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ABSTRACT
The chimeric antigen receptor (CAR) is a genetically engineered receptor that combines a scFv domain, which
specifically recognizes the tumor-specific antigen, with T cell activation domains. CAR-T cell therapies have
demonstrated tremendous efficacy against hematologic malignancies in many clinical trials. Recent studies have
extended these efforts to the treatment of solid tumors. However, the outcomes of CAR-T cell therapy for solid
tumors are not as remarkable as the outcomes have been for hematologic malignancies. A series of hurdles has
arisenwith respect to CAR-T cell-based immunotherapy, which needs to be overcome to target solid tumors. The
major challenge for CAR-T cell therapy in solid tumors is the selection of the appropriate specific antigen to
demarcate the tumor from normal tissue. In this review, we discuss the application of CAR-T cells to
gastrointestinal and hepatic carcinomas in preclinical and clinical research. Furthermore, we analyze the
usefulness of several specificmarkers in the study of gastrointestinal tumors and hepatic carcinoma.
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Introduction

T cells may act as specific antitumor effector cells whose roles
tend to be limited by the major histocompatibility complex
(MHC) in the human body. CAR-T cells are genetically engi-
neered by the introduction of desired chimeric antigen recep-
tors (CARs) through viral or non-viral methods. CARs are
fusion proteins that incorporate three primary domains: the
single chain fragment variable (scFv) domain; the hinge and
transmembrane domain; and the intracellular domain. The
scFv, which is constructed via the connection of the antibody
heavy (VH) and light (VL) chain amino acid sequences with a
short peptide linker, is attached to the hinge region, where it
acts as an extracellular antigen-binding domain.1 The hinge
and transmembrane domain is the bridge between the scFv and
the intracellular domain that plays critical roles in anchoring
the entire CAR structure firmly to the T cell membrane and in
transferring the activation signal from scFv into T cells.2 The
intracellular domain is mainly evolved in the CD3z immuno-
receptor tyrosine-based activation motif (ITAM) domain,
which is responsible for T cell activation. Through the scFv,
which is derived from high-affinity antibodies, CARs can spe-
cifically engage a target and trigger downstream signals; these
signals then confer enhanced T-cell effector function against
tumor cells in an MHC-independent manner.3,4

To date, the CAR structure has been evolving over four gen-
erations, and the major distinctions among these lie in the

presence of different co-stimulatory molecules5 (Fig. 1). The
first-generation CAR consisted of the scFv and only one intra-
cellular signaling domain, typically the CD3z chain. However,
it was later found that the signaling domain could lead only to
the short-term proliferation of T cells and low levels of cytotox-
icity, and thus, this CAR failed to display persistent polyclonal
amplification and in vivo antitumor effects. In terms of the
structure of the second-generation CAR, apart from the CD3z
chain, one co-stimulatory molecule (e.g., CD28 or 4-1BB) was
added to the intracellular signaling domain. Once the tumor-
associated antigen is recognized by scFv, both CD3z and CD28
(or 4-1BB) are activated. Compared with the first-generation
CAR, a great improvement was gained in second-generation
CAR-T cells in terms of proliferation and in its ability to stably
recognize and destroy target cells.6 Further, two different co-
stimulatory molecules accompanied by a CD3z chain were
assembled in the third-generation CAR. A series of preclinical
experiments showed that the third-generation CAR had dis-
tinct advantages over the first- and second-generation CARs in
the amplification of T cells, survival time in vivo and the ability
to secrete cytokines. Nevertheless, it is essential to mention that
one colon cancer patient with liver and lung metastases died 5
d after treatment with third-generation CAR-T cells. This case
was reported by Morgan et al.7 and shows that risks still exist
in clinical trials in the context of the third-generation CAR-T
technique. The newly generated fourth-generation CAR
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(termed TRUCK T cell) was engineered to express cytokines,
particularly IL-12, which regulate the antitumor immunologic
microenvironment. Furthermore, IL-15 and GM-CSF also con-
tribute to this strategy.

Methods of CAR-T Cell production

Currently, T cells can be transduced with viral or non-viral vec-
tors that carry the CAR construct.8 Viral vectors have high gene
transfer efficiency, and it takes a relatively short time to amplify
the T cells so that the minimum number for a therapeutic dose
is obtained. Moreover, the characteristic expression varies
among different viral vectors, which allows for multiple choices
for basic research and clinical trials.9 Among viral vectors, ret-
roviral or lentiviral vectors are the most commonly used, but
some health risks still exist, such as the potential for an immune
response, toxicity, insertional mutagenesis, or some other
inducer of tumorigenicity.10,11 Because non-viral vectors pos-
sess the advantages of being non-infectious, providing easy
access to large-scale preparation, and having relatively unlim-
ited vector capacity and controllable chemical structure, they
have received greater attention from researchers. Transposon-
based systems comprise the major class of non-viral vectors

and include the Sleeping Beauty,12 PiggyBac,13 and the Tol2
transposon systems.14 Recently, RNA-based electroporation of
lymphocytes, which is safer and more economical, has become
a focus, but this method is less efficient than the lentiviral
method. Therefore, after an evaluation of the characteristics of
these different methods, we can choose the appropriate tech-
nique for CAR-modified T cell production (Fig. 1).

How to manufacture CAR-T cells in clinical practice

With increasing varieties of CAR-T therapies that are applied
in various malignancies, the efficient manufacturing of CAR-T
cells has become a critical step in clinical practice. The major
process in the manufacturing of CAR-T cells involves the fol-
lowing five steps: autologous T cell collection; T cell activation;
genetic modification of T cells; CAR-T cell expansion; CAR-T
cell formulation; and cryopreservation. Following these five
steps, the CAR-T cells produced are infused into a patient for
clinical treatment. Moreover, the collection of a sufficient num-
ber of T cells for treatment and proper storage of T-cell subsets
also involves procedures that require special awareness and dif-
ferent recommended practices. CD3-positive T cells comprise
one of the most commonly used subsets,15-18 and CD3 and

Figure 1. The generations of CARs and armored CAR-T cells for improved antitumor therapy. (A) First-generation CARs, including activating receptors, such as CD3z;
second-generation CARs combine activating and costimulatory signals, such as CD28; third-generation CARs combined two costimulatory and activating signals, such as
4-1BB, etc.; fourth-generation CAR-T cells, also called “TRUCK” cells, are engineered with additional inducible cytokines, which can secrete cytokines upon the activation
of CARs. (B) Modified CAR-T cells recognize tumor cells by their tumor-associated antigen in a non-MHC restrictive manner. CAR signaling activates T cells, and the T cells
then secrete cytokines, which kill tumor cells and induce them to attack other tumor cells. (C) The fourth-generation CAR-T cells have the additional advantage of activat-
ing the innate immune system, which recruits innate immune cells (macrophages or DCs) to attack tumor cells and regulate the tumor microenvironment.
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CD28 signals are essential for T cell activation. After genetic
modification, the CAR-T cells could reach a therapeutic dose
that is sufficient for infusion back to the patient for individual-
ized treatment.

Side effects of CAR-T cell therapy

The most common side-effects in the clinical application of
CAR-T cells are off-target effects, which are also known as on-
target off-tumor toxicities; these effects result in an autoim-
mune response against normal tissues that express the targeted
antigen. This challenge is primarily observed in solid tumor
therapies.

In an earlier clinical trial, liver toxicity was observed in
patients with infusions of autologous T cells that were trans-
duced with a CAR-targeting carboxy-anhydrase-IX (CAIX).19

This toxicity was attributed to the immune recognition of
CAIX, which is also expressed in normal bile duct epithelium.
However, later studies demonstrated that on-target toxicity
could be prevented after the infusion of first-generation CARs
with CAIX mAb pre-treatment at the lowest T cell effective
dosage.20,21 Moreover, fatal toxicity was reported to be associ-
ated with on-target off-tumor recognition of ERBB2/HER2.7

The anti-HER2 CAR-T cells can target lung and heart tissues
where low levels of ERBB2/HER2 are expressed, but this event
is followed by a cytokine storm and pulmonary toxicity.

In addition, neurological toxicity was reported in trials
where serum cytokine levels were increased.22 Neurological
toxicity is associated with the headaches, confusion, hallucina-
tions, dysphasia, apraxia, dysmetria, and seizures. After the
administration of a high dose of IL-2, a global encephalopathy
may be induced in patients with solid tumor malignancies23;
however, the detailed mechanism of neurological toxicity
remains poorly understood.

Another major factor that threatens the clinical safety of
CAR-T therapy is cytokine release syndrome (CRS), which can
be triggered by the infusion of a large number of highly active
CAR-T cells into the body. CRS is a potentially fatal complica-
tion that involves the release of increasing numbers of pro-
inflammatory cytokines from immune cells into the circulation,
including IL-6, IFNg, and TNF-a. This release leads to clinical
manifestations such as high fever, hypotension, and organ fail-
ure.24-27 The severity of CRS correlates with tumor burden and
with the infusion number of CAR-T cells.28,29

Interestingly, however, CRS occurs frequently in patients in
trials for hematological malignancies, but is relatively rare in
patients with solid tumors, which is likely due to the hurdles
that CAR-T cells face in the treatment of solid tumors.25,27,30 It
is noted that CRS and neurological toxicity are commonly
observed in the same groups of patients, which has led to
increasing speculation that these two conditions might partially
overlap.31

Tumor lysis syndrome (TLS), which usually results from
massive and abrupt release of bioactive molecules following the
rapid lysis of malignant cells, is another potentially fatal com-
plication of CAR-T cell therapy.32 The delivery of these mole-
cules from the intracellular to the extracellular space could
change the microenvironment and therefore disrupt normal
physiological processes.

Furthermore, the integration of vectors including retroviral
and lentiviral vectors that are used to insert the CAR gene into
the T cells might be a potential safety risk that could cause
insertional mutagenesis, as shown in gene therapy studies of
primary immunodeficiency.33

How to improve the safety of CAR-T therapy

To achieve the maximum therapeutic effects with minimum
side effects, the manufacturing of CAR-T cells needs to be
improved. The crucial point of CAR-T cell therapy is the effec-
tive distinction of both normal and tumor cells. Currently,
however, a few CARs are sufficiently tumor-specific. Therefore,
it is essential to choose appropriate target antigens and improve
tumor selectivity to avoid off-target effects. The specificity of
only one individual tumor antigen is limited, and, thus, dual
CAR targeting technology provides an alternative optimization
method based on T cells that are modified with two separate
CARs: a CD3z signal coupled with a co-stimulatory signal.34

Dual CAR-T cells can be activated only by tumor cells that
express both CAR antigens.35-37 When dual CAR-T cells
encounter normal cells, their antigen activation signals are
weak, and they are unable to trigger co-stimulatory signals.
This process results in a lack of T cell activation signals and
thus their inability to damage normal cells.38

Furthermore, the modulation of the affinity of CAR-T cells
is a promising strategy to improve the outcome of CAR-T ther-
apy. A series of studies have demonstrated that CARs with low-
affinity scFv recognition could increase the specificity of CAR-
T cells for a target that is overexpressed in tumors compared
with the same target that is expressed at its physiological level
in normal tissue.39,40

Another strategy is antigen-specific inhibitory CAR (iCAR)
technology.41 The core idea of iCAR is the installation of a
“brake” into the highly active CAR-T cells; this brake exerts
inhibitory activities against T cells via the PD-1 or CTLA-4
intracellular regions.42 The iCAR can restrain the T cell activa-
tion signals from the CAR, which results in the deactivation of
these genetically modified T cells and their subsequent failure
to attack normal cells; thus, avoiding on-target off-tumor
effects,43 it can also avoid the CRS effects in certain conditions.

In addition, a popular method to relieve side effects involves
the introduction of a “suicide gene” in transduced cells. The
gene products exhibit cytotoxicity with or without exposure to
any drugs. Antigen receptor expression is also inhibited, which
leads to the selective clearance of engineered cells, and finally,
the potential toxicity of CAR-T cells is avoided. Currently, the
most commonly used suicide genes include the herpes simplex
virus thymidine kinase (HSV-TK) gene44 and the inducible cas-
pase 9 (iCasp9) gene.45,46 However, the use of a suicide gene is a
“double-edged sword”. HSV-TK is potentially immunogenic,
which might result in an undesired elimination of transferred T
cells.47,48 iCasp9 can manipulate the intracellular caspase path-
way and induce the apoptosis of transferred T cells.46,49,50

In contrast to the engineering of stable CAR-T cells, some
investigators have induced the transient expression of CARs via
the transfection of T cells with RNA.51,52 CRS can be relieved
by blocking the cytokine receptor.17 With proper adjustment of
the transfection dose, this approach could mitigate the toxicity
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of CARs; moreover, inevitably, the treatment effectiveness of
CAR-T therapy would be partially weakened. Therefore, the
method by which fatal complications can be minimized under
the premise of a guarantee of efficacy becomes the ultimate
goal of the effective improvement of CAR-T therapy.

Application of CAR-T therapy in patients with
gastrointestinal cancer and hepatic carcinoma

Gastrointestinal cancer and hepatic carcinoma share the char-
acteristics of a poor clinical outcome and high mortality, which
are still prevalent today and are difficult to improve. However,
superior methods of cancer treatment are currently being
developed. Over the past decade, some studies began to shift
attention to the application of CAR-T treatment to gastrointes-
tinal cancers and hepatic carcinoma. Although a series of
obstacles of CAR-T-based immunotherapy remain in the tar-
geting of solid tumors (Box1),30,53 to date, more than 50 pre-
clinical and clinical studies have been associated with the
application of CAR-T cells in gastrointestinal tumors and
hepatic carcinoma (Table 1). Nine antigens are used as targets
in CAR-T therapy for gastrointestinal tumors and hepatic car-
cinoma (Table 1). Moreover, the application of specific bio-
markers also has some potential value (Table 2).

Gastric carcinoma

Gastric carcinoma (stomach cancer) originates from the muco-
sal epithelial cells located in the superficial layer of the gastric
wall. This cancer can occur in various regions of the stomach,
including the pyloric antrum, the gastric cardia, and the gastric
body. Several tumor markers have been discovered and investi-
gated extensively in preclinical studies. Current clinical trials
that involve the application of CAR-T cells in patients with gas-
tric cancer target HER2, CEA, MUC1, or EpCAM (Table 1).

The proto-oncogene HER2, also known as ErbB2, plays an
important role in the pathogenesis and clinical development of
gastric and gastroesophageal cancers and other tumor
types.54,55 Amplification of the HER2 gene and the overexpres-
sion of its protein product (p185-protein) have been associated
with more than 30% of tumors, whereas negative expression of
p185-protein has been shown in normal tissues.56,57 Therefore,
HER2 could serve as an ideal target for antitumor therapy using
CAR-T, and a series of preclinical studies have been conducted
with HER2-specific CAR-T cells.58

Carcinoembryonic antigen (CEA) and a set of other closely
related glycoproteins are generally expressed in gastric, pancre-
atic, colorectal, and hepatocellular cancers. A preclinical study
found that CEA-specific CAR-T cells could contribute to the
infiltration of tumors by T cells, the delay of tumor growth, and
the extension of the survival of mice with gastric cancer.59

Mucin-1, which is a transmembrane glycoprotein encoded
by the MUC1 gene, is widely and highly expressed in gastric
cancer, among others. Compared with normal cells, the Mucin-
1 that is expressed on the surface of tumor cells displays differ-
ent glycosylation patterns. As a result, the overexpression of
Mucin-1 and its abnormal glycosylation are ideal targets for
immunotherapy. Wilkie et al.60 constructed MUC1-specific
CAR-T cells and found that they were able to effectively attack

MUC1-positive tumor cells. Further, they constructed dual
anti-ERBB2 and anti-MUC1 CAR-T cells that could effectively
eradicate ERBB2-positive tumor cells and regulate the immu-
nological microenvironment.36

Epithelial cell adhesion molecule (EpCAM) is a transmem-
brane glycoprotein that is overexpressed in various cancers. It
has been found that altered expression of EpCAM is associated
with aggressive biologic behavior in gastric cancer61 and is con-
sidered a potential cancer stem cell marker. Deng et al.62

reported that EpCAM-specific CAR-T cells could exert signifi-
cant antitumor activity against prostate cancer.

The ligand B7H6, which targets the NK cell activation recep-
tor NKp30, is expressed in many human tumors in situ, includ-
ing gastrointestinal interstitial tumors, but almost never in the
normal tissues. The second-generation B7H6C CAR-T cells
was shown to reduce tumor burden in mice with ovarian can-
cer.63 In addition, Zheng et al.64 reported the positive expres-
sion of actin-related protein 2/3 (Arp2/3) in the tumor cells of
patients with gastric cancer and the ability of Arp2/3 to pro-
mote the invasion and metastasis of gastric carcinoma cells.

An immunohistochemical study showed that several pro-
teins could serve as potential therapeutic targets in CAR-T
therapy. Neuropilin-1 (NRP-1) is a transmembrane glycopro-
tein that is involved in cancer growth and metastasis. Li et al.65

found that NRP-1 expression in gastric cancer tissues was
higher than that in normal gastric mucosa and correlated with
tumor differentiation and the stage of invasion. Desmocollin 2
(DSC2) is one of the three known desmocollin proteins and is
expressed in 28% of gastric cancers.66 Xu et al.67 reported that
Anion exchanger 1 (AE1), a transmembrane glycoprotein, was
expressed in gastric carcinoma but not in normal gastric tissue.
AE1 expression is also significantly associated with the develop-
ment of gastric cancer, and thus, AE1 might serve as an alterna-
tive target of CAR-T cells.

Colorectal carcinoma

Colorectal carcinoma (CRC) is one of the most common and
deadly malignancies. It is clear that multiple tumor-associated
antigens are significantly overexpressed in patients with CRC.

In a preclinical study, CEA was investigated as part of CAR-
T therapy as a tumor-specific target. CEA-specific CAR-T cells
were found to enhance the antitumor immunity in mice with
colon cancer68 and in human CEAC colon cancer cells.59 In
addition, a high level of IFNg can be secreted by CEA-specific
CAR-T cells and suppress tumor contact.

In clinical trials, five targets are being investigated in CRC,
including CEA, HER2, MUC1, CD133, and EGFR (Table 1).
CD133 is a highly conserved transmembrane glycoprotein that
is associated with various human malignancies such as colorec-
tal, liver, and pancreatic carcinomas. Like EPCAM, CD133 has
been proposed as a cancer stem cell marker, and it has been
shown that CD133-specific CAR-T cells could eradicate glio-
blastoma multiforme stem cells both in vitro and in vivo.69 Sim-
ilar to HER2, the epidermal growth factor receptor (EGFR) is a
transmembrane glycoprotein that belongs to the ErbB family
and serves as an indicator of tumor development. In clinical tri-
als, EGFR-targeted CAR-T cells could eradicate EGFR-positive
tumor cells in patients with non-small-cell lung cancer.70
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Guanylyl cyclase C (GUCY2C), which is a protein that is
expressed specifically in intestinal epithelial cells, is expressed
in colon cancer cells in nearly 100% of cases.71,72 Snook et al.73

engineered two generations of GUCY2C-specific CAR-T cells.
In preclinical studies, the authors found that these CAR-T cells
could effectively inhibit tumor development and prolong the
survival of mice. GUCY2C-targeted CAR-T therapy may lead
to a more effective immunological treatment for CRC.

In addition to the antigens discussed above, other tumor-
associated antigens also deserve attention. Yan et al.74 found
that out of 30 types of human cell lines derived from different
tissues, the axin2 and human naked cuticle (HNKD) genes are
expressed only in human colon cancer cell lines. A study
showed that the expression of CDH17 (cadherin-17), which is
a member of the cadherin family, is closely associated with the
occurrence and development of epithelial tumors within the

Table 2. Potential tumor-specific antigens for the application of CAR-T in gastrointestinal tumors and hepatic carcinoma.

Cancers
Potential target

genes
Expression in

gastrointestinal cancer
Expression on

adjacent mucosa
Related study
(Yes or No) Outcomes

Year and
reference

Gastric cancer B7H6 CCCC ¡ Yes B7H6 is expressed in gastrointestinal stromal
tumors but not in normal tissues. Second-
generation B7H6 CAR T cells can reduce the
tumor burden in mice with ovarian cancer.

201563

ARP2/3 CCC ¡ No Tumor cells of patients with gastric cancer are
positive for Arp2/3, which induces the
prompt invasion and metastasis of gastric
carcinoma cells.

2012104

Neuropilin-1 CC C No NRP-1 expression in gastric cancer tissues is
higher than that in normal gastric mucosa
and correlates with tumor differentiation and
pathological type.

201665

DSC2 CC C No Gastric cancers are positive for DSC2, which is
frequently expressed in GC.

201066

AE1 CCC ¡ No Gastric carcinoma is positive for AE1, but normal
gastric tissue is negative. AE1 expression is
significantly associated with the development
of gastric cancer.

200967

Colorectal cancer GUCY2C CCC ¡ Yes Second-generation GUCY2C CAR-T cells can
effectively inhibit the development of colon
tumors and can prolong survival.

201173

AXIN2 C ¡ No AXIN2 and HNKD can be expressed only in
human colon cancer-derived cell lines.

200174

HNKD CCCC ¡ No
CDH17 CCCC C No CDH17, a member of the cadherin superfamily, is

a membrane-associated glycoprotein.
201475

CK7 CC ¡ No When combined with the detection of CDH17
and CK7, 97% of CDH17C/CK7¡ tumors are
colorectal tumors that originate from the
lower gastrointestinal tract.

201376

Pancreatic cancer HPSE Yes HPSE-targeted CAR-T cells promote T cell
infiltration in tumors and antitumor activity in
matrix-rich solid tumors.

201588

CD24 CCC ¡ Yes CD24-specific CAR-T cells can reduce tumor
volume and prolong the survival of mice with
pancreatic tumors.

201286

MUC4 CCC C No MUC-4 is a glycoprotein that is often
overexpressed in pancreatic
adenocarcinomas and has been shown to
promote tumor growth and metastasis.

200190201289

MUC16 CCC C Yes MUC-16(ecto) CAR-T cells enhance tumor
cytolysis and function in the transfer of IL-12
into the tumor microenvironment, where it
participates in tumor elimination in ovarian
cancer.

201591

Hepatocellular
carcinoma

HBV CCC ¡ Yes CAR-T cells can recognize HBV and inhibit the
growth of hepatoma carcinoma cells.

201397

AFP-L3 CCCC ¡ No AFP-L3 is uniquely expressed on HCC cells 200199

SP17 CCC C No Sp17 is highly expressed in hepatocellular
carcinoma cells. The frequency of Sp17
expression is closely related to the pathologic
differentiation of hepatocellular carcinoma.

2013100

FAP CCC Yes FAP-specific CAR-T cells are being investigated in
a clinical trial for malignant pleural
mesothelioma.

NCT01722149

Note: CCCC, strongly positive; CCC, highly positive;CC, moderately positive; C, weakly positive; ¡, negative.
Abbreviations: AFP, Alpha Fetoprotein; Arp2/3, actin-related protein 2/3; AE1, anion exchanger 1; CDH17, Cadherin-17; DSC2, Desmocollin 2; FAP: fibroblast activation pro-
tein; GUCY2C, guanylyl cyclase C; HBV, hepatitis B virus; HNKD, human naked cuticle; HPSE, heparanase; MUC4, Mucin-4; MUC16, Mucin-16; NRP-1, Neuropilin-1; Sp17,
Sperm protein 17.
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digestive system and plays a critical role in the mediation of cal-
cium-dependent cell–cell junctions. Fan et al.75 found that 98%
of CRCs expressed CDH17, whereas only 3.3% of non-gastroin-
testinal tumors were positive for this protein. CK7 is a com-
monly used diagnostic marker for colon cancer.76 When
combined with the detection of CDH17 and CK7, 97% of
CDH17C /CK7¡ cells were found to originate from CRC.77

Consequently, double-antibody CAR-T cells have important
implications for CRC therapy.

Pancreatic carcinoma

Pancreatic carcinoma is a digestive tract malignancy with the
characteristics of a high-grade malignancy and a short course,
and this cancer is difficult to diagnose and treat. A series of
clinical trials using CAR-T cells that target different antigens
for the treatment of pancreatic cancer have been reported.

The most widely investigated target is mesothelin, which is
one of the tumor-associated antigens that is highly expressed in
pancreatic cancer and is a target for an endogenous T-cell
immune response.78 In animal experiments, mesothelin-spe-
cific CAR-T cells exhibit potent antitumor activity.79 However,
mesothelin is also present on the surface of normal peritoneum,
pleura, and pericardium, which may lead to toxicity. To solve
this problem, Gregory et al.80 transiently expressed the mRNA
for the T cell receptor CD3z and for the tumor necrosis factor
receptor superfamily member TNFRSF9 (4-1BB) into autolo-
gous T cells; the authors observed the antitumor effects of mes-
othelin-specific CAR-T cells but observed no corresponding
toxicity in patients with metastatic pancreatic cancer and
malignant papillary mesothelioma. Furthermore, data from
completed preclinical81 and clinical82 trials at the University of
Pennsylvania confirmed the feasibility, safety, and preliminary
effectiveness of this method.

Prostate-specific cancer antigen (PSCA), a glycosylphospha-
tidylinositol (GPI)-anchored cell surface protein, is upregulated
in several major cancers, including prostate, bladder, and pan-
creatic cancers. However, PSCA is weakly expressed in normal
cells, which indicates that it may be an ideal target antigen.
Katari et al.83 engineered second-generation PSCA-specific
CAR-T cells, which were later demonstrated to eradicate
PSCAC pancreatic cancer cells without any effect on PSCA¡

pancreatic cancer cells in vitro and in vivo. Moreover, Daniel
et al.84 reported that anti-PSCA CAR-T cells based on the
whole human antibody Hal-4.117 could not only delay tumor
growth but also reduce tumor volume.

CEA, HER2, MUC1, CD133, and EGFR have already been
investigated in preclinical studies and clinical trials (Table 1).
Chmielewski et al.85 engineered CEAC CAR-T cells that could
recognize and attack tumor cells continuously and significantly
reduce the size of pancreatic tumors. It has been reported that
67% of tumor cells in a mouse model were eradicated without
any significant damage to other healthy CEAC cells. Maliar
et al.86 engineered CD24 and/or Her2-specific CAR-T cells;
CD24 is a putative pancreatic cancer stem cell antigen. It has
been found that the injection of dual-antibody CAR-T cells
into tumors could completely eliminate pancreatic tumors in
mice and that the intravenous injection could, to a certain
extent, reduce the tumor volume and prolong survival. Anti-

MUC1 CAR-T cells have also successfully suppressed tumor
growth in a preclinical model of pancreatic cancer.87

Ignazio et al.88 investigated the ability of CAR-T cells cul-
tured in vitro to degrade the extracellular matrix (ECM). The
authors designed new CAR-T cells that expressed heparanase
(HPSE) and exhibited a significantly enhanced ability to
degrade the ECM; this design promoted the infiltration of T
cells into the tumor and promoted anti-matrix-rich solid tumor
activity. Additionally, mucins are a class of proteins related to
invasion, metastasis, and other biological behaviors of tumors.
Based on its protein core, mucins can be divided into secretory
mucins (MUC2, MUC5AC, MUC5B, and MUC6) and trans-
membrane mucins (MUC1, MUC3A, MUC3B, MUC4,
MUC12, and MUC17).89 Studies have shown that mucins not
only serve as diagnostic markers for tumors but can also be
used as targets for tumor immunotherapy. MUC4 shows little
to no expression in normal pancreas or in pancreas affected by
pancreatitis, but is highly expressed in pancreatic tumor tissues,
as is MUC16.90 MUC-16(ecto) CAR-T cells were engineered by
Koneru et al.91 and then used in patients with ovarian cancer. It
was found that these CAR-T cells not only enhanced tumor
cytolysis but also acted as a delivery agent for further modula-
tion of the tumor microenvironment. MUC-16(ecto) CAR-T
cells can secrete IL-12 into the tumor microenvironment,
which enhances the endogenous immune response and tumor
elimination. In light of current studies and applications of
MUC1 to CAR-T cell therapy, it might be presumed that
MUC4 and MUC16 may also potentially serve as targets of
CAR-T cells for the treatment of pancreatic cancer.

Hepatocellular carcinoma and cholangiocarcinoma

Primary gallbladder carcinoma (cholangiocarcinoma) and hepato-
cellular carcinoma (HCC) are common malignant tumors that are
continuing to increase in incidence yearly. Cholangiocarcinoma
represents a class ofmalignant tumors that are derived from epithe-
lial cells. Due to the close anatomical location of the gallbladder and
liver, gallbladder carcinoma is clinically similar to HCC in some
respects. There are a variety of immune regulation mechanisms in
the liver, which can result in either abnormal or pathological condi-
tions, the liver is in an immunosuppressive environment; therefore,
tumor cells are easily transferred to the liver, which could be a
major obstacle to immunotherapy in cases of HCC.92 Burga et al.93

found that anti-CEA CAR-T cells could significantly inhibit the
metastasis of CEAC liver tumor cells in a mouse model; a similar
result was found in clinical trials that involved the hepatic arterial
infusion of anti-CEA CAR-T cells in patients with CEAC liver
metastases.94 In addition, studies have found that CAR-T cells tar-
geting MUC1 can specifically kill liver cancer cells that express
high levels of MUC1, which provides a basis for the use of MUC1-
targeted CAR-T cells for immunocyte therapy in the setting of
HCC. GPC3, which is a member of the glypican family of heparin
sulfate (HS) proteoglycans, can be specifically expressed on the cell
surface of liver cancer cells, whereas it is almost never expressed in
normal tissues. Gao et al.95 demonstrated using in vivo and in vitro
experiments that Glypican-3 (GPC3)-targeted CAR-T cells could
effectively kill GPC3-positive HCC cells, inhibit tumor growth, and
improve the survival of patients with HCC. Proteins in the EGFR
family are also expressed in liver cells. Using a human monoclonal
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antibody against EGF, Ito et al.96 found that EGF was expressed in
the cytoplasm of liver cancer cells but not in the nucleus or in other
locations within cancer cells. This finding suggests that EGF in
human HCC tissues is produced by the liver cancer cells them-
selves, which in turn indicates that EGF may be applied in the
CAR-T cell therapy. Therefore, multiple tumor-specific antigens
such as CEA,MUC1, GPC3, EGFR, EpCAM, andCD133 are being
investigated in clinical trials for HCC (Table 1).

Other tumor-associated antigens have also been investigated
in preclinical trials of HCC. From their study on the infusion of
CAR-T cells, which specifically expressed hepatitis B virus
(HBV), into HBV transgenic mice, Krebs et al.97 found that
these cells were able to quickly translocate to the liver, signifi-
cantly improve the immunity of mice against HBV, and effec-
tively inhibit HBV replication. However, these cells also caused
temporary liver damage, which may have been related to off-
target effects of the CAR-T cells. Using the same method and
CAR-T cells that specifically express the HBV, CAR-T cells
were found to recognize HBV and inhibit the growth of hepa-
toma cells. In HCC, Alpha-Fetoprotein (AFP) serves as an
important biomarker.98 AFP is synthesized by the fetal liver
during fetal development. AFP contains three components
including AFP-L1, AFP-L2, and AFP-L3, of which, AFP-L3 is
unique to HCC cells. In their study, Khien et al.99 found that
the sensitivity of AFP-L3 in HCC patients was 96.9%, and the
specificity was 92.0%, whereas liver cells in cases of non-malig-
nant liver disease did not express AFP-L3. AFP-L3 may serve
as an important new target for the treatment of liver cancer by
CAR-T cells. Sperm protein 17 (Sp17) has been studied in the
diagnosis and differentiation of hepatocellular carcinoma.100

The frequency of Sp17 expression in hepatocellular carcinoma
cells, which is approximately 80%, is associated with the patho-
logic differentiation of hepatocellular carcinoma. This finding
suggests that Sp17 may be a CAR target for the treatment of
liver cancer, but this possibility needs further exploration.
Moreover, some candidate targets are currently being investi-
gated in clinical trials for CAR-T therapy in liver and other can-
cers. For example, fibroblast activation protein (FAP)-specific
CAR-T cells are being investigated in a clinical trial
(NCT01722149) for malignant pleural mesothelioma. FAP is a
cell surface glycoprotein that is overexpressed in CRC and is
associated with tissue remodeling in liver fibrosis.

Conclusion and prospective studies

From candidate-gene studies to genome-wide association stud-
ies, a large number of tumor-specific markers have been identi-
fied in various cancers. Over the past decade, CAR-T
technology has provided valuable experimental platforms and
has opened new avenues for the clinical treatment of cancers.
In clinical trials, CAR-T cells that target tumor-specific markers
have exhibited ideal therapeutic effects in malignant lym-
phoma. With regard to solid tumors, however, multiple barriers
need to be overcome in the application of CAR-T therapy. For
instance, various suppressive immune cells, such as myeloid-
derived suppressor cells (MDSCs), Tregs, and macrophages,
are present in the microenvironment of solid tumors, where
they inhibit the antitumor effects of CAR-T cells.

In this review, we summarized the ongoing clinical trials of
CAR-T therapy for gastrointestinal tumors and hepatic carci-
noma. Two strategies are studied with respect to the engineer-
ing of CARs. First, an ideal CAR should be able to effectively
and specifically distinguish tumors from normal tissues based
on expression of the target antigen and should be able to rap-
idly migrate to the tumor tissue. Among the accessible clinical
trials, various types of CAR-T cells have been engineered to tar-
get HER2 and CEA, which are overexpressed on the surface of
cells in solid tumors and are associated with the development
and metastasis of tumors. Selection of the appropriate targeted
tumor antigens can fundamentally reduce the side effects of
CAR-T. The antigen density and affinity on the tumor and in
normal tissues should be considered. Second, the co-stimula-
tory molecules in the CAR structure should be taken into
account because of their different roles in T cell expansion and
activation. In addition, the sources of T cells, optimal timing,
and dosage of CAR-T therapy still require further exploration.

With the rapid development of preclinical and clinical stud-
ies, CAR-T therapies for hematologic malignancies have been
very successful and have offered us a perspective on solid
tumors. Current explorations of CAR-T therapies for the treat-
ment of solid tumors will hopefully also lead to greater success.
We are optimistic that the consideration of individual genetic
and epigenetic variations will lead to a more personalized appli-
cation of CAR-T therapies for patients with various cancers.
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