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Abstract
COVID-19 [coronavirus disease 2019] has resulted in over 204,644,849 confirmed cases and over 4,323,139 deaths through-
out the world as of 12 August 2021, a total of 4,428,168,759 vaccine doses have been administered. The lack of potentially 
effective drugs against the virus is making the situation worse and dangerous. Numerous forces are working on finding an 
effective treatment against the virus but it is believed that a de novo drug would take several months even if huge financial 
support is provided. The only solution left with is drug repurposing that would not only provide effective therapy with the 
already used clinical drugs, but also save time and cost of the de novo drug discovery. The initiation of the COVID-19 
infection starts with the attachment of spike glycoprotein of SARS-CoV-2 to the host receptor. Hence, the inhibition of the 
binding of the virus to the host membrane and the entry of the viral particle into the host cell are one of the main therapeu-
tic targets. This paper not only summarizes the structure and the mechanism of spike protein, but the main focus is on the 
potential covalent spike protein inhibitors.
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Introduction

Coronavirus disease 2019 [COVID-19], an infection caused 
by SARS-CoV-2 has proven to infect over 204,644,849 
confirmed cases and over 4,323,139 deaths throughout the 
world as of 12 August 2021, a total of 4,428,168,759 vaccine 
doses have been administered (Coronavirus research cen-
tre 2021). Fertility compromise and irreversible lung dam-
age are some of the long-term consequences of COVID-19 
patients that suffer from severe infection (Hosseiny et al. 
2019; Chen and Lou 2020). COVID-19 pandemic is not only 
responsible for the health crisis, but also for the on-going 
economic crisis throughout the world. The increasing dam-
aging effect of COVID-19 has involved the whole world in 
working intensively in finding an effective therapeutic agent 

and preventive measures to fight the SARS-CoV-2 infection 
(Cascella et al. 2020). Statistics of Milken Institute reports 
over 300 treatment options and over 200 vaccine candidates 
are under the developmental phase worldwide as of Decem-
ber 2020. Vaccine development and de Novo drug develop-
ment cannot be accomplished within months or years, even 
huge monetary support is provided (Kaitin 2010a). Because 
of this concern, a more promising alternative could be the 
search for already known drugs for the therapy of COVID-
19 to save the world from this pandemic (Fehr and Perlman 
2015).

Drug repurposing, also known as drug redirecting, 
repositioning, re-profiling, or rediscovering can be used 
for the development of innovative uses of a drug in addi-
tion to its original therapeutic use (Baker et al. 2018). 
Drug repurposing can result in a successful lowering of the 
money and time cost required in drug development (Baker 
et al. 2018). The outbreak of COVID-19 has resulted in the 
repurposing of several clinical drugs for its treatment, such 
as chloroquine, lopinavir, ritonavir, arbidol, ribavirin, etc. 
(Maxmen 2020). The therapeutic agents against SARS-
CoV-2 can be classified into two extensive categories. 
The first category is agent that acts on the human immune 
system and the second category acts on the SARS-CoV-2 
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virus itself. The latter can be further categorized into two: 
first being the inhibitors of viral RNA replication and syn-
thesis, and second, those inhibit the binding of the virus 
with the human cell receptor as evident from the structure 
of coronavirus shown in Fig. 1 (Wu et al. 2020a).

The viral entry into the cell is facilitated by the spike 
[S] protein of the SARS-CoV-2 virus. The viral entry 
results by binding of the spike protein to the receptors 
on the host cell and leading to the cell membrane fusion 
(Hoffmann et al. 2020a). Additionally, before the spike 
protein shows its action, it needs to be cleaved and acti-
vated by the host cell’s cellular proteases (Hoffmann et al. 
2020a). According to a recent study, two cellular proteases 
can result in the priming of the S protein of coronavirus 
that are transmembrane protease serine-type 2 [TMPRSS2] 
and endosomal cysteine proteases cathepsin B/L [CatB/L]. 
Meanwhile, the cleavage of carboxypeptidase angioten-
sin-converting enzyme 2 [ACE2], the host receptor of the 
spike protein, is a consequence of TMPRSS2 that finally 
results in the augmentation of the infection (Heurich et al. 
2014). Thus, the complete inhibition of the viral entry of 
the SARS-CoV-2 necessitates the concurrent blockage of 
CatB/L and TMPRSS2 (Hoffmann et al. 2020a).

The drug discovery was mainly focused on non-covalent 
drugs historically. It is believed that irreversible covalent 
drugs exhibit toxicity and off-target effects (Singh et al. 
2011). However, recently, people have realized that cova-
lent drugs have some additional advantages in comparison 
to non-covalent drugs, such as [i] enhanced biochemical 
efficiency as they have a more competitive nature than 
non-covalent endogenous co-factors and substrates (Mah 
et al. 2014); [ii] reduced and less frequent dosing result-
ing in reduced patient burden and drug resistance (Mah 
et al. 2014); [iii] target specificity can be improved by 
cautiously designing structure targeting particular residues 
(Cuesta et al. 2020; Fell et al. 2020).

In this review article, we have summarized the structure 
of the SARS-CoV-2 and the mechanism of infection as well 
as the treatment options that work as covalent spike protein 
inhibitors. This paper describes some potential covalent 
spike protein inhibitors.

Structure and mechanism of spike [S] 
protein

The binding of the SARS-CoV-2 to the host cell mem-
brane is mediated through spike [S] protein that is a trans-
membrane structural class I fusion protein. It exists in a 
perfusion metastable conformation (Walls et al. 2016; 
Kirchdoerfer et al. 2016, 2020). Lying on the outer mem-
brane of the SARS-CoV-2 virus, the spike glycoprotein is 
a 1273-amino-acid-long structural polypeptide comprising 
two subunits that interact with the angiotensin-converting 
enzyme 2 [ACE2] receptors and fuse the viral and host 

Fig. 1  Structure of Coronavirus 
(Representing the different parts 
of the coronavirus)

Fig. 2  Binding of S spike protein to the ACE2 receptor
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cell membranes as shown in Figs. 2 and 3. The spike can 
evade the surveillance of the host immune system while 
entry due to the polysaccharide molecular coating that 
camouflages it (Watanabe et al. 2020a). The homo-trimeric 
spike [S] glycoprotein is present in two distinct structural 
states: pre-fusion and post-fusion (Li 2016) and is highly 
conserved among all human coronaviruses.

In SARS-CoV, and MERS-CoV, the S protein is unsta-
ble in their metastable pre-fusion state (Pallesen et al. 
2017; Millet and Whittaker 2018). The two main func-
tional subunits of S protein of SARS-CoV-2, namely S1 
and S2, that contains the extracellular domain [ECD] and 
a transmembrane helix (Hoffmann et al. 2020a) that are 
non-covalently linked in a pre-fusion state (Walls et al. 
2020; Wan et al. 2020; Tortorici and Veesler 2019). The 
structure of the spike protein is shown in Fig. 4. These 
are further divided into three chief topological domains, 
the head, the cytoplasmic tail [CT], and the stalk. The 
head part of the SARS-CoV-2 S protein involves multi-
ple domains as obtained from numerous recently pub-
lished structural studies (Watanabe et al. 2020a; Walls 
et al. 2020). The S1 subunit aids in receptor binding. It 
consists of two domains: the N-terminal domain and the 
C-terminal receptor-binding domain [RBD] (Li 2020). The 
C-terminal domain consists of the receptor-binding motif 
[RBM] that is responsible for interaction with the ACE2 
receptor (Wang et al. 2020a). The S1 part comprising the 
N-terminal domain [NTD] and the 200-amino-acid-long 
RBD aids in the determination of host ranges and tissue 
tropism (Walls et al. 2020; Li 2015; Yan et al. 2020; Lu 
et al. 2015; Wrapp et al. 2020). The S2 subunit which 
promotes fusion of the viral membrane with the cellular 
host membrane (Hoffmann et al. 2018; Hulswit et al. 2016; 
Millet and Whittaker 2018), consists of the fusion peptide 
[FP], hepta-peptide repeat sequence 1 [HR1], HR2, trans-
membrane [TM], and cytoplasmic domain [CD] (Xia et al. 
2020). Cryo-electron microscopy or X-ray experiments do 
not resolve domains of the S2 subunit in a pre-fusion state, 
such as HR2 and TM domains, that forms the stalk and 
the CT.

Considerable conformational changes occur, as S1 
engages the 805-amino-acid-long human angiotensin-
converting enzyme 2 [hACE2] (Li 2015; Yan et al. 2020; 
Lu et al. 2015; Towler et al. 2004) receptor of the host cell 
through the exposed RBD of SARS-CoV-2 and the extra-
cellular domain of ACE2 for receptor binding. The func-
tion of NTD, on the other hand, is not well realized. NTD 
might have a crucial role in the transition of S protein from 
pre-fusion to the post-fusion stage and also recognition of 
certain sugar moieties on interaction in some coronaviruses 
(Lu et al. 2015; Krempl et al. 1997; Künkel and Herrler 
1993; Zhou et al. 2019).

hACE2 encompasses two functional domains, first the 
N-terminal peptidase M2 domain and the latter C-terminal 
collectrin domain. There are further two catalytic subdo-
mains along with an active site located between the two 
subdomains in the peptidase domain (Towler et al. 2004).

Similar to SARS-CoV, RBD of SARS-CoV-2 S protein 
also consists of two subdomains: core and extended loop. 
the co-crystal structures of SARS-CoV and SARS-CoV-2 

Fig. 3  Process of fusion of virus 
S protein and the host receptor

Fig. 4  Schematic structure of Spike protein (Spike protein made up of 
two units S1 and S2 while S2 unit made up 2 sub-units HR1 & HR2)
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S proteins attached with ACE2 demonstrated that the 
extended loop of RBD directly binds to loops flanked by 
2 and 3 helices and a hairpin loop between 3 and 4 sheers 
of ACE2 receptor (Yan et al. 2020; Li et al. 2005). In the 
infection of a cell, the S protein-membrane binding is acti-
vated by specific cellular enzymes like trypsin, furin, cath-
epsin (Jaimes and Whittaker 2018; Li et al. 2017; Millet 
and Whittaker 2015). Genomic analysis has displayed that 
the S protein of SARS-CoV-2 is distinct from other viruses 
(Li 2016; Du et al. 2017), showing that a site in S protein 
is activated by an HC enzyme called furin as shown in 
Fig. 5 (Millet and Whittaker 2015). On attachment of RBD 
and cell surface hACE2 receptor, shedding of S1 protein 
from S2 protein takes place alongside its cleavage at the 
novel furin S1/S2 site by host cell proteases, such as the 
transmembrane serine protease, TMPPRSS2 (Watanabe 
et al. 2020a; Hoffmann et al. 2020a) that mediates cell 
entry and thought to prime the spike for protein (Davidson 
et al. 2020; Belouzard et al. 2009). Another proteolytic 
cleavage at S2’ site leads to the release of the fusion pro-
tein [FP] that penetrates the host cell membrane and facili-
tates fusion (Apellániz et al. 2014). Thus, the enzymes 
responsible can also serve as potential targets for anti-viral 
action. External factors including protein digestion (Walls 
et al. 2019; Walls et al. 2017), receptor binding, and anti-
body binding (Walls et al. 2019) lead to the transitional 
change of S protein into a post-fusion state. This promotes 
the virus–host cell membrane fusion due to the exposure 
of a fusion peptide adjacent to the S2’ proteolysis site, as 
well as the RNA virus release and entry, with the S pro-
tein folding to a post-fusion conformation (Tortorici and 
Veesler 2019; Walls et al. 2017; Madu et al. 2009; Millet 
and Whittaker 2014). Thus, this makes RBD a potential 
target for neutralizing antibodies in the development of 
therapeutic interventions for COVID-19, due to its vital 
role in the initiation of entry of SARS-CoV-2 (Watanabe 
et al. 2020a, b). On entering the virus into the host cell, the 
viral genome is released, and the RNA genome translates 
polyproteins, forming non-structural proteins [nsps] from 
two open reading frames [ORFs] once it enters the host 
cell. Furthermore, it is also used as a template through 

RNA-dependent RNA polymerase activity for the process 
of replication and translation (Fig. 6).  

Proteolytic cleavage results in replication and transcrip-
tion process and assembly of replicase–transcriptase com-
plex. Once the viral RNA is replicated and structural pro-
teins are synthesized, assembled, and packaged in the host 
cell, the viral proteins are released (Li et al. 2005).

While SARS-CoV and SARS-CoV-2 show a high level 
of similarity (Chen et al. 2020) with S protein binding to 
the human angiotensin-converting enzyme 2 [ACE2] recep-
tor, the Middle East respiratory syndrome [MERS]-CoV 
spike protein interacts with dipeptidyl peptidase 4 [DPP4] 
(Li 2015; Yan et al. 2020) which exhibits its low homology 
toward that of SARS-CoV in the RBD domain. Further, on 
structural analysis, the residue sequence identity of SARS-
CoV and SARS-CoV-2 viruses showed 72% similarity.

The affinity of binding of spike protein to angiotensin-
converting enzyme 2 [ACE2] cognate receptor in SARS-
CoV-2 is 10–22-fold higher as compared to SARS-CoV 
(Wrapp et al. 2020; Lan et al. 2020; Shang et al. 2020). 
the reason attributed for the same is the presence of more 
contacts in the interface that covered a larger surface area 
(Brielle et al. 2020) and also the presence of three hotspots 
for the mutation in the S protein that results in a more com-
pact and specific conformation (Brielle et al. 2020; Ou et al. 
2020). According to molecular modeling studies, a distinct 
Phe residue plays a crucial role in the binding site owing 
to its interaction with the ACE2 receptor. Additionally, 
the furin protease cleavage site at S1/S1 also differentiates 
SARS-CoV-2 from SARS-CoV or other similar bat corona-
viruses (Hoffmann et al. 2020a, b; Matsuyama et al. 2020).

Potential covalent spike protein inhibitors

To save COVID-19 patients, it is important to identify poten-
tial and effective drugs that could target SARS-CoV-2. The 
de novo drug development would take over 15 years from 
target identification followed by drug validation, then hit 
discovery followed by lead optimization and further preclini-
cal and clinical trials (Kaitin 2010b). This is not possible 

Fig. 5  Proteolytic Activation Of 
Coronavirus By Furin
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in the time frame of coronavirus pandemic and hence the 
most appropriate approach for the same would be drug 
repurposing.

Remdesivir, an experimental drug developed to treat the 
Middle East respiratory syndrome coronavirus [MERS-
CoV], has been reported to be effective in treating sev-
eral COVID-19 cases but still lacks clinical data support 
but undergoing clinical study in Wuhan, China. Likewise, 
chloroquine, ritonavir/lopinavir, and many other drugs 
lack the support of clinical data but have been reported 
as a potential therapeutic against SARS-CoV-2 (Maxmen 
2020). Several drugs including Ritonavir [antiviral drug] 
Remdesivir [RdRp inhibitor], Camostat [TMPRSS2 inhibi-
tor], as well as Azithromycin [an antibiotic], and Chloro-
quine/Hydroxychloroquine [antimalarials] are currently 
undergoing clinical trials for the determination of their 
action against SARS-CoV-2. Additionally, many pieces of 

research are published so far that report numerous promis-
ing and potential compounds against COVID-19 (Zhang 
and Wu 2020; Ekins et al. 2020; Ge et al. 2020).

A recent study was conducted by QizhangLi and col-
leagues using SCARdock to computationally screen poten-
tial candidates inhibiting CatB, CatL, and TMPRSS2 cova-
lently. The study identified five potential inhibitors of CatB 
that are neratinib, [Z]-dacomitinib, trapoxin B, HKI-357, 
and domatinostat and four TMPRSS2 potential inhibitors 
including [S]-boceprevir, [R]-boceprevir, aceneuramic 
acid, and lodoxamide. Moreover, trapoxin B (Kijima et al. 
1993), HKI-357 (Tsou et al. 2005), neratinib (Tsou et al. 
2005), [Z]-dacomitinib (Garuti et al. 2011) and boceprevir 
(Nazario de Moraes et al. 2019) have already proven to 
be covalent inhibitors (Li and Wang 2020). Some other 
potential spike protein inhibitors (Table 1) are given in 
details as follows:

Fig. 6  (132): a Current classes of potential SARS-CoV-2 inhibitors; b potential neutralizing antibodies and their mechanism; c Fusion inhibitors 
and their mechanism; d Host protease inhibitors and mechanism
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Ribavirin

Ribavirin is a guanosine analog compound that obstructs the 
replication of both RNA and DNA viruses by inhibiting the 
RNA-dependent RNA polymerase. Additionally, ribavirin 
also acts by hindering with RNA capping that depends on 
natural guanosine to thwart RNA degradation. It destabilizes 
the viral RNA by inhibiting natural guanosine generation via 
directly restraining inosine monophosphate dehydrogenase, 

which is essential for producing guanine precursor to 
guanosine (Graci and Cameron 2006). Due to the limited 
proven capacity as an effective therapeutic agent during 
MERS-CoV and SARS-CoV outbreaks, clinical testing for 
ribavirin on SARS-CoV-2 is lacking and limited (Khalili 
et al. 2020). According to previous studies investigating 
the handling of MERS-CoV and SARS-CoV infection, the 
most familiar complication in the treatment with ribavirin 
is anemia (Knowles et al. 2003; Yousefi et al. 2020; Omrani 

Fig. 6  (continued)
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Table 1  Some potential spike protein inhibitors and their structures

Sr. No Drug Structures Mechanism of action

1 Trapoxin B

OHN

O

HN

O N

O

NH

O

O  

Inhibit histone deacetylases (HDACs) by alkylating the enzyme

2 Neratinib NO

HN

O
N HN

N
Cl

O

N  

Irreversibly binds to the intercellular signaling domain of HER1, HER2, HER3, 
and epithelial growth factor receptor, and inhibits phosphorylation and several 
HER downstream signaling pathways

3 Domatinostat H2N

N
H

O

NS

O

ON

N

 

Inhibits the enzymes histone deacetylase (HDAC) 1, 2, and 3

4 [Z]-Dacomitinib

F

Cl

NH

N

N

O

HN

O

N

 

Irreversible inhibitor of human epidermal growth factor receptor (EGFR) family 
(EGFR/HER1, HER2, and HER4) tyrosine kinases activity

5 Lodoxamide

OH

O

O

N
H

N

N
H

O

HO

O Cl  

Mast cell stabilizer, inhibits the release of intracellular histamine

6 Aceneuramic acid

OH

O

HO

OH

OHN
H

HO

O

HO

O

 

Unknown

7 Boceprevir

H

N

O
NH

O

NH2

O

H

O

H
N

O

H
N

Boceprevir  

Viral protease inhibitors

8 Remdesivir
O

O

H
N

P

O

O

O

O

HO

HO

N

N

N

N

H2N

 

Inhibits the RNA-dependent RNA polymerase (RdRp)

9 Afatinib

N

O

N
H

O

O

N

N

HN Cl

F  

Inhibits human epidermal growth factor receptor 2 (Her2) and epidermal growth 
factor receptor (EGFR) kinases
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et al. 2014). Reduced in vitro potency in comparison to its 
comparative therapeutic agents was suggested by research-
ers (Wang et al. 2020b). Moreover, dose-dependent adverse 
reactions like the toxicity of liver and blood were found in 
clinical studies of ribavirin therapy for SARS-CoV (Sand-
ers et al. 2019). However, in a randomized and open-labeled 
phase 2 clinical trial study, it was proven that triple antiviral 
treatment with interferon beta-1b that is lopinavir, ritonavir, 
and ribavirin was more effective and as compared to rito-
navir–lopinavir alone in relieving symptoms, curbing the 
duration of virus shedding, and a hospital stay of COVID-19 
patients with moderate to mild symptoms (Hung et al. 2020; 
Huang 2020).

While several in vitro studies have indicated the effec-
tive activity against SARS-CoV, many studies concluded 
that ribavirin did not prove to hinder the virus in vivo and 
also did not boost SARS-CoV-infected patient’s recovery 
(Barnard et al. 2006; Lee et al. 2004). These inconclusive 
researches demonstrate the inefficiency of ribavirin as a ben-
eficial agent against COVID-19.

Although, in the case of combination therapy, ribavirin 
may provide enhanced clinical efficiency (Sanders et al. 

2019; Yousefi et al. 2020; Zhong et al. 2020). The adminis-
tration of ribavirin for SARS-CoV-2 infection necessitates 
further research on the same.

Umfenovir

Umfenovir, also known as Arbidol is an indole derivative 
approved for both the prophylaxis and therapy of influenza 
A and B in China and Russia (Sanders et al. 2019; Wu et al. 
2020b). It acts by suppressing the influenza virus spread 
and controlling the expression of inflammatory cytokines 
both in vitro and in vivo (Wang et al. 2017). Moreover, it 
has exhibited potent broad-spectrum antiviral action against 
both enveloped and non-enveloped viruses, such as Ebola 
virus, hepatitis C virus, hepatitis B virus, Lassa virus, 
human herpesvirus 8, and poliovirus (Blaising et al. 2014; 
Boriskin et al. 2008; Herod et al. 2019; Pecheur et al. 2016). 
It shows its action by interfering with numerous stages of the 
virus life cycle by targeting virus-associated host factors or 
viral proteins (Blaising et al. 2014). In the influenza virus, 
Arbidol binds to hemagglutinin [HA], the chief cell sur-
face glycoprotein, and prevents the viral membrane binding 

Table 1  (continued)

Sr. No Drug Structures Mechanism of action

10 Arbidol
N

O
O

S

N

HO

Br

 

Block trimerization of the spike glycoprotein in corona viruses

11 Curcumin

OO

HO

O

OH

O

 

inhibit Endosomal acidification and processing of the viral proteins

12 Chemostat mesylate

OO

HO

O

OH

O

 

Serine protease TMPRSS2 inhibitor

13 Emodin OH

O

HO

OH O

 

Tyrosin kinase p65lck inhibitor

14 Nafamostat NH2

NH

H
N

O

O

H2N

NH  

Inhibit serine protese

15 N-[2-Aminoethyl]-1 
Aziridine-ethan-
amine

N
N
H

H2N

 

Bind with ACE2 which may lead to a conformational change in ACE2 receptor, 
that shift residues which bind SARS-CoV S-glycoprotein and hence prevent 
viral attachment and entry

16 Imatinib
N

N

O

N
H

N
H

N

N N

 

Inhibit bcr-abl tyrosine kinase
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(Kadam and Wilson 2017). Arbidol competently inhibits 
SARS-CoV-2 infection and has been recognized as a poten-
tial therapy for novel SARS-CoV-2 infection.

Both the entry of the virus and the post-entry stages are 
blocked by Arbidol as it hinders the binding of the virus 
to host cells and intracellular vesicle trafficking (Wang 
et al. 2020c). Thus, it prevents the fusion of the membrane 
of the viral by targeting the engagement between viral S 
proteins and ACE2 receptors. A retrospective study of Feb-
ruary 2020, China, depicted an undetectable viral load in 
16 patients administered with umifenovir [200 mg TID], in 
comparison to a 44.1% viral load detection in patients treated 
with lopinavir–ritonavir monotherapy [400 mg/100 mg BID] 
(Zhu et al. 2020). Similarly, another retrospective cohort 
study including 16 COVID-19 patients, who were admin-
istered with umifenovir and lopinavir–ritonavir or lopina-
vir–ritonavir monotherapy showed undetectable SARS-CoV 
using RT-PCR after 14 days of administration in 94% of 
patients. While only 53% of the control group showed unde-
tectable SARS-CoV. Additionally, the umifenovir experi-
mental group displayed chest improvement, as assessed 
by CT scans [69% compared to 29% in lopinavir–ritonavir 
monotherapy]. Therefore, it can be implied that umifenovir 
may be more effectual than lopinavir–ritonavir in treating 
COVID-19 (Deng et al. 2020).

Dacomitinib

Dacomitinib is a second-generation tyrosine kinase inhibi-
tor [TKI] that results in inhibition of the activity of tyrosine 
kinase inside the cells. It shuts the downstream signaling 
pathways. Originally, it was used in oncology trials and the 
treatment of malignancies, and initial studies on TKIs were 
conducted to observe their potential in targeting the epider-
mal growth factor [EGFR] family (Ciardiello and Tortora 
2008; Sim et al. 2018).

It was suggested that increased fibrotic responses due to 
the damage to the lungs in SARS infection are prevented by 
the blockade of EGFR signaling (Venkataraman and Frie-
man 2017). Dacomitinib, as a potent EGFR TKI irreversibly 
binds to the receptors and exhibits a strong cellular potency 
against EGFR oncogenic variants (Deeks and Keating 2018). 
In silico screening of dacomitinib in addition to neratinib 
and domatinostat as a cathepsin-binding drug that targets 
viral and host, proteins have also been reported (Li et al. 
2020).

Nafamostat

Nafamostat is a broad-spectrum serine protease inhibitor 
possessing significant anti-coagulant and anti-inflammatory 
effects that help in inhibiting coagulation factor X, coagula-
tion factor XII, prothrombin, Kallikrein-1, Trypsin 1, and 

ICAM-1 (Kim et al. 2016). Approved in South Korea and 
Japan to treat disseminated intravascular coagulation [DIC], 
pancreatitis and for hemodialysis procedures, nafamostat is 
a promising agent for the treatment of COVID-19 (Choi 
and Kang 2015; Kimura et al. 2020). It blocks the entry of 
SARS-CoV-2 inside the host cell by preventing the fusion 
of the virus envelope with the human cell (Hoffmann et al. 
2020c; Yamamoto and Kiso 2020). Similar to camostat, the 
action is brought by interacting with Asp435, Ser441, and 
His 296 residues of the TMPRSS2 gene and its inhibition 
(Sonawane et al. 2020a). In Calu-3 lung cells, it reduces 
the rate of implantation of MERS-CoV and SARS-CoV-2 
(Hoffmann et al. 2020a, c; Yamamoto and Kiso 2020; Yama-
moto et al. 2016). Moreover, recent evidence exhibits that 
COVID-19 can be problematic with coagulopathy, particu-
larly DIC (Kollias et al. 2020). Thus, its anti-coagulant and 
anti-viral properties may help in the management of COVID-
19 patients with coagulopathy (Asakura 2020). A case report 
demonstrated that the combination therapy with nafamostat 
and heparin is more efficient than heparin monotherapy in 
stopping circuit thrombosis during venous–venous extra-
corporeal membrane oxygenation [VV-ECMO] (Doi et al. 
2020a).

Also, in combination with favipiravir, nafamostat 
mesylate may be efficient for severely ill COVID-19 patients 
as it may allow blockade of virus entry and replication along 
with the inhibition of pathogenic host reaction, including 
hyper-coagulopathy (Doi et al. 2020b).

Afatinib

Host-targeting antivirals that use deep neural networks 
[DNN] were made and tested against the coronaviruses. One 
of the numerous drugs recognized for anti-SARS-CoV-2 
activity using deep neural networks is afatinib (Avchaciov 
et al. 2020). Afatinib is a small molecule tyrosine kinase 
inhibitor [TKI] targeting the epidermal growth factor recep-
tor [EGFR].

EGFR, involved in initiating the critical downstream sign-
aling pathways, promotes cell propagation and angiogen-
esis and reduces metastasis and apoptosis (Scagliotti et al. 
2004). Clinical findings suggest that non-small lung cancer 
patients displayed an elevated risk of interstitial lung disease 
[ILD], a prognostic indication of pulmonary fibrosis, while 
on treatment with EGFR-TKIs (Kato and Nishio 2006). A 
SARS-CoV-2 viral infection will notably worsen the lung 
damage and likely lead to severe pneumonia of a patient 
who is already showing adverse signs of ILD after taking 
EGFR-TKIs treatment. Thus, it is imperative to straighta-
way discontinue TKIs drug therapy and start active anti-viral 
treatment in such patients (Cai et al. 2020). Additionally, 
clinical studies show afatinib to be able to be safely adminis-
tered along with a multitude of anti-viral agents (Dunn et al. 
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2018; Wind et al. 2014). Afatinib was examined with ribavi-
rin and standard chemotherapy (Dunn et al. 2018) in a phase 
I clinical study using human papillomavirus [HPV] head and 
neck squamous carcinoma cell and the anti-inflammatory 
and anti-fibrotic activity was determined (Hardie et al. 2008; 
Beyer et al. 2010; Chen et al. 2019).

It is suggested that afatinib can be explored as a potential 
drug in combination with various anti-virals for the manage-
ment of COVID-19.

N‑[2‑aminoethyl]‑1 aziridine‑ethanamine [NAAE]

Molecular docking studies and structure-based in silico 
analysis have identified N-[2-aminoethyl]-1 aziridine–ethan-
amine as a potent ACE2 inhibitor of SARS-CoV S protein-
mediated cell fusion (Huentelman et al. 2004). These spe-
cific peptide inhibitors can be used to target the host receptor 
and prevent viral entry.

Thus, inhibitors that interfere with the interaction of RBD 
with ACE2, such as NAAE, a small molecule inhibitor can 
prove to be of therapeutic importance. However, tests have 
not been conducted using these inhibitors on COVID-19 
patients.

Camostat

Similar to nafamostat, camostat mesylate is another serine 
protease inhibitor used for the treatment of pancreatitis and 
reflux disease in Japan that hampers the infection caused by 
the SARS-CoV-2 virus in the lungs (Hoffmann et al. 2020a). 
Plasmin, Thrombin, and Kallikrein are blocked as Camo-
stat restricts Trypsin (Ramsey et al. 2019). Also, the rate 
of infection of Calu-3 lung cells by the virus is decreased.

It interferes with the TMPRSS2 gene activity whose 
main function is the priming of S protein of SARS-CoV-2 
and promoting the entry of the virus via the ACE2 recep-
tor. Thus, chemostat mesylate can be examined as a capable 
anti-TMPRSS2 agent (Hoffmann et al. 2020a). Few tolerable 
adverse effects related to camostat including pruritus, light-
headedness, and increase in thirst and appetite have been 
reported (Ramsey et al. 2019). Additionally, several studies 
showed that camostat mesylate is rapidly converted into its 
active metabolite, 4-[4 guanidinobenzoyloxy] phenylacetic 
acid [GBPA] in humans and animals. GBPA further gets 
metabolized into the inactive metabolite 4-guanidinobenzoic 
acid [GBA]. The capability of GBPA to confine the enzy-
matic activity of TMPRSS2, however, has not been studied 
(Beckh et al. 1987, 1991; Midgley et al. 1994; Ohki et al. 
1980). It was demonstrated that camostat mesylate more 

strongly inhibits TMRSS2 in comparison to nafamostat and 
bromhexine hydrochloride (Sonawane et al. 2020b).

Emodin

Emodin belongs to the genus Rheum and Polygonum and 
is an anthraquinone phytochemical that potentially pre-
vents the interaction between ACE2 host receptor and 
SARS-CoV. It is revealed that emodin lowers the chances 
of coronavirus infection as it inhibits the spike protein of 
the virus (Ho et al. 2007). Additionally, Schwarz et al. 
and colleagues in a recent study found that emodin blocks 
the 3a ion channel of both SARS coronavirus and human 
coronavirus OC43 and thus offers a basis for the observed 
reduction in the release of the virus (Schwarz et al. 2011). 
On the other hand, according to a recent study conducted 
by Kern DM et al. and colleagues, they found that puri-
fied 3a channel activity was not affected by emodin, and 
no emodin electron density was detected in their single-
particle cryo-EM trial of 3a proteins in the presence of 
the compound (Kern et al. 2020). Besides its anti-viral, 
anti-inflammatory, anti-cancer, and anti-bacterial proper-
ties, emodin involves toxic effects including hepatotoxic-
ity, nephrotoxicity, genotoxicity, and reproductive toxicity 
(Dong et al. 2016; Dewanjee et al. 2020). Consequently, 
emodin can be a capable therapeutic candidate for drugs 
targeting SARS-CoV-2 (Zhou et al. 2020). However, the 
limited information and lack of research impede proper 
studies on emodin as potential drug therapy.

Conclusion

SARS-CoV-2 virus has not only brought health crisis, but 
also proved to be an unprecedented threat to the economy 
worldwide. The lack of effective therapy and preventive 
measures is the main alarming sign so far. The de novo 
synthesis and discovery of the drug would take several 
years; hence, the most effective way to tackle the situation 
is repurposing a drug that would not only reduce the time 
of drug discovery, but also the cost.

One of the main targets of therapeutics against COVID-
19 is the inhibition of spike protein as it aids in both the 
recognition and binding of the virus to the host cell. Some 
of the therapeutic agents that have the potential against 
the spike protein are Ritonavir [antiviral drug] Remde-
sivir [RdRp inhibitor], Camostat [TMPRSS2 inhibitor], 
as well as Azithromycin [an antibiotic], and Chloroquine/
Hydroxychloroquine [antimalarials]. Though, the exact 
potential needs to be proved and necessitates further clini-
cal studies.
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