membrane as well as subsequent PVP and iodine complexation. Reprinted
with permission from [68] (copyright: American Chemical Society, 2013). (d) Schematic diagram
of surface-activated ATRP on PET sheet surface. Reprinted with permission from [87] (copyright:
Elsevier, 2016).

3.3. PDA/Gas Composite Synergistic Antibacterial Therapy

Gas therapy, such as with nitric oxide (NO), hydrogen (H2) or carbon monoxide
(CO), is a promising novel non-antibiotic approach and has been extensively investigated
because of its strong bactericidal ability and low drug-resistance risk [88–90]. Oxida-
tion/nitrification of NO can lead to lipid peroxidation, bacterial membrane rupture, DNA
cleavage and protein dysfunction, and has become one of the most widely explored broad-
spectrum antibacterial gases in antimicrobial applications [91,92]. PDA has prominent
biocompatibility and low biotoxicity, and can be modified on diverse implanted surfaces.
It can achieve combined antibacterial effects with NO, showing outstanding application
prospects in combating bacterial drug resistance. For example, Deng and coworkers [93]
reported a photothermal activity-based drug consisting of NO donor BNN6 grafting onto β-
cyclodextrin (β-CD)-functionalized GO and intercalating them into methacrylate-modified
gelatin (GelMA)/hyaluronic acid grafted dopamine (HA-DA) hydrogels. Under near-
infrared laser, GO-β-CD-BNN6 can produce hyperthermia via the photothermal effect
of GO, and the nanocarrier can release NO to exert photothermally derived synergistic
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antibacterial efficacy (Figure 6a). The synergistic effect of photothermal and gas ther-
apy is expected to enhance antimicrobial ability and reduce drug resistance. Similarly,
Xue et al. [94] firstly used PDA-coated iron oxide (Fe3O4@PDA) as a photoconversion agent,
and then grafted third-generation dendritic poly(amidoamine) (PAMAM-G3) onto the sur-
face of Fe3O4@PDA, followed by NO loading to form NONOate to obtain multifunctional
Fe3O4@PDA@PAMAM@NONOates nanocomposites. The composite can simultaneously
trigger hyperthermia and NO release under laser irradiation, thereby realizing synergistic
photothermal and NO antibacterial effects (Figure 6b). In addition, antibacterial inter-
faces with NO-releasing ability have also been reported. Boyer’s group [95] designed an
antibacterial film with low fouling and NO release capability, which was covered on a
glass substrate due to the multipurpose adhesion properties of PDA, followed by Michael
addition to graft poly(ethylene glycol) (Figure 6c). The coating released NO for more
than 48 h, effectively killing Gram-negative P. aeruginosa and Gram-positive S. aureus. In
PDA/NO composite materials, PDA can maintain a high NO load with on-demand gas
release, and achieve synergistic antibacterial effects with the photothermal effect, which
provides a new strategy for the preparation of bacteriostatic agents with more efficient
antibacterial activity.
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Figure 6. (a) Schematic illustration of functionalized GO nanovehicles with nitric oxide (NO) re-
lease and photothermal activity-based hydrogels (GelMA/HA-DA /GO-βCD-BNN6) [93] (copy-
right: American Chemical Society, 2020). (b) Schematic illustration of NO-releasing dendritic
Fe3O4@PDA@PAMAM@NONOate nanocomposites, synergistic photothermal and NO killing of
bacteria. Reprinted with permission from [94] (copyright: Wiley-VCH, 2018). (c) Preparation of PDA,
PDA-PEG, and PDA-PEG-NO coatings. Reprinted with permission from [95] (copyright: American
Chemical Society, 2019).
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3.4. PDA/Antibacterial Drug Composite Synergistic Antibacterial Therapy

At present, antibacterial drugs can be classified into two categories according to
antibacterial methods. One type consists of contact antibacterial drugs. Most of the
antibacterial drugs in contact are cations, which generate the rupture of bacterial cell
membranes and kill bacteria through electrostatic action, e.g., peptides [94,96]. Because of
the strong adhesive property and abundant active groups of PDA, PDA–drug conjugates
can be formed by chemical modification or physical adsorption to achieve better synergistic
antibacterial effects. For instance, Wu and coworkers [97] designed and fabricated a
hybrid ZnO/PDA/arginine-glycine-aspartic acid-cysteine (RGDC) nanorod array, and
RGDC peptide molecules could be covalently grafted onto PDA by Michael addition or
Schiff base reaction (Figure 7a1). The nanorod array not only effectively killed bacteria
based on contact antibacterial drugs, but also enhanced the ability to induce osteogenesis
(Figure 7a2). Similarly, Fu’s group [98] also adopted this strategy as they modified PDA
with an antimicrobial peptide, magainin I, which can interact with bacteria and cause
significant bacterial death under near-infrared irradiation. In addition, Lei et al. [99]
developed a multifunctional bioactive nanocomposite hydrogel with self-healing and
antibacterial capabilities based on a bioactive polypeptide (Figure 7b1). The multifunctional
hydrogel was prepared by incorporating PDA-functionalized bioactive glass nanoparticles
into F127-ε-poly-L-lysine hydrogel, which not only exhibited superior self-healing and
injectable properties, but also robust antibacterial ability, especially against multidrug-
resistant bacteria associated with skin tumors and wound healing (Figure 7b2).

Furthermore, releasing antibacterial drugs is another antibacterial method. The com-
monly used antibacterial drugs such as antibiotics have broad application [100,101], but
the abuse of antibiotics has generated the increase in bacterial resistance, and the biological
toxicity of some antibiotics cannot be ignored. Therefore, in order to make the use of an-
tibiotics more efficient and safer, researchers have linked antibiotics with other ingredients
for long-term, on-demand release of the drug. PDA can be used as an anchoring agent for
antibiotics, and antibiotics can be loaded on PDA by chemical modification or physical
adsorption to prepare antibacterial materials with long circulation. For example, Wu’s
group [102] prepared an injectable hydrogel by mixing ciprofloxacin-loaded PDA with
glycol chitosan. As seen from Figure 7c, under near-infrared (NIR) laser irradiation, the
hyperthermia generated by PDA had the dual effect of accelerating ciprofloxacin release
and causing bacterial thermal lysis. Moreover, Lee and coworkers [103] developed a novel
hybrid titanium (Ti) with excellent biocompatibility and antimicrobial effects by immo-
bilizing ceftazidime (CFT) onto Ti substrates coated by PDA/polyethyleneimine using a
chemical reaction. Because of the cleavage of the labile amide bond, CFT can be rapidly
released under acidic conditions to achieve antibacterial ability against both Gram-positive
and Gram-negative bacteria. Similarly, Ran et al. [104], Ma et al. [105], and Xu et al. [106]
modified PDA with different antibiotic compounds, and then released the antibiotic to
effectively inhibit or kill bacteria. PDA has played an important role in PDA/antibacterial
drug composites, by, e.g., prolonging circulation time, promoting on-demand drug release,
and increasing drug loading.

3.5. PDA/Carbon Composite Synergistic Antibacterial Therapy

Researchers have developed a new generation of antibacterial agents that rely on
carbon nanomaterials (CNMs), including zero-dimensional carbon dots, one-dimensional
carbon nanotubes (CNT), and two-dimensional graphene. Owing to their unique physico-
chemical properties and structural characteristics, CNMs have high antibacterial activity
and are considered as ideal antibacterial nanomaterials to replace antibiotics [107,108].
However, because of their inert surface and poor biocompatibility, their wide application
in the field of antibacterials is still limited, and PDA can modify the surface of carbon
materials by its strong adhesion ability and abundant active groups to construct carbon
composite antibacterial materials with better antibacterial ability.
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PDA/carbon composite materials are widely used in antibacterial research owing to their
outstanding biocompatibility and photothermal conversion efficiency. Gedanken et al. [109]
fabricated a PDA/nitrogen-doped carbon dots composite with antimicrobial property
against both Gram-negative and Gram-positive bacteria. Wu and coworkers [110] also
developed an antibacterial composite material based on PDA and carbon dots. They first
prepared an injectable hydrogel, and then PDA-encapsulated carbon quantum dot-modified
ZnO nanoparticles in the hydrogel, which exhibited efficient antibacterial effects because of
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the excellent photodynamic and photothermal properties provided by PDA and carbon
dots (Figure 8a). In addition, Guo’s group [111] fabricated a PDA/chitosan/CNT composite
hydrogel, and the PDA/CNT endowed the hydrogel with outstanding photothermal effect
and broad-spectrum photothermal antimicrobial activity, giving it excellent antibacterial
capacities against Gram-positive S. aureus and Gram-negative E. coli, as well as improved
dispersibility of CNT (Figure 8b).
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Furthermore, with the introduction of PDA, CNMs can be combined with antibacte-
rial drugs such as metal ions to obtain more efficient synergistic antibacterial ability. For
example, Tang et al. [113] constructed a composite material of Ag-deposited PDA coating
on graphene nanosheets, which demonstrated prominent antibacterial ability against both
Gram-negative and Gram-positive bacteria owing to the synergistic effect of graphene
and Ag nanoparticles. Kundu and coworkers [114] obtained a PDA/reduced graphene
oxide and Ag NP-doped a bacteria-cellulose composite membrane based on a green and
environmentally friendly preparation method, which was considered to be a potential
antibacterial material. Besides, Chen et al. [112] developed a multifunctional nanocoating
to assemble graphene oxide, PDA and oligopeptide onto the surface of porous sulfonated
polyetheretherketone (Figure 8c). The composite coating films not only significantly fa-
cilitated in vivo osseointegration and bone remodeling, but was also able to produce a
powerful antibacterial phototherapy effect.

4. Conclusions and Perspectives

In recent years, there has been considerable and increasing interest in the study of
antibacterial PDA, facilitating the investigate and development of PDA-based materials.
PDA has several advantages, including great biocompatibility, strong adhesion, excellent
photothermal effects as well as drug loading capacity, and negligible toxicity, providing new
ways to explore and create advanced antibacterial materials. In this review, we reported the
current advances and development prospects of PDA-based antibacterial materials. PDA as
a novel antibacterial agent has gradually appeared in the field of biomedicine. Since PDA
is rich in catechol, amine, imine and other active groups, it can be combined with many
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other antibacterial substances such as Ag NPs, QAS, NO, antibiotics and CNMs through
chemical coupling or physical adsorption to achieve better synergistic antibacterial ability.
The PDA composite antibacterial material not only has efficient antibacterial ability and
superior biocompatibility, but also realizes the controlled release of antibacterial substances,
which makes PDA one of the most promising materials in the field of antibacterial and
implantation interfaces.

Although significant advances in PDA-based antimicrobial materials have been made,
there are still some challenges to overcome. How to effectively utilize this material is the
main challenge so far. Despite the use of well-defined monomeric precursors, the structure
of PDA is still elusive, and the comprehension of the polymerization mechanism of PDA
remains controversial. A further investigation of the internal structure and polymerization
of PDA can have a direct impact on the optimization of PDA functional modification with a
view to achieving better antibacterial effects. Furthermore, when dealing with applications
of PDA in biomedical and related fields, some key issues should be considered, such
as the long-term stability and toxicity of PDA during its ability to remain in organisms.
As a crucial structural and functional component of antibacterial composites, PDA has
broad research prospects and great application values in the future. We hope this review
can provide ideas and insights for biomedical researchers interested in developing novel
antimicrobial materials and techniques, as well as for clinicians and healthcare providers
seeking alternative therapies for drug-resistant bacteria.
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