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The anthracycline doxorubicin (Doxo) and its analogs daunorubicin
(Daun), epirubicin (Epi), and idarubicin (Ida) have been corner-
stones of anticancer therapy for nearly five decades. However,
their clinical application is limited by severe side effects, especially
dose-dependent irreversible cardiotoxicity. Other detrimental side
effects of anthracyclines include therapy-related malignancies and
infertility. It is unclear whether these side effects are coupled to
the chemotherapeutic efficacy. Doxo, Daun, Epi, and Ida execute
two cellular activities: DNA damage, causing double-strand breaks
(DSBs) following poisoning of topoisomerase II (Topo II), and chro-
matin damage, mediated through histone eviction at selected sites
in the genome. Here we report that anthracycline-induced cardio-
toxicity requires the combination of both cellular activities. Topo II
poisons with either one of the activities fail to induce cardiotox-
icity in mice and human cardiac microtissues, as observed for aclar-
ubicin (Acla) and etoposide (Etop). Further, we show that Doxo can
be detoxified by chemically separating these two activities. Anthracy-
cline variants that induce chromatin damage without causing DSBs
maintain similar anticancer potency in cell lines, mice, and human
acute myeloid leukemia patients, implying that chromatin damage
constitutes amajor cytotoxic mechanism of anthracyclines. With these
anthracyclines abstained from cardiotoxicity and therapy-related tu-
mors, we thus uncoupled the side effects from anticancer efficacy.
These results suggest that anthracycline variants acting primarily via
chromatin damagemay allow prolonged treatment of cancer patients
and will improve the quality of life of cancer survivors.

doxorubicin | cardiotoxicity | therapy-related tumors | chromatin
damage | DNA damage

The anthracycline doxorubicin (also known as Adriamycin,
Doxo) and its analogs daunorubicin (Daun), epirubicin

(Epi), and Idarubicin (Ida) are widely used in the treatment of
various hematologic malignancies and solid tumors, as mono-
therapies or main ingredients in combination therapies with
other drugs or antibodies (1, 2). As with many other chemo-
therapeutics, anthracyclines can cause severe side effects in pa-
tients, most notably, dose-dependent irreversible cardiotoxicity,
which can be lethal. Upon reaching the maximal cumulative
dose, alternative treatment strategies are needed if any are
available (3–5). The risk of cardiotoxicity increases with age
extremes (6) and also limits anthracycline treatment of recurring
tumors, even if these drugs could still be effective (7–10). As a
result, elderly cancer patients with a “weak heart” are often ex-
cluded from chemotherapy regimens containing anthracyclines

(11, 12). Moreover, combination with other drugs or radiother-
apy in the heart region further increases the incidence of
anthracycline-related cardiotoxicity (13).
Besides cardiotoxicity, Doxo causes other serious side effects.

Particularly devastating are therapy-related tumors (14, 15).
Roughly 1 to 3% of juvenile patients and 0.2 to 1% of breast
cancer patients develop therapy-related tumors within 5 y after
the initial anthracycline-containing treatment (16, 17). Therapy-
related tumors are frequently associated with high-risk cytoge-
netics with a significantly lower rate of complete remissions
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(CRs) than de novo tumors (18–20). The third major side effect
impacting quality of life is infertility (21). Therefore, sperm or
ova of young cancer patients are frequently collected and pre-
served prior to anthracycline-based chemotherapy for later
fertility treatment.
It is unclear whether the anticancer activities of anthracyclines

are intimately coupled to their various side effects. The anthra-
cyclines are topoisomerase II (Topo II) poisons, whereby they
induce DNA double-strand breaks (DSBs) (22). While Doxo and
related anthracyclines show high efficacy in the clinic, etoposide
(Etop), a structurally unrelated Topo II poison which also gen-
erates DSBs (23), is significantly less potent in tumor control (24,
25) and less cardiotoxic (26). This suggests that DNA damage as
a result of Topo II poisoning does not fully account for the
clinical effects and cardiotoxicity. More recently, anthracyclines
unlike Etop have been shown to evict histones from particular
regions in the genome (24, 27, 28). Histone eviction by anthra-
cyclines has multiple consequences, including epigenomic and
transcriptional alterations and attenuated DSB repair, collec-
tively referred to as chromatin damage (24, 29). These studies
identified a variant anthracycline, aclarubicin (Acla), that evicts
histones but fails to induce DSBs (24, 29). This drug is an ef-
fective anticancer drug, particularly for the treatment of acute
myeloid leukemia (AML) (7, 30, 31).
Here, we reveal that the combination of DNA and chromatin

damage assembled in Doxo and its variants is responsible for the
different side effects. By understanding the effective chemical
structure of each activity, we synthesized and identified analogs
that failed to induce DSBs, but maintained histone eviction ac-
tivity. These analogs abstained from causing therapy-related tu-
mors and cardiotoxicity in mice and human cardiac microtissues,
while retaining significant anticancer activity. This suggests that
chromatin damage is apparently an important chemotherapeutic
activity of anthracyclines, which—when separated from DSB
formation—can ameliorate treatment-limiting side effects in
mice. Consequently, anthracyclines can be detoxified by chemi-
cally removing the DNA-damaging effect while maintaining their
chromatin-damaging activity. This provides different strategies
for anthracycline development and a rationale for a more intense
and broader application of anthracycline variants in the clinic.

Results
The Combination of DNA- and Chromatin-Damaging Activities Accelerates
Tumor Formation and Causes Tissue Toxicities in Mice. In addition to
treatment-limiting cardiotoxicity, Doxo-containing chemotherapy in-
duces treatment-related tumors in close to 1% of cancer survivors (16,
17). To explore the molecular basis of the different side effects of
anthracyclines, we tested the in vivo carcinogenicity and cardiotoxicity
of Doxo, in parallel with its analog Acla, capable only of chromatin
damage, and Etop—a nonanthracycline drug proficient in DSB in-
duction via Topo II but incapable of chromatin damage (24). Trp53+/−

FVB mice [a spontaneous mouse tumor model (32–34)] were treated
six times at 2-wk intervals with Doxo, Acla, Etop, or saline at a drug
dosage and treatment schedule corresponding to standard patient
therapy (24, 35). As in clinic practice, animals recovered from drug
treatment within the 2-wk intervals, and no death was caused by acute
toxicities. These mice were then followed for tumor development and
long-term toxicities up to 72 wk (Fig. 1A). Doxo-treatedmice presented
accelerated death due to tumor formation, excluding 10 out of
32 Doxo-treated mice, who died from cardiotoxicity prior to de-
velopment of detectable tumors. In contrast, Acla-treated mice
showed attenuated spontaneous tumor formation, while Etop
treatment moderately accelerated this process (Fig. 1 B and C).
Since DNA mutations are a major driver of cancer (36), the dif-
ference in tumor formation for the three drugs could be a dose-
dependent result of DNA errors introduced during inaccurate
damage repair. Although Doxo and Etop both induce DSB, the
damage is further exacerbated by the chromatin-damaging activity

of Doxo (24). Detailed histopathological analysis revealed that,
among a variety of tumor types developed in Trp53+/− mice, high
incidence of breast cancer was observed in 65% (11 out of 17) of
Doxo-treated female mice, while the tumor spectra of Etop- and
Acla-treated mice were comparable to that of saline-treated mice
(SI Appendix, Table S1 and Fig. S1 A and B). This observation may
explain the increased risk for breast cancer observed in juvenile
cancer survivors with a history of anthracycline-based therapies
(37, 38). Hence, the combination of DSB formation with chro-
matin damage induction, as for Doxo, enhances tumor forma-
tion, while removal of this, as for Acla, alleviates induction of
therapy-related tumors.
Similar to human patients (3, 39), cumulative dose and male

gender were also risk factors for Doxo-induced cardiotoxicity in
mice (SI Appendix, Fig. S1 C–G). Histopathological analysis
revealed substantial and exclusive heart damage in 78.1% of
Doxo-treated mice, commonly presented as thrombus formation
in the left atrium and auricle of the heart accompanied by in-
flammation and fibrosis (40, 41) (Fig. 1 D–F and SI Appendix,
Fig. S1H). Sirius Red staining highlights these lesion areas
showing increased levels of collagen (Fig. 1 G and H), while
further staining for desmin, vimentin, and periostin showed im-
pairment of myocytes (SI Appendix, Fig. S2 A and B) and in-
creased fibrous stroma (SI Appendix, Fig. S2 C–I). Up-regulation
of periostin was also observed in the myocardium of ventricles in
Doxo-treated mice, particularly, in the left ventricles and sep-
tums (SI Appendix, Fig. S2 F and I). These alterations are known
to be associated with anthracycline-induced chronic cardiotox-
icity (42, 43). Postmortem histopathological analysis of all other
major organs revealed severe dose-dependent effects on sper-
matogenesis in Doxo-treated male mice only (Fig. 1I and SI
Appendix, Fig. S2 J–P), another known side effect of anthracy-
clines. These mouse experiments recapitulate three foremost
long-term side effects of Doxo known in human patients and
other animal models, suggesting that uncoupling DNA- from
chromatin-damaging activity of anthracyclines could alleviate
side effects, as this combination is absent in Etop and Acla.

Chromatin- and DNA-Damaging Activities Can Be Uncoupled in
Anthracyclines. The anthracyclines Doxo, Daun, Epi, and Ida all
combine DNA-damaging and chromatin-damaging activities
(24). A recently developed anthracycline analog, amrubicin
(Amr), was reported with limited cardiotoxicity (44). We tested
the DNA- and chromatin-damaging activities of Amr at physio-
logically relevant concentrations (24, 45). DNA damage was vi-
sualized by constant-field gel electrophoresis (CFGE) (46, 47),
comet assay (48), and phosphorylation of H2AX at Ser139
(γH2AX) (49). Amr, Doxo, Daun, Epi, Ida, and Etop all induced
DSBs, unlike Acla (Fig. 2 A–E and SI Appendix, Fig. S3 A–C).
Subsequently, chromatin damage was detected after photo-
activation of green fluorescent protein-labeled histone H2A
(PAGFP-H2A) in living cells (24). Only Amr and Etop failed to
evict histones (Fig. 2 F and G, SI Appendix, Fig. S3D, and Movie
S1). The anthracycline Amr thus mimicked Etop, which only
induces DSBs. Amr and Etop both have limited cardiotoxicity
(26, 44, 50), again suggesting that DNA damage alone is in-
sufficient to induce cardiotoxicity.
Relocation of the amine group from the sugar (as found in

Doxo) to the tetracycline moiety in Amr disabled histone evic-
tion (Fig. 2A), but still allowed induction of DSBs, suggesting
that the amine on the sugar of Doxo is crucial for evicting his-
tones. Furthermore, Acla whose amine group is present at the
same position but in a dimethylated form exhibited only
histone eviction activity without DSB induction (Fig. 2 A–G). To
identify the structural basis of these two cellular activities of
Doxo, we synthesized and tested N,N-dimethyldoxorubicin
(diMe-Doxo) (Materials and Methods and SI Appendix, Method
S1). N,N-dimethylation of the amine group in Doxo abolished
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DNA-damaging activity at various concentrations (Fig. 2 A‒E
and SI Appendix, Fig. S3 A‒C), while still allowing histone
eviction (Fig. 2 F and G, SI Appendix, Fig. S3 E‒I, and Movie
S2). Further, the evicted H2B accumulated in the cytosolic
fraction upon treatment of Doxo, diMe-Doxo, and Acla but not
for Amr and Etop (Fig. 2 H and I and SI Appendix, Fig. S4 A and
B). The diMe-Doxo still relocated Topo IIα-GFP to chromatin
(SI Appendix, Fig. S4C), indicating that Topo IIα was trapped by
the drug before the generation of DSB. These data suggest that
manipulating the position and modification of the amine group
in Doxo allows separation of the DNA-damaging and chromatin-
damaging activities.
We then tested the relative contributions of DNA damage and

chromatin damage to the anticancer effects of Doxo by assaying
the cytotoxicity of these variants in different cancer cell lines

(Fig. 2 J and K and SI Appendix, Fig. S5A). The diMe-Doxo
showed comparable or even superior effects in most cell lines
tested compared to Doxo (14 out of 20), while Amr was poorly
cytotoxic (Fig. 2J). This increased potency of diMe-Doxo in these
cell lines was unexpected, given that this compound lost its
DNA-damaging activity. This enhanced potency could not be
attributed to the rate of drug uptake as analyzed by flow
cytometry following the autofluorescence of the anthracycline
drugs (SI Appendix, Fig. S5B). Reactive oxygen species (ROS)
induced by anthracyclines was observed to be dose dependent
but only at late time point after drug removal (SI Appendix, Fig.
S6 A and B), indicating that it could be a secondary effect of drug
action. ROS can cause many vicious damages, which might be
responsible for the cell death induced by anthracyclines. Al-
though the different anthracyclines induced some increase in
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total ubiquitinated proteins, there was no significant difference
observed for the different drugs (SI Appendix, Fig. S6 C and D).
Besides ROS induction, chromatin damage-induced cell death is
probably executed by classical caspase-dependent apoptosis, as
shown by Poly ADP-ribose polymerase (PARP) cleavage fol-
lowing exposure to these drugs (SI Appendix, Fig. S6 E and F).

Anthracyclines That Only Evict Histones Are Effective in Cancer Treatment.
To assess the importance of chromatin damage for the clinical activity
of anthracyclines, we performed a retrospective analysis in de novo
geriatric AML patients, who were treated with either Ida-based (that

induces both DSBs and chromatin damage) or Acla-based regimens
(with chromatin damage only). Acla is reported to be equipotent to
Daun for AML patients (30, 31); likewise, Acla-based regimen
resulted in overall survival comparable to Ida-based regimen (Fig. 3A
and SI Appendix, Fig. S7A and Tables S2 and S3), indicating that
anthracycline drugs lacking DNA-damaging activity are effective in
cancer treatment. The direct anticancer activity of diMe-Doxo com-
pared to Doxo was evaluated ex vivo in primary human AML blasts
(Fig. 3 B and C and SI Appendix, Fig. S7 B‒H). Although some
patient-to-patient variation existed, Doxo and diMe-Doxo were
equally effective, while Acla appeared more cytotoxic in these
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dose–response experiments (Fig. 3 B and C and SI Appendix, Fig.
S7 B‒H). Chromatin-damaging activity apparently contributes sig-
nificantly to the cytotoxicity of Doxo in treating AML.
The anticancer activity of diMe-Doxo in vivo was tested in an

AML patient-derived xenograft (PDX) mouse model (51) in
comparison to Doxo and Acla (Fig. 3D). Due to severe toxicity,
mice treated with Doxo had to be killed after four courses of
treatment at week 9, unlike mice treated with Acla or diMe-
Doxo (SI Appendix, Fig. S8A), which then received another
four courses of treatment without any signs of toxicity (Fig. 3D
and SI Appendix, Fig. S8B). At week 9, four courses of Doxo
treatment significantly depleted human AML blast cells, hema-
topoietic stem cells (HSCs), and leukemic stem cells (LSCs)
(Fig. 3 E and F and SI Appendix, Fig. S8C), and showed modest
but not significant impact on normal mouse leukocytes (SI Ap-
pendix, Fig. S8D). The diMe-Doxo and Acla did reduce the
leukemic burden, albeit less efficiently than Doxo (Fig. 3 E and
F). With extended treatment of diMe-Doxo and Acla, most
proliferating fractions of human hematopoietic cells were sig-
nificantly reduced in mice (Fig. 3G and SI Appendix, Fig. S8 E‒
H). The PDX experiment suggests that diMe-Doxo has the ca-
pacity to reduce the leukemic burden, the immature LSCs, and
leukemic progenitors in vivo with less hematopoietic toxicity
compared to Doxo. Subsequently, we tested a solid colon car-
cinoma tumor mouse model for the efficacy of the different
anthracyclines that either do or do not induce DSBs (Fig. 3H).
Both diMe-Doxo and Acla showed significant tumor control,
although Doxo was slightly but not significantly better at re-
ducing the tumor growth at equal dose (Fig. 3I). A higher dose of
diMe-Doxo and Acla resulted in equal tumor control (Fig. 3J).
Taken together, Acla and diMe-Doxo (with chromatin-damaging
activity only) are effective anticancer drugs in vitro and in vivo,
suggesting that chromatin damage could provide a major con-
tribution to the mechanism of anthracycline cytotoxicity.

N,N-dimethylation of Doxo Prevents Cardiotoxicity. Since diMe-
Doxo resembles the activity of Acla in terms of evicting his-
tones while not causing DSBs (SI Appendix, Fig. S9A), we won-
dered whether this also translates into reduced side effects. To
address this, wild-type FVB mice were intravenously (i.v.) in-
jected with Acla, Doxo, or diMe-Doxo every 2 wk (Fig. 4A).
Mouse body weight was monitored as a representative parameter
of general toxicity prior to each injection (35). While Doxo-
treated mice significantly lost body weight and died from car-
diotoxicity after eight injections, mice treated with diMe-Doxo
remained healthy, with no weight loss or discomfort, even after
15 doses (Fig. 4 B and C and SI Appendix, Fig. S9B). Histopa-
thology demonstrated that Doxo treatment induced severe car-
diotoxicity as observed in Trp53+/− FVB mice (Fig. 1 and SI
Appendix, Figs. S1 and S2). None of the mice treated with either
diMe-Doxo or Acla showed abnormalities in the heart (Fig. 4C
and SI Appendix, Fig. S9 C‒J). The effects on cardiac function of
mice were further evaluated by echocardiography. Doxo treat-
ment resulted in a serious expansion of the left atrium with re-
duced fractional shortening (FS), left ventricular ejection
fraction (EF), and cardiac output unlike any of the other treat-
ments (Fig. 4 D‒G and Movie S3). More direct (acute) cardiac
cell damage and function impairment were assessed using human
induced pluripotent stem cell (hiPSC)-derived cardiac micro-
tissues (52–55). Doxo unlike Acla or diMe-Doxo significantly
affected contraction amplitude and contraction duration 24 h
posttreatment (Fig. 4H, SI Appendix, Fig. S9 K‒N, and Movie
S4). This suggested that cardiotoxicity can be the result from
combining DNA and chromatin damage. This was directly tested
by the combination of Amr (DNA damage only) and Acla
(chromatin damage only), which reduced the contraction am-
plitude to some extent and significantly impaired the velocity of
the microtissues, which reconstituted the cardiotoxicity of Doxo

in hiPSC-derived cardiac microtissues (Fig. 4 I‒K). These dif-
ferences in toxicity of the heart cannot be caused by a different
biodistribution of the drugs, which was comparable for Doxo and
diMe-Doxo (SI Appendix, Fig. S9 K and O). Unlike Acla, diMe-
Doxo affected the male reproductive organs. The diMe-Doxo
depleted spermatogenesis in all male mice and caused some
Leydig cell hyperplasia but to a lesser extent than its parental
drug Doxo, even at higher cumulative dose (SI Appendix, Fig.
S9 P and Q). Significant toxicity in ovaries in young mice at early
time points was observed only for Doxo-treated mice, shown as
increased apoptosis in secondary and tertiary follicles (SI Ap-
pendix, Fig. S9 R‒T). These results indicated that diMe-Doxo
and Acla (with chromatin-damaging activity only) are less toxic
than anthracyclines that induce both DNA and chromatin damage
(such as Doxo), while remaining effective anticancer drugs.

Discussion
About 1 million cancer patients annually receive treatment with
Doxo or its analogs Daun, Epi, or Ida. Unfortunately, anthra-
cyclines cause severe side effects, particularly cardiotoxicity (3, 4).
This side effect excludes (often elderly) patients with compromised
heart function from receiving effective cancer treatments (56).
Understanding and ultimately eliminating the root causes of this
and other side effects of anthracyclines would thus greatly expand
the application of these drugs in cancer treatment.
It has been suggested that ROS formation may be responsible

for cardiotoxicity induced by anthracyclines (57, 58). However,
coadministration of radical quenchers during anthracycline
treatment did not ameliorate cardiotoxicity in clinical studies
(59, 60). Moreover, high redox potential of Acla relative to that
of Doxo or Daun (61) does not match Acla’s lack of cardiotoxic
effects. Our data also show that Acla and diMe-Doxo produce
more ROS compared to Doxo (SI Appendix, Fig. S6A), rather
suggesting that ROS induction cannot explain the differences in
cardiotoxicity of anthracyclines studied here.
Mechanistically, cardiotoxic anthracyclines, such as Doxo,

Daun, Epi, and Ida, constitute multifunctional agents capable of
DNA damage (by poisoning Topo II and DSB formation)
combined with chromatin damage (via histone eviction). The
anticancer effects have been attributed to DNA damage, but the
variants unable to induce DNA damage show equal anticancer
potency in AML treatment. While therapy-related tumors can be
understood as the consequence of delayed and unfaithful DNA
damage repair (24), the cause of cardiotoxicity by anthracyclines
is still unsolved. Failure of removing cardiotoxicity by chemical
modification in the past led to different delivery strategies such
as liposome-encapsulated Doxo, but with modest improvement
and limited use in clinical practice (62). Here we show that
cardiotoxicity associated with Doxo is alleviated in mice treated
with drugs that either induce DSBs (Etop) or evict histones
(Acla, diMe-Doxo). This effect is further confirmed in hiPSC-
derived cardiac microtissues and by echocardiography, collec-
tively implying that the combination of DNA and chromatin
damage induces cardiotoxicity. Although Doxo is an exceptional
drug that shows very similar pharmacokinetics in human and
mouse (63), there remains some distance between our mouse
models and humans. However, the long-term toxicities of Doxo,
cardiotoxicity, infertility, and therapy-related tumorigenesis ob-
served in our mouse models do correlate very well with clinical
observations. With this promising result from mice, effort will be
made to test this concept in other animal models and clinical trial.
Many chemical variations of anthracyclines have been syn-

thesized before, including diMe-Doxo (64, 65). However, these
drugs were only tested for their ability to induce DNA damage,
which was considered the main mechanism of therapeutic effi-
cacy for anthracyclines (66). Since chromatin damage was un-
known at that time (24), many of the variants lacking DNA-
damaging activity were not further developed. We propose
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that, by further understanding the cellular activities of anthra-
cyclines, detoxification of Doxo is possible, which only requires a
minimal chemical modification to remove the DNA-damaging
activity. Such drugs would allow more intense treatment of pri-
mary tumors and continuous anthracycline treatment of relapsed
tumors. Additionally, patients with higher cardiotoxicity risk, who
are now excluded from anthracycline-based cancer treatments,
may benefit from the detoxified anthracyclines. Evaluating old

anticancer drugs with modern technologies may lead to better
understanding of drug activities (such as chromatin damage) that
could then provide strategies for improvement of cancer therapies
as exemplified—in this case—by diMe-Doxo. Chemical dissection
of the cellular activities of Doxo uncovered a mechanism of
action for anthracyclines—chromatin damage—and effective
anticancer drugs devoid of the most critical side effects of
anthracyclines.
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Materials and Methods
Reagents. Doxo and Etop were obtained from Pharmachemie. Daun was
obtained from Sanofi-Aventis. Epi was obtained from Accord Healthcare
Limited. Acla for in vivo mouse experiment was purchased from Shenzhen
Main Luck Pharmaceuticals Inc. All of the drugs were dissolved according to
the manufacturer’s formulation. Amr (sc-207289), Acla (sc-200160, for
in vitro experiments), and Ida (sc-204774) were purchased from Santa Cruz
Biotechnology, dissolved in dimethyl sulfoxide at 5 mg/mL concentration,
aliquoted and stored at −20 °C for further use.

Synthesis of N,N-Dimethyldoxorubicin. All chemicals were used as received
unless stated otherwise. The 1H and 13C NMR spectra were recorded on a
400/100 or 500/125 NMR spectrometer. Chemical shifts (δ) are given in parts
per million relative to tetramethylsilane (TMS) as internal standard. Coupling
constants are given in hertz. All given 13C spectra are proton decoupled. Spin
multiplicities are given as s (singlet), d (doublet), dd (doublet of doublets),
ddd (doublet of doublet of doublets), dt (doublet of triplets), t (triplet), td
(triplet of doublets), dt (doublet of triplets), q (quartet), dq (doublet of
quartets), qd (quartet of doublets), h (heptet) and m (multiplet). All indi-
vidual signals were assigned using two-dimensional (2D) NMR spectroscopy,
HH-COSY (proton-proton correlated spectroscopy), and heteronuclear single
quantum correlation. Flash chromatography was performed on Screening
Device B.V. silica gel 60 (0.04 mm to 0.063 mm). TLC analysis (on Merck silica
gel F254 plates) was followed by detection by ultraviolet absorption (254
nm) where applicable and by spraying with a solution of (NH4)6Mo7O24·H2O
(25 g/L) and (NH4)4Ce(SO4)4·2H2O (10 g/L) in 10% sulfuric acid in water fol-
lowed by charring at 275 °C. Liquid chromatography−mass spectrometry
(LC-MS) standard eluents used were A: 100% H2O, B: 100% acetonitrile, and
C:1% TFA in H2O. A C18 column (4.6 mm D × 50 mm L, 3-μ particle size) was
used. All analyses were 13 min, at a flow-rate of 1 mL/min. High-resolution
mass spectra were recorded on an LTQ-Orbitrap equipped with an electro-
spray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10,
capillary temperature 275 °C) with resolution R = 60.000 atm/z= 400 (mass
range = 150 to 4,000) and dioctylphthalate (m/z = 391.28428) as “lock mass.”
Size‐exclusion chromatography was performed on Sephadex LH20 (eluent
MeOH/DCM, 1:1). Detailed synthesis schemes can be found in SI Appendix,
Method S1.

Cell Culture. K562 (B. Pang, Stanford University, Stanford, CA), THP-1 (ATCC,
Manassas, VA), DU145 (C. Robson, Newcastle University, Newcastle, United
Kingdom), NCI-H358, MBA-MD-468 (R. Bernards, Netherlands Cancer In-
stitute [NKI], Amsterdam, The Netherlands), and Pfeiffer cells (ATCC, Man-
assas, VA) were maintained in RPMI-1640 medium supplemented with 8%
fetal calf serum (FCS). MCF-7 (W. Zwart, NKI, Amsterdam, The Netherlands),
U2OS cells (M. Innocenti, NKI, Amsterdam, The Netherlands), and MC38 cells
(M. Colonna, Washington University School of Medicine, St. Louis, MO) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 8% FCS. MelJuSo cells were cultured in Iscove’s Modified Dulbecco’s
medium (IMDM) supplemented with 8% FCS. UT-SCC-8 cells (R. Grenman,
University of Turku, Turku, Finland) were cultured in DMEM supplemented
with 8% FCS and 1% nonessential amino acid. MelJuSo cells stably
expressing PAGFP-H2A, PAGFP-H3, or PAGFP-H4 were maintained in IMDM
supplemented with 8% FCS and G-418, as described (24). MelJuSo cells were
transiently transfected with a construct encoding Topo IIα-GFP (24). En-
dogenous tagged scarlet-H2B cells were generated using a homology repair
scarlet constructs, which was designed 250 base pairs upstream and down-
stream of the genomic H2BC11 region. The guide RNA (gRNA) target se-
quence was designed by the CRISPOR tool and cloned into the pX330 Cas9
vector. Primers used for the homologous recombination (HR) construct: H2B
homology arm left fwd: CCCACATATGCAAGGTTCTGAAGCAGGTCCAC; H2B
homology are as follows: arm left rev, CCCAGCTAGCCTTAGCGCTGGTGTACT
TGG; H2B homology arm right fwd, CCCAGGTACCACAGTGAGTTGGTTGCA
AAC; H2B homology arm right rev, CCCAGGATCCAACTTATAATAGAAAAT
TTCCCATCTCC. Primers used for the pX330 Cas9 vector are as follows: H2B
gRNA fwd, CACCGACTCACTGTTTACTTAGCGC; H2B gRNA rev, AAACGCGCT
AAGTAAACAGTGAGTC. All cell lines were maintained in a humidified at-
mosphere of 5% CO2 at 37 °C and regularly tested for the absence of
mycoplasma.

Primary Human AML Cells Isolation and Culture. All studies were conducted in
accordance with the Declaration of Helsinki, and the full study protocol was
approved by the Ethics Committee of the Vrije Universiteit Medical Center
(VUmc). At diagnosis, bone marrow (BM) or peripheral blood (PB) from AML
patients hospitalized at the VUmc in Amsterdam, The Netherlands was

collected with informed consent and according to protocols approved by the
Ethics Committee of the VUmc. Mononuclear cells were isolated using Ficoll-
Paque Plus (Amersham Biosciences). Primary AML cells were kept in IMDM
supplemented with 15% BIT9500 (Stemcell Technologies), Pen-Strep, 50 ng/
mL human FLT3 ligand, 20 ng/mL human IL3, and 100 ng/mL human stem cell
factor (PeproTech).

Mouse Experiments for Assessing Drug Toxicities. Mice were housed in in-
dividually ventilated cages (IVC) under specific pathogen-free (SPF) condi-
tions in the animal facility of the NKI (Amsterdam, The Netherlands). All
mouse experiments were performed according to institutional and national
guidelines and were approved by the Animal Ethics Committee of the NKI
(Amsterdam, The Netherlands). Trp53+/− or wild-type FVB mice were bred by
the NKI mouse facility. Trp53+/− FVB mouse strain and genotyping protocol
were as described (32). Mice (10 wk to 11 wk old) were i.v. injected with
5 mg/kg of Doxo, 5 mg/kg of Acla, 5 mg/kg of diMe-doxo, 25 mg/kg of Etop,
or 5 mL/kg of saline every 2 wk for the indicated times. Then tumor for-
mation and animal welfare (weight loss, lethargy, hunched posture, poor
grooming [rough hair coat]) were monitored every other day. When the
tumor diameter exceeded 1 cm or the body weight loss was more than 20%,
the animal was killed by CO2. Subsequently, all organs and tumors were
collected, fixed in EAF fixative (ethanol/acetic acid/formaldehyde/saline at
40:5:10:45 vol/vol), and embedded in paraffin. Sections were cut at 2 μm
from the paraffin blocks and stained with hematoxylin and eosin, Sirius Red,
or indicated antibodies according to standard procedures. Primary anti-
bodies were Desmin (1:200, M 0760, DakoCytomation), Vimentin (1:100,
#5741, Cell Signaling), and Periostin (1:100, ab215199, Abcam). The pathol-
ogy slides were reviewed by an expert mouse pathologist who was blind to
the treatment. Incidence rate (IR = [number of mice with specific side effect
over a time period]/[sum of mice × time at risk during the same time period])
and cumulative incidence (CI = [number of mice with specific side effect at
end time point]/[total number of mice at start]) were calculated for indicated
side effects.

Pharmacokinetics of Anthracyclines in FVB Mice. Mice were housed in IVC
under SPF conditions in the animal facility of the NKI (Amsterdam, The
Netherlands). All mouse experiments were performed according to in-
stitutional and national guidelines and were approved by the Animal Ethics
Committee of the NKI (Amsterdam, The Netherlands). Wild-type FVB mice
were bred by the NKI mouse facility. Female mice (8 wk old) were i.v. in-
jected with 5 mg/kg of Doxo, 5 mg/kg of Acla, or 5 mg/kg of diMe-doxo, with
five mice per group. Four hours postinjection, animals were killed, and then
heart, liver, kidney, spleen, reproductive organ, and plasma was collected.
Hearts were cut into two pieces with coronal section. One piece was fixed in
EAF for γH2AX staining. The other half of the heart and the rest of organs
were weighed and frozen for the pharmacokinetics study. Doxo was mea-
sured by high performance liquid chromatography fluorescence detection as
described before (67). Acla and diMe-Doxo were analyzed by LC-MS/MS.
Sample pretreatment involved protein precipitation with acetonitrile: formic
acid (99:1) containing 500 nM of Doxo as internal standard, followed by
centrifugation (5 min, 20,000 × g) and dilution of the supernatant with
water (1:3). Samples were centrifuged again, and an aliquot of 50 μL was
injected into the LC-MS/MS system. Separation was done using an Extend
C18 column (100 × 2.1 mm). Mobile phase A (0.1% formic acid in water) and
B (methanol) was delivered at 0.4 mL/min at 20%B. Following injection, a
linear gradient to 95%B in 2.5 min was applied, kept at 95% for 2 min, and
then returned to 20%B. The API4000 MS (Sciex) was used in MRM mode;
Acla: 812.5/333.1; diMe-Doxo: 571.9/99.9; and Doxo: 544.4/86.1).

PDX Mouse Model for AML. Mice were housed in IVC under SPF conditions in
the animal facility of the VUmc (Amsterdam, The Netherlands). PDX mouse
experiments were performed according to institutional and national
guidelines and were approved by the Animal Ethics Committee of the VUmc
(Amsterdam, The Netherlands). NOD/SCID/IL2r gamma null mice (Jackson
Laboratory) (6 wk to 8wk old) were i.v. injectedwith 0.7 × 106 primary human
AML cells per mouse 24 h post 200-cGy total irradiation. PB was taken via the
tail vein and analyzed by flow cytometry for human AML cells, defined by >
0.7% of hCD45+ cells. Six weeks after AML injection, mice were i.v. injected
with 1.5 mg/kg of drug or saline weekly for the indicated times. Animals
were monitored every other day. PB was taken from the tail vein and ana-
lyzed by flow cytometry at week 13. After killing, the hearts were collected
for histopathological analysis, and BM was analyzed by flow cytometry.

MC38 Colon Carcinoma Mouse Model. Mice were housed in IVC under SPF
conditions in the animal facility of Leiden University Medical Center (LUMC,
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The Netherlands). Experiments were performed according to institutional
and national guidelines and approved by the Animal Ethics Committee of
LUMC (Leiden, The Netherlands). C57BL/6 female mice obtained from Charles
River Laboratories, 8 wk to 10wk old, were subcutaneously (s.c.) injectedwith
3 × 105 MC38 cells in the right flank of the mice. Tumor size was measured
every 3 d to 4 d using a caliper. Mice were i.v. or retroorbitally injected with
indicated doses of Doxo, Acla, diMe-doxo, or 5 mL/kg of saline every week
for the indicated times. Mice were monitored twice per week. When the tumor
exceeded 500 mm3 or the body weight loss was more than 20%, the animal was
killed by CO2. Then the heart, reproductive organ, and tumor were collected,
fixed in EAF fixative (ethanol/acetic acid/formaldehyde/saline at 40:5:10:45 vol/vol),
and embedded in paraffin for histopathological analysis.

Echocardiography. Mice were housed in IVC under SPF conditions in the
animal facility of LUMC (Leiden, The Netherlands). Experiment was per-
formed according to institutional and national guidelines and approved by
the Animal Ethics Committee of LUMC (Leiden, The Netherlands). Both male
and female FVB N/ctr mice (8 wk old), were i.v. injected with 5mg/kg of Doxo,
5 mg/kg of Acla, 5 mg/kg of diMe-doxo, or 5 mL/kg of saline every week for
eight times. Animal welfare was monitored every other day. In vivo cardiac
function was assessed by transthoracic echocardiograph. Mice were anes-
thetized with 2% isoflurane, depilated, and imaged in a supine position
using a Vevo 3100 high-resolution ultrasound system, equipped with a
40-MHz center frequency linear array transducer (MX550D, FUJIFILM Visu-
alSonics Inc.). Body temperature was kept at 37 °C, cardiac frequency was
monitored with electrocardiogram and maintained between 400 bpm and
600 bpm. B-mode and M-mode echocardiographic images were obtained in
short-axis (SAX) view at the midpapillary muscle level. Data were analyzed
offline using VevoLAB software (FUIJIFILM VisualSonics), and left-ventricular
function was assessed using EF and FS of at least three cardiac cycles on
SAX M mode. To reconstruct the dimensions of the left ventricle and left
atrium, 4D ultrasound imaging was performed by clamping the probe on a
linearly translating step motor and positioning it parallel to the short axis of
the left ventricle. System-integrated triggering between the motor and the
probe resulted in automatically acquired high frame rate (300 frames per s)
cardiac- and respiratory-gated cine loops with a 200-μm step size covering
apex to base, that were spatiotemporally compiled into 4D data. The 3D
images of the left ventricle and atrium were constructed by manual tracing
offline using VevoLAB software (FUIJIFILM VisualSonics).

Western Blot and CFGE. Cells were treated with drugs at indicated doses for 2
h. Subsequently, drugs were removed by extensive washing, and cells were
collected at indicated time points after drug removal and processed imme-
diately for the assay. Cells were lysed directly in sodium dodecyl sulfate (SDS)-
sample buffer (2% SDS, 10% glycerol, 5% β-mercaptoethanol, 60 mM
Tris·HCl pH 6.8, and 0.01% bromophenol blue). Lysates were resolved by
SDS/polyacrylamide gel electrophoresis followed by Western blotting. Pri-
mary antibodies used for blotting were γH2AX (1:1,000, 05-036, Millipore),
β-actin (1:10000, A5441, Sigma), ubiquitin (1:500, P4D1, sc-8017, Santa Cruz),
and alpha-tubulin (1:5,000, 11223-1-AP, Proteintech). DNA SDBs were
quantified by CFGE, as described (46). Images were quantified with ImageJ.

Fractionation Assay. Endogenously tagged scarlet-H2B cells were treated for
1 h with 10 μM of the indicated drugs. Cells were washed and lysed directly
in lysis buffer (50 mM Tris·HCl pH 8.0, 150 mM NaCl, 5 mM MgCl, 0.5%
Nonidet P-40, 2.5% glycerol supplemented with protease inhibitors, 10 mM
NMM and 10 μM MG132), collected, vortexed, and incubated for 10 min on
ice. To collect the cytosolic fraction, samples were centrifuged for 10 min,
15,000 × g, 4 °C. Both nuclear (pellet) and cytosolic (supernatant) fractions
were washed and prepared for Western blot analysis. Primary antibodies
used for blotting were red fluorescent protein (RFP) (1:2,000, 6G6, Chro-
motek), lamin A/C (1:500, sc-20681, Santa Cruz), and Calnexin (1:1,000, C5C9,
Cell signaling).

Comet Assay. Neutral comet assays were performed as described by Olive and
Banáth (48). Pictures of individual cells were taken with a Zeiss AxioObserver
Z1 inverted microscope equipped with a cooled Hamamatsu ORCA AG Black
and White charge-coupled device camera and analyzed with CASP software
1.2.3b2 (casplab.com/).

Microscopy. Cells stably expressing PAGFP-H2A, PAGFP-H3, or PAGFP-H4 were
used for histone eviction experiments. Photoactivation and time-lapse con-
focal imaging were performed as described (24). All live-cell imaging ex-
periments were analyzed by a Leica SP8 confocal microscope system, 63×
lens, equipped with a climate chamber. Loss of fluorescence from the

photoactivated region after different treatments was quantified using
ImageJ software. For cytosolic H2B detection, endogenous tagged scarlet-
H2B cells were seeded on coverslips. Upon treatment with 10 μM of the
indicated drugs for 1 h, cells were fixed in paraformaldehyde (PFA) 4%,
permeabilized with 0.1% Triton, and stained with anti-RFP (1:100, 6G6,
Chomotek), goat-anti-mouse-Alexa Fluor 488 (1:400, Thermo Fisher Scien-
tific), and Alexa Fluor 647 phalloidin (1:125, A22287, Thermo Fisher Scien-
tific). Cells were analyzed by a Leica SP8 confocal microscope system, 63×
lens. Cells were quantified using ImageJ software.

Cell Viability Assay. Indicated tumor cells or AML patient cells were seeded
into 96-well plates. Twenty-four hours after seeding, cells were treated with
indicated drugs for 2 h at concentrations corresponding to physiological
levels of cancer patients at standard treatment (24). Subsequently, drugs
were removed, and cells were left to grow for an additional 72 h. Cell via-
bility was measured using the CellTiter-Blue viability assay (Promega). Rel-
ative survival was normalized to the untreated control and corrected for
background signals.

Flow Cytometry for Measuring Drug Uptake in Cells. Cells were treated with
1 μM of drug for the indicated time points. Samples were washed, collected,
and fixed with paraformaldehyde. Samples were analyzed by flow cytom-
etry using BD FACS aria II, with 561-nm laser and 610/20-nm detector. Drug
uptake was quantified using FlowJo software.

Detection of ROS. MelJuSo cells were treated with indicated drugs for 2 h
followed by drug removal. Cells were collected immediately or 1 d after drug
removal for analysis. Cells were then incubated with 10 μM 2′,7′-dichlor-
odihydrofluorescein diacetate (H2DCFDA) (Invitrogen, D399) for 30 min at
37 °C in the dark, and fluorescence was analyzed with an LSRFortessa flow
cytometer (BD Biosciences). Mean fluorescence intensity of H2DCFDA was
quantified using FlowJo software.

Flow Cytometry for Phenotyping AML Cells. Human AML cells were treated
with indicated drug for 2 h, followed by extensive washing. Three days later,
the cells were stained with anti-CD45-V500 (2D1, BD Bioscience, 1:20), anti-
CD34-BV421 (581, BD Bioscience, 1:20), anti-CD38-APC (HB7, BD Bioscience,
1:50), anti-CD33-PE-Cy7 (p67.6, BD Bioscience, 1:20), anti-CD3-PE (SK7, BD
Bioscience, 1:50), anti-CD19-APC-H7 (SJ25C1, BD Bioscience, 1:10), 7AAD (BD
Bioscience, 1:10), and anti-CD11b-FITC (Bear1, BD Bioscience, 1:10) or anti-
CD7-FITC (M-T701, BD Bioscience, 1:20) for 30 min. Then 15 μL of well-
suspended flow count fluorospheres (Beckman Coulter) were added right
before analysis by flow cytometry with BD Fortessa.

Assessing Drug Toxicity on hiPSC-Derived Cardiac Microtissues. The hiPSC-
derived cardiac microtissues composed of hiPSC-derived cardiomyocytes
and hiPSC-derived cardiac endothelial cells were generated as described (52,
53), with addition of stromal cells derived from hiPSC epicardial cells, dif-
ferentiated in monolayer as described (54). For contraction analysis, micro-
tissues were seeded on a Matrigel-coated 96-well plate (plastic, Black/Clear
tissue culture treated plate) and imaged 24 h post drug treatment with
20 or 30 μM of the indicated drugs. The Horn-Schunck Vector Flow analysis
method was used to detect changes in pixel displacements during con-
traction of the microtissues. The analysis package was developed with
LabVIEW Motion and Vision (National Instruments). Images were collected
at 100 frames per s with a Thor Labs camera DCC3260M (Thorlabs GmbH
85221) and a 10× objective phase contrast objective (Leica Inverted mi-
croscope IBDE). Microtissues were perfused with Tyrode’s solution at 37 °C
and paced at 1 Hz. Tyrode’s solution contains 140 mM NaCl, 5.4 mM KCl,
1.8 mM CaCl2, 1.0 mM MgCl2, 5.5 mM glucose, and 5.0 mM Hepes; pH
7.4 (NaOH).

AML Patient Data Analysis. Patients with de novo geriatric AML treated be-
tween January 2014 and January 2019 in Ruijin hospitals were enrolled in this
retrospectively study. This study was approved by the ethics committee of
Ruijin Hospital, and all patients provided written informed consent. Patients
in the Acla group were treated with CAG regimen (Ara-C 15‒25 mg/m2 in-
jected s.c. every 12 h on days 1 to 14, Acla 20 mg/d infused i.v. on days 1 to 4,
and granulocyte stimulating factor (G-CSF) 200 μg/m2 administered s.c. daily
on days 1 to 14). G-CSF was reduced, or temporarily stopped when neutro-
philia was >5 × 109/L. Patients of Ida group were treated with IA regimen
(Ida 6mg/m2/d to 10mg/m2/d infused i.v. on days 1 to 3 and Ara-C 100mg/m2/d to
200 mg/m2/d on days 1 to 7). Cytogenetic risk was classified according to the
modified Southwest Oncology Group criteria (68): 1) favorable risk, including
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t (8, 21) and inv (16) or t (16, 16) (p13;q22); 2) unfavorable risk, including del(5q)
or monosomy 5, monosomy 7 or del(7q), abnormal 3q, 9q, 11q, 21q, or 17p, t (6,
9), t (9, 22), and complex karyotypes (three or more unrelated chromosomes
abnormal); and 3) intermediate risk, including normal karyotypes and all other
anomalies. Mutations in the NPM1 and CEBPA, and for FLT3 internal tandem
duplication, were tested. Integrated risk was classified according to ref. 69. CR
was defined as <5% blast cells in normocellular BM, PB counts showing neu-
trophils ≥ 1 × 109/L, and platelet count ≥ 100 × 109/L, and the disappearance of
all clinical signs of leukemia. Partial remission was defined as having <15% (and
a 50% decrease in BM blasts) but >5% blasts or with <5% blasts but not
reaching the CR criteria for blood cell count or clinical manifestation. For analysis
of CR, missing data were imputed as no CR. The baseline characteristics and
clinical outcomes of the patients are summarized in SI Appendix, Tables S2 and
S3, respectively.

Quantification and Statistical Analysis. Each sample was assayed in biological
triplicate, unless stated otherwise. All error bars denote SD. Statistical
analyses were performed using Prism 7 and 8 software (Graphpad Inc.).
Student’s t test was used to compare two groups of independent samples.
One-way ANOVA was used to compare more than two groups of in-
dependent samples. Two-way ANOVA with repeated measure analysis was
used if the response of two drugs was compared over time. Kaplan−Meier

analysis and Log-rank (Mantel−Cox) test were used to evaluate the statistical
significance for comparison of survival curves. Western blot and confocal
data were quantified using ImageJ software. Significance is represented on
the graphs as follows: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001. No statistical methods were used to predetermine sample
size.

Data Availability.All data support the findings of this study are included in the
main text and SI Appendix. All procedures of experiments are described in
detail in Materials and Methods and SI Appendix.
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