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Abstract

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To
examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout
(dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days
for the desmin2/2 mice. An ,2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in
,91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the
dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic
utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent
mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative
capacity of muscle stem cells when comparing the wild-type, desmin2/2, mdx4cv and dko gastrocnemius muscles injured
with notexin. Utrophin could form costameric striations with a-sarcomeric actin in the dko to maintain the integrity of the
membrane, but the lack of restoration of the NODS (nNOS, a-dystrobrevin 1 and 2, a1-syntrophin) complex and desmin
coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the
myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural
mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD.
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Introduction

Duchenne muscular dystrophy (DMD) is an X-linked muscle

disorder that affects approximately 1:4000 boys [1]. DMD is

caused by mutations in the large 2.2 Mb dystrophin gene [2,3].

The dystrophin protein functions as a large molecular spring that

connects the skeletal muscle cytoskeleton to the transmembrane

dystrophin glycoprotein complex (DGC) [4–9]. The lack of

dystrophin in DMD is accompanied by a significant reduction in

the expression of the DGC leaving the membrane highly

susceptible to contraction-induced injury and hypoxic stress [10–

18]. DMD patients develop severe cardiorespiratory distress and

generally live into their third decade with the help of palliative

care.

The absence of dystrophin leads to various molecular and

cellular homeostatic responses that slow the loss of skeletal muscle

[19]. For instance, the dystrophin paralog, utrophin is expressed

on the sarcolemma of dystrophic fibers acting to mitigate necrosis

[20–25]. Skeletal muscle necrosis in the mdx mouse model of DMD

is prevented by the expression of a full-length utrophin transgene

when expressed at twice the levels of the endogenous utrophin

[26]. Utrophin expression in DMD patients correlates with the

severity of disease and time to wheelchair demonstrating the

therapeutic potential of utrophin in humans [25,27–31]. An

utrophin therapy would benefit all DMD patients and circumvent

a potential T-cell mediated immune response that could impair

the long-term benefit of prospective dystrophin replacement

strategies [32–34]. Accordingly, increasing the expression of

utrophin is a primary target for therapy of DMD [33]. While

promising utrophin-mediated therapies are being tested in clinical

trials [33,35], the mechanisms that influence utrophin expression

are not fully understood.

Utrophin is normally expressed on the sarcolemma of develop-

ing and regenerating muscle fibers [21,22,36]. Utrophin is

ultimately replaced by dystrophin in the sarcolemma of normal

maturing fibers and remains concentrated at the neuromuscular

and myotendinous junctions. However, low levels of utrophin can

remain on the sarcolemma of dystrophin-deficient mdx mouse

skeletal muscle fibers independent from muscle regeneration [37].

While various factors that influence utrophin expression and

stability within the sarcolemma are well described [33,38,39], the

upstream mechanisms are less clear. We recently discovered an

increase in utrophin expression in mdx4cv mice expressing the

microdystrophinDR4–R23 transgene [40]. The polyproline site

within hinge 2 of microdystrophinDR4–R23 led to myotendinous

strain injury and the formation of ringed fibers where the

peripheral sarcomeres surround the central sarcomeres [40,41].

Notably, we found a significant increase in utrophin expression

within the limb muscles that contained ringed fibers, but not in the

diaphragm muscles that did not contain ringed fibers [40].

PLOS Genetics | www.plosgenetics.org 1 June 2014 | Volume 10 | Issue 6 | e1004431

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004431&domain=pdf


Accordingly, we hypothesize that structural changes within skeletal

muscle can influence utrophin expression, independent from

muscle regeneration.

To examine the role of muscle structure on the pathogenesis of

DMD we generated mdx:desmin double knockout (dko) mice.

Desmin is an intermediate filament protein that maintains the

highly ordered structure of striated muscles by connecting the

sarcomeres to the sarcolemma and organelles [42–45]. Desmin

influences the organization of dystrophin and ankyrin in a

costameric lattice that connects the Z-disks of peripheral

sarcomeres to the sarcolemma [46,47]. Desmin2/2 mice develop

a severe dilated cardiomyopathy with a mild skeletal myopathy

[45,48]. The skeletal myopathy is associated with misaligned

sarcomeres and changes to the distribution and function of

mitochondria [45,48]. Here, we report that a ,2.5-fold increase in

utrophin expression in dko skeletal muscle fibers prevented

necrosis in a fiber-type specific manner.

Results

Premature death of dko mice
We initially found that desmin expression was increased in

mdx4cv mouse skeletal muscles by western analysis of whole muscle

lysates (Fig. 1A), confirming previous reports in mdx mice [49,50].

To examine the role of desmin in the pathogenesis of DMD we

bred mdx4cv:desmin+/2 mice to generate the dko pups (N = 5, F.

4). The dko pups were born in the expected Mendelian ratios [71

(25%) +/+; 144 (51%) +/2; 67 (24%) 2/2]. We examined only

the male mice for this study, as DMD patients are males. The dko

mice developed a mild kyphosis (Fig. 1B). The genotype was

confirmed by immunohistological analyses of dystrophin and

desmin expression in skeletal muscle (Fig. 1C). The dko mice

gained less body mass than the wild-type (24%), desmin2/2 (18%),

and mdx4cv controls (36%; P,0.001 one way ANOVA; Fig. 1D).

The desmin2/2 and dko mice were euthanized when they lost

body mass and/or exhibited labored breathing and reduced

mobility consistent with cardiorespiratory failure. Kaplan-Meyer

survival analyses demonstrated a significantly reduced lifespan in

the dko mice with a median survival of 76 days for males

compared to a median survival of 609 days for the desmin2/2

males (Fig. 1E, P,0.001). The average lifespan for mdx4cv males is

21.5 months [51]. We chose a time point of 11 weeks for the

experiments in this study, unless otherwise stated. Approximately a

quarter of the dko mice (22%) developed malocclusion, which

contributed to the reduced body mass and increased mortality rate

particularly in mice younger than 8 weeks of age. The

malocclusion was treated with trimming the teeth every week

and feeding the mice crushed food pellets mixed with hydrated gel.

Malocclusion consistently presented in dko mice through various

backcrosses suggesting that this was likely a phenotype of the dko

mice and not a separate genetic defect. Furthermore, none of the

wild-type, desmin2/2 or mdx4cv mice developed malocclusion

during the course of this study. The dko mice that developed

malocclusion were included for body mass and survival analysis,

but not for further analyses.

Profound reduction in dystrophic histopathology in dko
mice

We next examined the gross dystrophic histopathology in

various limb and respiratory muscles. Wild-type mice had few

central nuclei (,1%), and no detectable calcified or necrotic fibers

(Fig. 2A-D). Desmin2/2 mice had a mild skeletal myopathy with a

low level of central nuclei (,5%) and rare necrotic fibers (Fig.

2AD), but no calcification was evident (Fig. 2A,C), as previously

described [45,48,52]. The mdx4cv skeletal muscles were highly

dystrophic with predominantly centrally nucleated fibers

(Fig. 2A,B). Of the different limb and respiratory muscles we

examined, only the mdx4cv diaphragms consistently contained

calcified fibers (Fig. 2A,C), whereas all mdx4cv muscles contained

patches of necrotic fibers (Fig. 2A,D). The proportion of dko limb

and respiratory skeletal muscles with central nuclei was signif-

icantly reduced when compared to the mdx4cv muscles (Fig. 2A,B).

None of the dko skeletal muscle fibers were calcified and there

were 96% fewer necrotic fibers than the mdx4cv gastrocnemius

muscles (P,0.001; Fig. 2A,C,D). Inflammation was also reduced

in the dko gastrocnemius muscle with a 93% reduction in

macrophages (P,0.01; Fig 2A,E) and an 82% reduction in CD3

positive T-lymphocytes (P,0.001; Fig. 2A,F) when compared to

the mdx4cv controls. Thus, multiple indices of dystrophic histopa-

thology in the mdx4cv mice were improved by the absence of

desmin.

Increased expression of utrophin prevented necrosis of
dko skeletal muscle fibers

We next examined whether the dystrophic pathology in the dko

muscles was improved by an increase in utrophin expression. We

examined the gastrocnemius muscle because of its distinct fiber-type

distribution. Utrophin was restricted to the neuromuscular junctions in

mature (11 week) wild-type and desmin2/2 skeletal muscle fibers

(Fig. 3A). Utrophin was expressed at low levels on the extrasynaptic

sarcolemma in mdx4cv muscles (Fig. 3A), as previously described in mdx

mice [21,22,36]. Utrophin was highly expressed in the dko extra-

synaptic sarcolemma in some, but not all of the gastrocnemius muscle

fibers (Fig. 3A). We next performed a titration of dko utrophin by

western analyses to generate a non-linear regression to quantitate the

changes in utrophin expression (Fig. S1). The significant increase in

utrophin expression in mdx4cv mice compared to wild-type mice was

confirmed by western analysis of total gastrocnemius muscle lysates

(Fig. 3B; P,0.001). Importantly, we found a 2.54-fold increase in

utrophin expression in the dko when compared with the mdx4cv controls

(Fig. 3B; P,0.001). Because not all myofibers express utrophin in the

dko we next quantitated the level of utrophin fluorescence intensity on

the sarcolemma. We quantitated utrophin fluorescence in the wild-type

sarcolemma as the negative control and the wild-type neuromuscular

synapse as the peak of detection to ensure our quantitation is not

beyond the limits of detection. The fluorescence intensity of utrophin

was significantly increased in mdx4cv muscles compared to wild-type

muscles (P,0.001; Fig. 3C). The utrophin fluorescence intensity

Author Summary

Duchenne muscular dystrophy (DMD) is a severe muscle
wasting disorder caused by mutations in the dystrophin
gene. Utrophin is structurally similar to dystrophin and
improving its expression can prevent skeletal muscle
necrosis in the mdx mouse model of DMD. Consequently,
improving utrophin expression is a primary therapeutic
target for treating DMD. While the downstream mecha-
nisms that influence utrophin expression and stability are
well described, the upstream mechanisms are less clear.
Here, we found that perturbing the highly ordered
structure of striated muscle by genetically deleting desmin
from mdx mice increased utrophin expression to levels
that prevented skeletal muscle necrosis. Thus, the
mdx:desmin double knockout mice may prove valuable
in determining the upstream mechanisms that influence
utrophin expression to develop a therapy for DMD.
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increased by 2.86-fold in the dko sarcolemma when compared to the

mdx4cv (P,0.001). To test whether this increase in fluorescence intensity

in the dko reached therapeutic levels, we compared mdx:utrophin

double knockout muscles treated with microutrophinDR4–R21 using the

same gastrocnemius muscles from our previous study [53], which

demonstrated that microutrophinDR4–R21 prevented skeletal muscle

necrosis. We found that the sarcolemmal fluorescence intensity of

utrophin was increased by 22% in the dko muscles when compared to

the mdx:utrophin double knockout muscles expressing microutro-

phinDR4–R21 (P,0.01). We found no change in utrophin mRNA in the

gastrocnemius muscles of wild-type, desmin2/2, mdx4cv and dko mice,

when measured by qPCR (Fig. 3D). Upregulation of utrophin was

associated with a reduction in necrosis and regeneration in the dko, as

only 9% of the fibers with extrasynaptic utrophin had central nuclei

compared with 46% central nuclei in fibers without extrasynaptic

utrophin (P,0.001; Fig. 3E). Thus, an increase in utrophin expression

in a fraction of the dko muscle fibers prevented cycles of necrosis and

regeneration.

Utrophin expression on the sarcolemma of maturing 1a,
2a and 2d/x fiber types

Utrophin expression is found on the sarcolemma of all

developing wild-type muscle fibers and subsequently becomes

restricted to the neuromuscular junctions [21,54]. The prevention

of skeletal muscle necrosis in the dko mice implied that the

developmental loss of utrophin expression from the extrasynaptic

Figure 1. The genetic deletion of desmin from mdx4cv mice reduces body mass and survival. A) Desmin expression was significantly
increased in the mdx4cv skeletal muscles. Bars represent the mean +/2 S.D. densitometry of desmin expression from n = 7 wild-type and n = 6 mdx4cv

gastrocnemius muscles. B) Photograph of representative wild-type and dko mice. Note that the dko mice develop a mild kyphosis at 11 weeks of age.
C) Confirmation of genotype by immunostaining of frozen gastrocnemius muscle sections with antibodies to dystrophin and desmin. Scale bar
= 50 mm D) Mean +/2 S.D. body mass of wild-type (n = 5), mdx4cv (n = 4), desmin2/2 (n = 5) and dko mice (n = 9). E) Kaplan-Meyer survival analyses
demonstrating the significantly shortened lifespan of dko mice (n = 13) compared with desmin2/2 mice (n = 16). *P,0.05, **P,0.01 compared with
wild-type. @@@P,0.001 compared to desmin2/2.
doi:10.1371/journal.pgen.1004431.g001
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sarcolemma did not occur. Furthermore, the expression of

utrophin on the extrasynaptic sarcolemma of a portion of dko

fibers suggests that utrophin may be expressed in certain muscle

fiber types. To test this, we compared the expression of the

utrophin A isoform relative to muscle fiber types at 3 weeks of age

(Fig. 4). We found that utrophin was near absent from the

extrasynaptic sarcolemma of wild-type gastrocnemius muscles by 3

weeks of age (Fig. 4). We found utrophin in the cytoplasm of a

portion of the wild-type fast 2b fibers (Fig. 4). Furthermore,

antibodies to the utrophin A isoform labeled blood vessels in wild-

type muscles at 3 weeks of age (Fig. 4), but not at 11 weeks of age

(Fig. 3), which was similar to the immunohistochemical staining

pattern of the utrophin A isoform in humans [55]. Utrophin

expression was absent from the extrasynaptic sarcolemma in most

fast 2b fibers in desmin2/2, mdx4cv and dko muscles (Fig. 4).

However, utrophin remained at low levels on the sarcolemma of

1a, 2a and 2d/x fiber types in desmin2/2 and mdx4cv gastrocne-

mius muscles. The reduced utrophin expression in the extra-

synaptic sarcolemma of mdx4cv muscles coincided with the

appearance of patches of necrotic fibers (Fig. 4). In contrast,

utrophin prevented skeletal muscle necrosis in the dko muscles by

remaining on the extrasynaptic sarcolemma of maturing 1a, 2a

and 2d/x fiber-types (Fig. 4). We next performed a titration of

utrophin by western analyses of the 3-week-old dko muscles to

generate a non-linear regression to quantitate the changes in

utrophin expression (Fig. S2). We found a 29.6% increase in

utrophin in the mdx4cv muscles compared to wild-type controls

(Fig. 4B; P,0.05). Utrophin in the dko was increased by a further

60.9% compared to the mdx4cv muscles (P,0.001). Similar to 11

weeks of age (Fig. 3D), we found no change in the relative amounts

of mRNA at 3 weeks of age when comparing all genotypes

(Fig. 4C). Thus, utrophin expression was increased in the dko in a

fiber-type specific manner to prevent necrosis.

Utrophin protects the sarcolemma of 1a, 2a and 2d/x dko
skeletal muscle fiber types

To examine whether utrophin prevented necrosis by

maintaining the integrity of the muscle membrane, we

Figure 2. The dystrophic histopathology in mdx4cv mice was profoundly improved by the absence of desmin. A) Frozen sections
demonstrating the histopathology of skeletal muscles. Note that the extensive central nucleation and mononuclear cell infiltrate, calcification,
necrosis and inflammation in mdx4cv muscles were significantly diminished in the dko skeletal muscles. All panels are representative sections of
gastrocnemius muscle except the second row, which are sections of the diaphragm. Scale bars = 100 mm. B) The number of centrally nucleated fibers
was significantly diminished in hind-limb and respiratory muscles in the dko mice when compared with the mdx4cv muscles C) Calcified fibers were
found in the mdx4cv diaphragm muscle but not in the dko muscles. D) Quantitation of the total number of necrotic fibers in the gastrocnemius
muscles. E) Quantitation of macrophages in the gastrocnemius muscles. F) Quantitation of the CD3 positive T-lymphocytes in the gastrocnemius
muscles. N = 4 for all experiments. All bars in the graphs represent mean +/2 S.D. *P,0.05, **P,0.01 and ***P,0.001 compared to wild-type; #P,
0.05, ##P,0.01 and ###P,0.001 compared to mdx4cv.
doi:10.1371/journal.pgen.1004431.g002
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systemically delivered 200 ml of 1% (w/v) Evan’s blue dye

(EBD) into the mdx4cv and dko mice and looked for permeable

skeletal muscle fibers (Fig. 5A). We found large patches of

skeletal muscle fibers in the mdx4cv mice that were permeable to

EBD (Fig. 5A), as previously described [40]. Utrophin was

selectively expressed in the dko 1a, 2a and 2d/x fiber types and

prevented the infiltration of EBD into these fibers (Fig. 5A).

This correlated with an ,80% reduction in centrally nucleated

1a, 2a and 2d/x fiber types in the dko compared to the

corresponding mdx4cv muscles (P,0.001; Fig. 5B). Only the fast

2b fibers in the dko were permeable to EBD, which correlated

with an ,5 fold increase in centrally nucleated 2b fibers when

compared with the other fiber-types in the dko (P,0.001;

Fig. 5B). The total number of permeable fibers in the dko

gastrocnemius muscles was ,91% less than the mdx4cv muscles

(Fig. 5C; P,0.001). Thus, utrophin prevented necrosis in the

dko 1a, 2a and 2d/x fiber types by maintaining the integrity of

the membrane.

We found a distinct separation of the fast 2b fibers from the

1a, 2a and 2d/x fiber types in the dko gastrocnemius muscles

suggestive of a fiber-type switch in the dko muscles (Fig. 5A).

We examined the fiber-type proportions in the smaller soleus

Figure 3. Expression and localization of utrophin in wild-type, desmin2/2, mdx4cv and dko muscles at 11 weeks of age. A) Frozen
sections of the gastrocnemius muscles immunolabelled with antibodies to utrophin A and a-bungarotoxin (a-BTX). Utrophin was restricted to the
neuromuscular junctions in wild-type and desmin2/2 muscles. Utrophin was expressed on the extrasynaptic sarcolemma in the mdx4cv and dko
muscles. Note the increased utrophin expression on the sarcolemma of dko fibers compared with the mdx4cv muscles. Scale bar = 50 mm. B) Western
blot analyses of utrophin A expression in whole gastrocnemius muscle lysates from wild-type (n = 3), desmin2/2 (n = 3), mdx4cv (n = 7) and dko (n = 6)
mice. Quantitation of utrophin expression in whole muscle lysates is shown below the immunoblots. C) Maximal utrophin fluorescence intensity was
significantly increased on the sarcolemma of dko fibers compared with mdx4cv fibers. Furthermore, maximal fluorescence intensity was significantly
increased in dko fibers compared to mdx:utrophin double knockout fibers expressing microutrophinDR4–R21. N = 4. D) We found no change in
utrophin mRNA when comparing whole gastrocnemius muscle lysates when utrophin mRNA was normalized to the housekeeping gene Ywhaz.
N = 4. E) Utrophin prevents muscle degeneration and regeneration in dko gastrocnemius muscles as demonstrated by the reduced proportion of
fibers with central nuclei. N = 4. All bar graphs show the mean +/2 S.D. *P,0.05 and ***P,0.001 compared to wild-type; #P,0.05 and ###P,0.001
compared to mdx4cv.
doi:10.1371/journal.pgen.1004431.g003
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muscle that contains all fiber-types in wild-type C57Bl/6mice.

Analysis of fiber-type proportions in the soleus muscles at 11

weeks of age revealed a significant shift from the 2a fibers in

the wild-type toward the slow 1a fibers in the desmin2/2,

mdx4cv and dko muscles (P,0.001; Fig. S3). However, we found

no significant change in fiber-type proportions when compar-

ing between the desmin2/2, mdx4cv and dko muscles (Fig. S3).

Thus, the skeletal muscle fiber-types were redistributed in the

dko muscles, but we found no evidence of a fiber-type switch.

The increase in utrophin on the dko sarcolemma (Fig. 3C)

may have resulted from reduced surface area of the 1a, 2a and

2d/x fibers compared with the corresponding mdx4cv muscles.

However, the fiber area of 1a, 2a and 2d/x fiber types within

the gastrocnemius muscles was unchanged when comparing

wild-type, desmin2/2, mdx4cv and dko muscles (Fig. 5D). The

fast 2b fibers in the desmin2/2 and mdx4cv gastrocnemius were

hypertrophic when compared to wild-type muscles (Fig. 5D).

In contrast, the fast 2b fibers in the dko muscles were

selectively atrophic. The desmin2/2 muscles contained some

smaller caliber fibers that increased the overall variability in

muscle fiber area. The muscle fiber areas were highly variable

in the mdx4cv muscles. Thus, the increase in utrophin expression

on the dko sarcolemma did not result from changes in the

average area of 1a, 2a and 2d/x fiber types.

Utrophin-independent mechanisms influence dystrophic
pathology in the dko muscles

We also found a 36% reduction in the proportion of centrally

nucleated fast 2b fibers in the dko when compared to the mdx4cv fast 2b

fibers (P,0.01; Fig. 5B), which was consistent with the low level of

central nuclei in utrophin negative fibers in the dko (46%) compared to

all mdx4cv control fibers (76%) (Fig. 3E). To directly test whether

utrophin-independent mechanisms were influencing the dystrophic

pathology we performed a more detailed examination of the most

superficial region of the gastrocnemius muscles that contained a near

pure population of fast 2b fibers (Fig. 6). We found a significant

reduction in the extrasynaptic utrophin expression on the fast 2b fibers

in the dko compared with mdx4cv muscles (Fig. 6A,B; P,0.001).

Moreover, there was a significant reduction in the number of fast 2b

fibers expressing extrasynaptic utrophin in the dko when compared to

Figure 4. Expression and localization of utrophin in wild-type, desmin2/2, mdx4cv and dko muscles at 3 weeks of age. A) Utrophin
expression in gastrocnemius muscles compared to adjacent sections labeled for the different skeletal muscle fiber-types. Note that utrophin
expression is restricted to the neuromuscular junctions and non-muscle cells in the wild-type muscles. Utrophin is also restricted to the
neuromuscular junctions in most fast 2b fibers in desmin2/2 muscles, but remains on the sarcolemma of the type 1a, 2a and 2d/x fiber types.
Utrophin is found on the extrasynaptic sarcolemma of mdx4cv muscles, irrespective of fiber-type at 3 weeks of age. Regions where utrophin is lost
from the extrasynaptic sarcolemma in mdx4cv muscles have necrotic fibers (arrows). Utrophin expression is lost from most of the fast 2b fibers in the
dko by 3 weeks of age, but is retained on the sarcolemma of 1a, 2a and 2d/x fiber types. Scale bar = 50 mm. B) Western blot analyses of utrophin A
expression in whole gastrocnemius muscle lysates from (n = 4), desmin2/2 (n = 4), mdx4cv (n = 8) and dko (n = 8) mice. Quantitation of utrophin
expression in whole muscle lysates is shown below the immunoblots. C) We found no change in utrophin mRNA when comparing whole
gastrocnemius muscle lysates, when utrophin mRNA was normalized to the housekeeping gene Ywhaz. N = 4. *P,0.05, P,0.001 compared to wild-
type. ###P,0.001 compared to mdx4cv.
doi:10.1371/journal.pgen.1004431.g004
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the mdx4cv fast 2b fibers (Fig. 6A,C; P,0.05). Utrophin was expressed

on the extrasynaptic sarcolemma in groups of regenerating mdx4cv 2b

fibers as the myofibers expanded toward the basal lamina shell

(Fig. 6D). Utrophin expression was maintained on the mdx4cv

sarcolemma as the muscles matured and developmental myosin heavy

chain dissipated (Fig. 6D). In contrast, examination of four dko

gastrocnemius muscles revealed that the regenerating 2b fibers were

directly enveloped by the basal lamina rather than utrophin (Fig. 6D).

Together, these results demonstrate that utrophin expression was

reduced in the extrasynaptic sarcolemma of dko fast 2b fibers. Thus,

utrophin-independent mechanisms were also mitigating the dystrophic

pathology of dko muscles.

Regenerative potential of skeletal muscles
The regenerative capacity of skeletal muscles depleted of

desmin is profoundly impaired in cell culture [56,57].

However, muscle generation in desmin2/2 skeletal muscles in

vivo is apparently normal [58]. Desmin2/2 muscles injured

with cardiotoxin can lead to persistent expression of develop-

mental myosin heavy chain [59]. We found that regenerating

Figure 5. Utrophin maintains the integrity of the dko muscle membrane in a fiber-type specific manner. A) Shown are frozen sections
of the lateral portion of the gastrocnemius muscle immunolabeled with monoclonal antibodies to fiber types 1a (blue), 2a (red), 2d/x (black) and 2b
(green; left panel) or utrophin (green; right panel) and Evan’s blue dye (EBD; red; right panel). Note that the uneven distribution of utrophin
expression in the mdx4cv muscles correlated with patches of adjacent membrane permeable fibers that labeled with EBD. However, an increase in
utrophin expression in the dko myofibers excluded EBD from the 1a, 2a and 2d/x fiber types. The dko fast 2b fibers, which lacked utrophin, were
permeable to EBD. Scale bar = 500 mm. B) Bars show the mean +/2 S.D. percentage of centrally nucleated fibers in distinct fiber types. Note that all
dko muscle fiber types had significantly less myonuclei than the mdx4cv fibers (##P,0.01 and ###P,0.001). The dko fast 2b fibers had more central
nuclei than the 1a, 2a and 2d/x fiber types (@@@P,0.001). The mdx4cv fast 2b fibers had more central nuclei than the 1a, 2a and 2d/x fiber types (**P,

0.01). C) Bars show the mean +/2 S.D. total number of EBD positive fibers in the gastrocnemius muscles. ***P,0.001 compared with mdx4cv

myofibers. D) Bars show the mean +/2 S.D. area of type 1a, 2a, 2d/x and 2b muscle fiber types. ***P,0.001 compared with wild-type myofibers.
###P,0.001 compared with mdx4cv myofibers. @@@P,0.001 compared with desmin2/2 myofibers. All experiments were from n = 4 mice.
doi:10.1371/journal.pgen.1004431.g005
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fibers in uninjured gastrocnemius muscles were rare (up to 2

fibers) in the wild-type and desmin2/2 mice (Fig. 7A,B). The

mdx4cv muscles contained patches of regenerating fibers (Fig. 7).

However, the dko muscles contained 47% fewer regenerating

fibers than the mdx4cv muscles (P,0.01; Fig. 7A,B). To examine

whether the regenerative capacity of muscles was impaired in

the dko we delivered notexin to injure the gastrocnemius

muscles and examined the muscles 4 and 6 days post injury.

We found that regenerating fibers were expressing develop-

mental myosin in wild-type, desmin2/2, mdx4cv and dko treated

muscles at 4 days post injury (Fig. 7). At 6 days post injury we

found that half (2 out of 4) of the injured wild-type muscles

expressed developmental myosin (Fig. 7). Neither the desmin2/

2, mdx4cv or dko muscles expressed developmental myosin 6

days post notexin injury (Fig. 7). We found no other overt

changes in the regenerative capacity of the muscles when

comparing the different strains of mice (Fig. 7). Thus, the

improved dystrophic pathology in the dko muscles did not

result from overt changes to the regenerative capacity of the

skeletal muscles.

Utrophin concentrated b-dystroglycan in the
sarcolemma, but not the nNOS, a-dystrobrevin and a1-
syntrophin (NODS) complex in the dko mice

We next examined whether the significant increase in

utrophin expression in the dko muscles restored the expression

of b-dystroglycan and the NODS complex to the sarcolemma.

Adjacent sections of gastrocnemius muscles revealed that b-

dystroglycan and members of the NODS complex were

concentrated within the sarcolemma of wild-type and des-

min-/- skeletal muscles (Fig. 8A). The expression of b-

dystroglycan and the NODS complex were increased in the

desmin-/- mice (Fig. 8B,C), as previously described [60]. The

expression of b-dystroglycan and the NODS complex at the

sarcolemma of mdx4cv skeletal muscles were significantly

diminished (Fig. 8), as previously described [40,61] (Fig. 8).

Figure 6. Utrophin expression was reduced on the extrasynaptic sarcolemma of dko fast 2b fibers. A) Utrophin expression in transverse
sections of the near pure population of fast 2b fibers in the most superficial region of the gastrocnemius muscles. Shown are single sections from
mdx4cv or dko gastrocnemius fast 2b fibers labeled with utrophin in red, a2-laminin in magenta, DAPI in cyan and fast 2b fibers in green. B)
Quantitation of maximal extrasynaptic utrophin fluorescence intensity in fast 2b fibers and C) the proportion of fast 2b fibers expressing
extrasynaptic utrophin in the mdx4cv and dko. All bars represent the mean +/2 S.D. from n = 4 mice. #P,0.05 and ###P,0.001 compared with
mdx4cv fibers. D) Regenerating fibers expressed utrophin in the mdx4cv fibers, but not in the dko. Shown are single sections from mdx4cv or dko
superficial gastrocnemius muscles labeled with utrophin in red, developmental myosin heavy chain in green, a2-laminin in yellow and DAPI in cyan.
Note that utrophin is on the expanding sarcolemma in mdx4cv muscles, but not in the dko (arrows). Scale bars = 50 mm.
doi:10.1371/journal.pgen.1004431.g006
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The increase in utrophin expression in the dko sarcolemma

was accompanied by the increased concentration of b-

dystroglycan (Fig. 8A). Immunoblots of whole muscle lysates

revealed no significant difference in b-dystroglycan expression

when comparing the wild-type or the mdx4cv controls with the

dko (Fig. 8B,C). However, the expression of the NODS

complex on the sarcolemma of dko muscles was not restored

(Fig. 8).

Desmin can interact with a-dystrobrevin in the NODS

complex indirectly through synemin, syncoilin and dysbindin

[46]. Therefore, we examined whether desmin expression

influenced the restoration of the NODS complex (Fig. S4).

We found that utrophin was expressed on the sarcolemma of 4-

week-old mdx4cv soleus muscles with minimal expression of the

NODS complex (Fig. S4). Thus, the lack of the NODS complex

on the sarcolemma of dko skeletal muscle fibers did not result

from the absence of desmin.

Structural/functional changes in dko skeletal muscles
We next examined whether diaphragm function in the dko

was influenced by structural defects within and around the

muscles. We measured the specific contractile force of

diaphragm strips in vitro. We found that the specific force

production of the desmin2/2 diaphragm was similar to wild-

type at 11 weeks of age (Fig. 9A). In contrast, the specific force

production of both mdx4cv and dko diaphragms were signifi-

cantly diminished (Fig. 9A; P,0.001). Detailed histological

analyses of the mdx4cv and dko diaphragms revealed that

utrophin colocalized with a-sarcomeric actin in a costameric

lattice (Fig. 9B). However, the alignment of a-sarcomeric actin

in the dko was severely perturbed similar to the rectilinear

pattern of utrophin (Fig. 9B). Electron microscopy analyses

revealed that the sarcomeres aligned in wild-type muscles, but

this alignment was impaired in desmin2/2 muscles (Fig. 9C),

as previously described [44,45]. The alignment of sarcomeres

in mdx4cv myofibers was similar to wild-type (Fig. 9C).

However, the alignment of sarcomeres in the dko was severely

impaired within and between individual muscle fibers (Fig. 9C).

Gross histological analyses of the diaphragm revealed a 1.83-

fold increase in the deposition of collagen in desmin2/2

compared to wild-type (P,0.05; Fig. 9D,E). The mdx4cv

diaphragms were significantly larger and contained propor-

tionally more collagen than wild-type (4.05-fold increase; P,

0.001) and desmin2/2 controls (2.21-fold increase; P,0.001;

Fig. 9D,E). The dko diaphragm was similar in size to the wild-

type and desmin2/2 controls (Fig. 9D), but contained

proportionately similar amounts of collagen as the mdx4cv

diaphragm (28% in the dko compared to 29% in mdx4cv;

Fig. 9D,E). Together, these results demonstrate that the

impaired respiratory function in the dko mice resulted, at

least in part, from the impaired alignment of sarcomeres and

deposition of collagen between the myofibers in the dia-

phragm.

Discussion

Increasing utrophin expression is a promising target for treatment

of DMD [33]. While the downstream signaling pathways that

influence utrophin expression are well described [33,38,39], the

upstream mechanisms are less clear. Here, we found that perturbing

the highly ordered structure of striated muscle by genetically deleting

desmin from mdx4cv mice increased utrophin expression to levels that

prevented skeletal muscle necrosis. We report a ,2.5-fold increase in

utrophin expression in the dko sarcolemma of 1a, 2a and 2d/x fiber

types, which prevented necrosis by maintaining the integrity of the

sarcolemma. Understanding the structural mechanisms that influence

Figure 7. Regenerative capacity of muscle. A) Transverse sections of uninjured (Day 0) or injured gastrocnemius muscles 4 days and 6 days post
notexin administration. Sections stained with hematoxylin and eosin are shown in the left columns and developmental myosin heavy chain (green),
a2-laminin (red) and DAPI (blue) are shown in the right columns. Scale bar = 50 mm. B) Bars represent the mean +/2 S.D. of the total number of
regenerating fibers in the uninjured gastrocnemius muscles (Day 0). ***P,0.001 compared with wild-type muscles and ##P,0.01 compared with
mdx4cv muscles. N = 4 mice for all experiments.
doi:10.1371/journal.pgen.1004431.g007
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utrophin expression in the dko skeletal muscles may contribute to

development of a therapy for DMD.

Potential mechanisms that influence utrophin expression
in the dko muscles

We found that the onset of necrosis in the mdx4cv gastrocnemius

muscles was coincident with the loss of utrophin expression from

the maturing fibers (Fig. 4), as previously described [22,36]. MyoD

initiates skeletal muscle differentiation and maturation by activat-

ing many skeletal muscle genes and suppressing others [62]. MyoD

activates the transcription of miR-206, which targets the utrophin

mRNA for degradation leading to the loss of utrophin expression

from the sarcolemma and its replacement by dystrophin [63].

Analysis of C2C12 cells suggests that several other miRNAs may

also repress the expression of utrophin [64]. The loss of utrophin

expression from the sarcolemma of maturing fibers was delayed in

desmin2/2 muscles and prevented in the dko muscles. It will be

interesting to test whether desmin can influence the expression,

trafficking, or function of miRNA’s that knock-down utrophin

expression.

An alternate possibility is that an early pulse in utrophin

transcription [65] increased utrophin expression to levels that

could overcome the knockdown effects of the miRNA’s. Muscle

contraction can change the shape of nuclei [66], which can change

gene expression [67–69]. Desmin interacts with myonuclei via

plectin and lamin A/C [70–72]. The myonuclei in the desmin2/2

muscles remain oval shaped in response to muscle contraction

[66]. This could potentially lead to the persistence of a

developmental gene expression program that underlies the

increased utrophin expression in the dko.

Utrophin is normally expressed at low levels on the sarcolemma of

the slower oxidative fibers in wild-type mice [73]. Inducing the

oxidative myogenic program can alleviate the dystrophic pathology in

mdx mice by stimulating utrophin expression. For instance, activation

of PGC1a [74–76], calcineurin A/NFAT [77–80], GA binding

protein [74], Ca2+/calmodulin [81], AMP activated protein kinase

[82], and the transcriptional activator PPARb/d [83] can each induce

the slow oxidative program in mdx muscle and increase utrophin

expression. Metabolic changes to the muscle can also influence

utrophin expression [84]. While we found no significant change in

fiber-types when comparing mdx, desmin2/2 and dko soleus muscles

(Fig. S3), we did find utrophin expression on the extrasynaptic

sarcolemma of 1a, 2a and 2d/x fiber-types, but not in the fast 2b

fibers. Thus, our results are consistent with the activation of the slower

oxidative myogenic pathways that can induce utrophin expression.

Figure 8. Localization and expression of b-dystroglycan and the NODS complex in skeletal muscles. A) Adjacent sections of
gastrocnemius muscles showing the localization of b-dystroglycan and the NODS complex at the sarcolemma of wild-type, desmin-/-, mdx4cv and dko
skeletal muscles. Scale bar = 50 mm. B) Western analysis of quadriceps muscles reveals an increase in expression of DGC proteins in the desmin-/- and
a reduction in the mdx4cv and dko muscles. a-DB is a-dystrobrevin and a-sarc. actin is the a-sarcomeric actin loading control. C) Bars show mean +/2
S.D. densitometric quantitation of protein expression graphed as a percentage of wild-type. *P,0.05, **P,0.01 compared to wild-type. N = 4–8 for all
experiments.
doi:10.1371/journal.pgen.1004431.g008
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The absence of desmin in stressed muscle is associated with a shift

in the expression of muscle proteins to those found in slow-twitch

fibers [85,86]. These changes may be mediated in part by changes

in the activity of calcineurin linked to alter myoplasmic Ca2+ levels,

which could result from a loss of local protein kinase A (PKA)

signaling linked to the loss of desmin. The copolymerization of

desmin with synemin in the intermediate filament reticulum

contributes to synemin’s localization around Z-disks [87,88]. As

synemin is an A kinase anchor protein (AKAP) [89] the absence of

desmin in the dko is likely to alter local PKA activity associated with

the sarcomere. Calcium homeostasis is likely to be affected locally as

PKA can regulate many channels and transporters essential for

normal excitation-contraction coupling [90–93]. However, our

finding that the mRNA levels for utrophin do not change in extracts

of dko gastrocnemius muscle, compared to age-matched wild-type,

desmin2/2 and mdx4cv muscles, argue against this mechanism.

While there are various signaling pathways that can activate

utrophin transcription in mdx mice, we found no changes in

utrophin mRNA in the dko total gastrocnemius muscle lysates when

compared to the mdx4cv, desmin2/2 or wild-type muscles. The

persistence of utrophin on the dko sarcolemma of maturing skeletal

muscle fibers is consistent with increased utrophin stability and post-

transcriptional mechanisms. Proteins experimentally over-expressed

within the mdx extrasynaptic sarcolemma such as sarcospan [94,95],

cytotoxic T cell GalNac transferase [96] and biglycan [35] can

stabilize utrophin to prevent skeletal muscle necrosis. RhoA, a small

GTPase also increases utrophin expression without apparently

influencing transcription [97]. Stabilizing RNA, a known function

for the type III intermediate filament protein vimentin [98], is

another potential mechanism that can increase utrophin expression

without changing transcription [99,100]. Desmin may also influ-

ence protein degradation pathways by trafficking lysosomes through

the muscle via its interaction with myospryn [101,102].

The lack of NODS expression may impair the therapeutic
efficacy of utrophin in the dko

Increasing utrophin expression by increasing utrophin tran-

scription or stabilization can restore the expression of the DGC

to the sarcolemma [53,96,103–105], except for nNOS [106]. We

found that utrophin was able to concentrate b-dystroglycan to

the sarcolemma in the dko 1a, 2a and 2d/x fiber types. However,

the expression of the NODS sub-complex was not restored in the

dko muscles. nNOS influences blood flow to the skeletal muscles

and can lead to hypoxic stress injury post-exercise [12].

However, the long-term effects of the lack of nNOS are difficult

to predict considering Becker muscular dystrophy patients

expressing truncated dystrophins can have a mild phenotype

without restoring nNOS to the sarcolemma [12,107]. The low

level of a-dystrobrevin on the sarcolemma may have contributed

to the low level of central nuclei in the dko mice, as a-

dystrobrevin2/2 mice have a mild dystrophy and residual

expression of a2-dystrobrevin mitigates the dystrophic pathology

in mdx muscles [13]. While a1-syntrophin is an important

Figure 9. Impaired diaphragm function in the dko correlates with loss of sarcomere alignment and deposition of collagen. A) Mean
+/2 S.D. specific force of diaphragm strips in vitro from wild-type (n = 6), desmin2/2 (n = 5), mdx4cv (n = 5) and dko (n = 5) mice. B) Utrophin A
colocalizes with a-sarcomeric actin in longitudinal sections. Note the misalignment of a-sarcomeric actin and utrophin A in the dko myofiber. Scale
bar = 6 mm. C) Electron microscopy of longitudinal sections of diaphragm muscle demonstrating the alignment of sarcomeres in wild-type and mdx
mice (arrows). Note the alignment of sarcomeres is perturbed in desmin2/2 muscles (arrows) and severely impaired in the dko muscles (arrows point
to misalignment of sarcomeres while the arrow head points toward a hyper-contracted myofiber). Scale bars = 2 mm. D) Sirius red staining of
collagen in transverse frozen sections of the wild-type (n = 8), desmin2/2 (n = 9), mdx4cv (n = 5) and dko (n = 5) diaphragms. Scale bar = 100 mm. E)
Mean +/2 S.D. of Sirius red staining as a proportion of the muscle area. *P,0.05, ***P,0.001 compared to wild-type, @@@P,0.001 compared to
desmin2/2.
doi:10.1371/journal.pgen.1004431.g009
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adapter protein that is required for the localization of nNOS and

aquaporin to the sarcolemma of striated muscle [108,109], its

role in the pathogenesis of DMD is unclear. The low level of the

NODS complex in the dko muscles did not result from the lack of

desmin (Fig. S4). Thus, the low level of central nuclei (,9%) in

the dko muscle fibers with extrasynaptic utrophin likely resulted

from the lack of desmin in combination with the reduced

expression of the NODS complex from the extrasynaptic

sarcolemma.

Utrophin-independent mechanisms influence dystrophic
pathology

We found that the dystrophic pathology in the fast 2b fibers

was also improved in the dko despite a significant reduction in

extrasynaptic utrophin expression when compared with mdx4cv

fast 2b fibers. Most striking was the fact that utrophin expression

was reduced in the extrasynaptic sarcolemma of regenerating fast

2b fibers in the dko. However, we found no overt change in the

regenerative capacity of the muscle stem cells in the dko

gastrocnemius muscles injured with notexin. In contrast, Agbulut

and colleagues found that desmin2/2 muscles injured with

cardiotoxin displayed persistent expression of developmental

myosin, small caliber fibers and the infiltration of adipocytes

[59]. Here, we found no evidence of increased adipocytes in the

desmin2/2 or dko muscles. Therefore, the discrepancy between

our studies may have resulted from the different myotoxins. In

any case, we found a significant reduction in the number of

necrotic fibers in the dko supporting a mechanism that prevents

dystrophy rather than influencing regeneration. Desmin is also

likely to play a structural role in linking the contractile apparatus

to the sarcolemma [47,52,101] and in regulating the passive

mechanical properties of skeletal muscle [66,110]. We found that

utrophin could form costameric striations with a-sarcomeric actin

in dko mice, but the rectilinear pattern was severely impaired.

The exacerbated loss of sarcomere alignment in dko diaphragms

suggests the absence of desmin and potentially the NODS

complex could weaken the sarcomeric connections to the

membrane. However, it is important to note that the specific

force production of mdx4cv and dko diaphragms was comparable.

The mdx4cv mice have a compensatory hypertrophy that can

potentially maintain peak force production [111]. However, the

dko diaphragms lack this cellular hypertrophy suggesting that the

impaired diaphragm function could contribute to the respiratory

distress and shortened lifespan. Considering the dko mice die

prematurely from apparent cardiorespiratory failure, it is possible

that reduced mobility in the cage could mitigate contraction-

induced injury to the muscles. We are currently investigating

whether desmin influences contraction-induced injury to the

sarcolemma in mdx4cv muscles.

Conclusion
In conclusion, we report a significant increase in utrophin

expression in dko skeletal muscles that prevented necrosis in a

fiber-type specific manner. The fact that utrophin expression was

elevated ,2.5-fold on the dko sarcolemma when compared with

mdx4cv muscles is of considerable interest for developing

treatments for DMD [26]. Clearly, deleting desmin is not a

therapeutic option for DMD as the dko mice die from apparent

cardiorespiratory distress, but understanding the upstream

mechanisms that influence utrophin expression may lead to

novel treatment strategies for DMD. Furthermore, an utrophin-

mediated therapy developed from the dko mice would treat all

muscle fiber-types in the human as humans lack the fast 2b fiber

types. Considering desmin functions to maintain the highly

ordered structure of striated muscles [44,45], it is likely that

utrophin expression in the dko is initiated by changes to muscle

structure/signaling relationships. We also found that utrophin-

independent mechanisms were improving the dystrophic pathol-

ogy in dko fast 2b fibers, which will be of interest for

understanding the pathophysiology of DMD. Thus, the dko mice

may provide new insights into the regulation of utrophin

expression that are relevant for the treatment of DMD.

Materials and Methods

Mice and ethics statement
We utilized C57Bl/6 wild-type mice, desmin2/2 mice, mdx4cv

mice and mdx:desmin dko mice. All experiments were in

accordance with the Institute of Animal Care and Use Committee

of the University of Washington. The desmin2/2 mice were a kind

gift from Professor Yassemi Capetanaki. We generated the dko

mice by first backcrossing the desmin2/2 mice from the FVB

strain to the wild-type C57Bl/6 strain for five generations (N5).

The resulting desmin2/2 mice on the C57Bl/6 strain were then

inbred for at least four generations to obtain desmin2/2 controls

(.F4) or they were crossed with the mdx4cv strain on the C57Bl/6

background and inbred for at least four generations to obtain the

dko mice (.F4). Therefore, the mice generated for this study were

B6.FVB-Desmin and B6.FVB-Desmin-mdx4cv incipient congenic with

,96.9% homozygosity with the C57Bl/6 background. We

genotyped the mice using standard PCR for desmin and

performed sequence analysis of the mdx4cv genomic DNA to avoid

potential false positives as previously described [112]. The

desmin2/2 and dko mice were sacrificed if they lost body mass

or exhibited signs of cardiorespiratory distress. Kaplan-Meyer

survival analysis was performed with 16 desmin2/2 male mice and

13 dko male mice.

Diaphragm function
The diaphragm physiology was performed as previously

described [113]. Briefly, the diaphragm from wild-type (n = 6),

desmin2/2 (n = 5), mdx4cv (n = 5) and dko (n = 5) was placed in

oxygenated KREBS (2 mM Ca2+, 24 mM NaHCO3, 137 mM

NaCl, 5 mM KCl, 1 mM MgSO4, 1 mM NaH2PO4, D-Glucose).

Strips of the diaphragm were dissected and the optimum length

and peak tetanic contractile force was measured over 350 ms.

Because the diaphragm strips vary in size, a direct comparison of

peak contractile force is not plausible. After contraction, the

diaphragm strip is weighed and specific force was calculated as

peak tetanic force production 6 length 6 density (1.04) 6
pennation (1 for the diaphragm)/muscle mass.

Costamere analysis
Costamere analysis was performed as previously described

[52]. Briefly, the mice were anaesthetized with 2,2,2-tribro-

moethanol (Sigma) and perfused with 2% paraformaldehyde

(Electron microscopy sciences). The muscles were incubated in

2% paraformaldehyde for 2 hours at 4uC, then washed 3 times

with 16PBS, and incubated in 10% sucrose for 1 hour at 4uC,

and then 20% sucrose overnight at 4uC. The muscles were

then placed in cryovials and flash frozen in liquid N2. The

frozen samples were placed on a frozen chuck with OCT and

40 mm thick sections were cut using a cryostat. The sections

were immunostained with 1:800 utrophin A polyclonal

antibody (kind gift from Stanley Froehner) and 1:500 a-

sarcomeric actin monoclonal antibody (SIGMA). The thick

sections were imaged using a Leica SP5 confocal microscope.
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Electron microscopy
The electron microscopy was performed on longitudinal

sections of diaphragm muscle as previously described [114].

Histology
Muscles were frozen directly in OCT cooled in 2-methylbutane

in liquid N2. Ten micrometer transverse sections of skeletal

muscles were stained with hematoxylin and eosin, alizarin red and

Sirius red using manufacturer protocols (Electron Microscopy

Sciences; Hatfeild, PA). The Sirius red staining of collagen was

measured using the manufacturers protocols in Image J analyses

software. Transverse frozen sections were also immunostained as

previously described [40]. Briefly, the sections were incubated in

blocking buffer (1% BSA, 0.05% Triton X-100 in 16 phosphate

buffered saline (PBS)) for 30 minutes and immunostained with

antibodies to desmin (1:50; DAKO Corp), N-terminal dystrophin

antibody (1:800), utrophin (1:800), a-dystrobrevin 1 (1: 500), a-

dystrobrevin 2 (1:1000), a1-syntrophin (1:500; the latter four

antibodies were kind gifts from Stanley C. Froehner), b-

dystroglycan (1:100; Transduction Laboratories), MHCd (1:40;

Novocastra), a2-laminin (1:800; Sigma) or nNOS (Zymed; 1:100)

for 1 hour. The sections were washed 3 times in 16 PBS for 10

minutes each and incubated in Alexa-488, Alexa-555, Alexa-594

or Alexa-647 secondary antibodies for 30 minutes (1:800; Invitro-

gen). To label necrotic fibers we immunostained the muscles with

mouse IgG1 antibodies conjugated to Alexa 488 (1:800; Invitrogen).

For labeling of acetylcholine receptors we incubated the sections in

a-bungarotoxin conjugated to TRITC for 1 hour (1:800; Invitro-

gen). The sections were washed 3 times for 10 minutes each and

coverslipped with ProLong Gold mounting medium containing

DAPI (Invitrogen). Muscle fiber typing was performed using

conjugated monoclonal antibodies as previously described [115].

Sections were imaged with either a Leica SP5 confocal (Fig. 1, 3, 6),

Nikon eclipse E1000 (Fig. 2, 7, 8) or an Olympus SZX16 dissection

fluorescent microscope (Fig. 4, 5).

Quantitation of utrophin staining of muscle sections.
Quantitation of maximal sarcolemmal utrophin fluorescence

intensity was performed as previously described for dystrophin

[116]. Briefly, gastrocnemius muscle sections and images were

processed identically for quantitation. We utilized the FIJI analyses

software to quantitate maximal fluorescence intensity. The

utrophin fluorescence intensity on the wild-type sarcolemmal

was used as a negative control and the utrophin fluorescence

intensity at the wild-type synapse was used as the peak of

detection. We drew a line across the images to ensure unbiased

quantitation and measured the peak fluorescent intensity that

coincided with extrasynaptic sarcolemma staining. The sarcolem-

mal utrophin fluorescence intensity from mdx4cv, dko and

microutrophinDR4–R21 treated mdx:utrophin double knockout

muscles all fell within these limits. The mean +/2 S.D.

fluorescence intensity from n = 4 mice from 92 wild-type, 99

desmin2/2, 100 mdx4cv, 112 dko, and 77 microutrophinDR4–R21

treated mdx:utrophin double knockout myofibers were compared.

Evans blue dye
The mdx4cv and dko mice (n = 4) were administered 200 ml of

0.22 mm filter sterilized 1% (w/v) EBD solution in HBSS

intravenously by retro-orbital injection. Mice were sacrificed

3 hours after EBD administration. The gastrocnemius muscles

were frozen in OCT in 2-methylbutane in liquid N2. Ten

micrometer sections were cut and stained for utrophin (1:800; kind

gift from Stanley Froehner). Utrophin was labeled with Alexa-488

goat anti-rabbit secondary antibody (Invitrogen). The sections

were viewed and imaged using the Olympus SZX16 dissection

fluorescent microscope.

Muscle fiber regeneration
The gastrocnemius muscles of wild-type, desmin2/2, mdx4cv and

dko (n = 8) were administered 30 ml of 1 mg/ml notexin in PBS at

11 weeks of age. The mice were sacrificed 4 days (n = 4) and 6 days

(n = 4) post-injury. The gastrocnemius muscles were frozen in

OCT. Ten micrometer sections were immunostained with a2-

laminin (1:800; Sigma) and developmental myosin heavy chain

(1:40; Novocastra) and directly compared to adjacent sections

stained with hematoxylin and eosin. Considering monoclonal

antibodies can label necrotic fibers, we defined regenerating fibers

as those fibers that expressed developmental myosin heavy chain

and contained centrally located nuclei.

Immunoblotting
Western blots were performed on whole muscle lysates as

previously described [40]. Briefly, the gastrocnemius muscles of 3

and 11-week-old wild-type, desmin2/2, mdx4cv and dko (n = 6) were

ground in liquid N2 and homogenized in extract buffer (50 mM

Tris-HCl, 150 mM NaCl, 0.2% SDS, 24 mM Na Deoxycholate,

1% NP40, 47.6 mM Na Fluoride, 200 mM Na Orthovanadate,

Roche). Protein concentration of whole muscle was determined by

Coomassie Plus Bradford Assay (Pierce). Equal amounts of protein

(10 mg) were resolved on a 4–12% SDS polyacrylamide gel. The

blots were incubated in utrophin (1:1000; kind gift from Stanley C.

Froehner) overnight at 4uC. The a-sarcomeric actin primary

antibody (1:500; Sigma) was used as a loading control as its

expression was unchanged when comparing the different strains of

mice, as previously described for wild-type versus mdx4cv [40,117].

We also loaded 20 mg of total protein to compare the expression of

desmin, b-dystroglycan (1:100; BD Transduction laboratories), a1-

syntrophin (1:500; kind gift from Stanley C. Froehner), pan a-

dystrobrevin (1:1000; BD Transduction laboratories) primary

antibodies. The primary antibodies were detected with IgG HRP

secondary antibodies (1:6000; Jackson ImmunoResearch Labs).

The blots were developed with ECL plus (Pierce) and scanned with

the Storm 860 imaging system (Amersham Biosciences). The band

intensity was measured using Image J software (NIH). The relative

amount of utrophin in each blot was determined using a non-linear

regression generated by a titration of utrophin from the dko from

1.25 mg up to 20 mg of total loaded protein and examined using the

PRISM statistics software (Figures S1, S2; n = 4 for wild-type and

desmin2/2 and n = 8 for mdx4cv and dko samples).

Real time PCR
To isolate the RNA, approximately 20 mg of gastrocnemius

muscle previously ground by mortar and pestle in liquid N2 was

used to extract total RNA following manufacturers instructions

(TRI Reagent, Molecular Research Center). We used gastrocne-

mius muscles from 11 week old (Fig. 3D) or 3 week old mice

(Fig. 4C). The pelleted RNA was suspended in 50 ml nuclease free

elution solution (Ambion, Austin, TX). Five mg of total RNA was

treated with Turbo DNA-free (Ambion, Austin, TX) in order to

remove trace amounts of contaminating DNA. The DNAase

Treated RNA (0.5 mg) was diluted to 8 ml with nuclease free water

followed by use of the SuperScriptTM III First-Strand Synthesis kit

(Invitrogen, Carlsbad, CA) to generate cDNA. Subsequently 2 ml

of the cDNA was used for qPCR with utrophin primer-probe sets.

The mouse utrophin primers sequences were: Forward 59- ACC-

AGCTGGACCGATGGA-39, Reverse 59- CTCGTCCCAGTC-

GAAGAGATCT-39, Probe 59-6FAM- CGTTCAACGCCGTG-
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CTCCACC-39-BHQa1-Q. As a reference gene the oligonucleo-

tide set was used to target the mouse Ywhaz gene sequence

(Tyrosine 3-monooxygenase; [118]): Forward 59- GCTGGTGAT-

GACAAGAAAGGAAT-39, Reverse 59- GGTGTGTCGGC-

TGCATCTC-39, Probe 59-6FAM- TGGACCAGTCACAG-

CAAGCATACCAAGA-39-BHQa1-Q.

Statistics
The data were compared using a one-way ANOVA with a

Tukey post-test that compares all data sets with a Student’s t-test.

The relative amounts of utrophin in western analyses were

determined using a non-linear regression generated from a

titration of utrophin in the dko gastrocnemius muscles (from

1.25 mg–20 mg of total added protein). All data analyses were

performed using the PRISM software.

Supporting Information

Figure S1 A) Western analyses demonstrating a titration of

utrophin and a-sarcomeric actin in n = 4, 11-week-old dko

gastrocnemius muscles. B) Relative amounts of utrophin detected

compared to the total amount of protein loaded onto the blots.

(TIF)

Figure S2 A) Western analyses demonstrating a titration of

utrophin and a-sarcomeric actin in n = 4, 3-week-old dko

gastrocnemius muscles. B) Relative amounts of utrophin detected

compared to the total amount of protein loaded onto the blots.

(TIF)

Figure S3 Graph shows the mean +/2 S.D. percentage of

muscle fiber types in the soleus muscles. There were significantly

more slow 1a fibers in the desmin2/2 (n = 4), mdx4cv (n = 3) and dko

soleus (n = 4) muscles when compared with the wild-type muscles

(n = 3) ***P,0.001. There were also significantly fewer 2a fibers in

the in the desmin2/2, mdx4cv and dko soleus muscles when

compared with wild-type muscles #P,0.05; ##P,0.01; ###P,

0.001.

(TIF)

Figure S4 Desmin expression did not influence restoration of the

NODS complex on the sarcolemma. A) Note that utrophin was

expressed in the sarcolemma of mdx4cv soleus muscles with desmin

at 4 weeks of age, but B) did not restore a1-syntrophin, a-

dystrobrevin 1 or a-dystrobrevin 2 localization. Scale bar

= 50 mm.

(TIF)
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