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INTRODUCTION 
 

Aging is a progressive structural and functional decline 

in cellular components and metabolic activities, 

resulting in a number of chronic diseases and the death 

of an organism [1]. Although aging is generally 

considered inevitable, recent studies have revealed that 

aging can be slowed by many interventions [2]. A 

growing number of substances have been identified as 

potential pharmaceutical interventions to enhance 

longevity in a variety of organisms from yeasts to 
humans [3]. Mechanistic studies, which demonstrate 

these substances including metformin, rapamycin, 

NAD+ boosters and hydrogen sulfide target intra-

cellular signaling pathways that modulate aging, are 

paving the path toward determining whether they 

effectively affect aging in human [4–6]. 

 

Hydrogen sulfide (H2S), the third gasotransmitter after 

nitric oxide and carbon monoxide, has gained 

noteworthy scientific consideration in the present era 

[7–9]. Traditionally, it has been known as an extremely 

toxic gas having a characteristic smell of rotten eggs. Its 

cytotoxicity relies on the interruption of intracellular 

metabolic activities through the down-regulation of the 

cytochrome c oxidase thereby inhibiting mitochondrial 

adenosine triphosphate (ATP) synthesis [10].  Also, 

physiological concentrations of H2S regulate vaso-

relaxation by opening KATP channel [11], and by 

promoting angiogenesis through the activation of Akt 
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ABSTRACT 

 

Previous studies demonstrated that lifelong treatment with a slow H2S releasing donor extends yeast 
chronological lifespan (CLS), but it is not clear when the action of H2S benefits to CLS during yeast growth. 
Here, we show that short H2S treatments by using NaHS as a fast H2S releasing donor at 96 hours after 
inoculation extended yeast CLS while NaHS treatments earlier than 72 hours after inoculation failed to do so. 
To reveal the mechanism, we analyzed the transcriptome of yeast cells with or without the early and late 
NaHS treatments. We found that both treatments had similar effects on pathways related to CLS regulation. 
Follow-up qPCR and ROS analyses suggest that altered expression of some antioxidant genes by the early 
NaHS treatments were not stable enough to benefit CLS. Moreover, transcriptome data also indicated that 
some genes were regulated differently by the early and late H2S treatment. Specifically, we found that the 
expression of YPK2, a human SGK2 homolog and also a key regulator of the yeast cell wall synthesis, was 
significantly altered by the late NaHS treatment but not altered by the early NaHS treatment. Finally, the key 
role of YPK2 in CLS regulation by H2S is revealed by CLS data showing that the late NaHS treatment did not 
enhance the CLS of a ypk2 knockout mutant. This study sheds light on the molecular mechanism of CLS 
extension induced by H2S, and for the first time addresses the importance of H2S treatment timing for lifespan 
extension. 
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and KATP channel/MAPK pathway [12, 13]. The H2S 

interacts with  glucose and the KATP channel to control 

insulin secretion [14]. It act as an O2 sensor/transducer 

in vascular response to hypoxia [15]. It augments 

NMDA receptor-mediated responses to assist the 

induction of hippocampal long-term potentiation [16]. 

Moreover, H2S increases thermotolerance and lifespan 

in nematodes through SIR-2.1 activity [17]. In addition, 

H2S protects against neurodegeneration [18, 19], 

myocardial ischemia-reperfusion injury [20–22], acute 

inflammation [23] and hypoxia [24].  

 

Recently, it has been demonstrated that ROS modulates 

lifespan at specific developmental stages [25], 

suggesting the importance of optimal timing for aging 

interventions. Considering the co-existence of cyto-

protective and cytotoxic effects of H2S, it is especially 

important to understand the optimal timing of 

exogenous H2S administration to mostly slow aging. 

However, this information is lacking due  to the use of 

slow H2S releasing donors which need to be used 

continuously during lifespan studies [26]. In this study, 

we treated S. cerevisiae with NaHS, a fast H2S releasing 

donor with a short half-life, at the early and late phases 

of growth. We found that a low level of NaHS at the 

late phase of growth substantially extended yeast CLS. 

In contrast, the NaHS treatment at the early phase was 

surprisingly ineffective. Moreover, the similarities and 

differences in the gene expression profile of both 

treatment cases provide new insights into the role of 

H2S in aging. 

RESULTS  
 

Lifespan extension by H2S depends on the timing of 

NaHS treatment 
 

Previous studies have demonstrated that long term H2S 

treatment by using a combination of a slow H2S-

releasing donor, GYY4137, and fast H2S releasing 

donor, NaHS, extends the CLS of yeast [26]. 

Considering the dramatic changes in the metabolic 

pathways of yeast cells during the growth from 

inoculation up to senescence, the effects of H2S 

treatment at different stages of growth are unclear. To 

investigate the stage of growth at which H2S regulates 

metabolic pathways to increase lifespan, the 

Saccharomyces cerevisiae strain BY4742 was treated 

with NaHS at different time periods during growth. 

While treating yeast cells with two doses of 100 µM 

NaHS at 24 and 48 hours after inoculation has no effect 

on cell growth (Supplementary Figure 1), there was also 

no effect in CLS with one 100 µM dose of NaHS at 12 

hours or twice at 24 and 48 hours after inoculation 

(Figure 1A and 1B). Instead, one NaHS treatment at 84 

hours after inoculation resulted in a slight but statically 

significant increase in CLS (Figure 1C).  The extension 

of CLS was more robust if NaHS was added once at 96 

hours or twice at 72 and 96 hours after inoculation 

(Figure 1D and 1E). Moreover, the day to day treatments 

starting from 72 hours after inoculation with 100 µM of 

NaHS also extended the CLS, but there was a sudden 

decline observed at the later stage of the lifespan 

 

 
 

Figure 1. CLS extension is dependent upon the timing of NaHS treatment. Viabilities of cells treated without (black plots) or with 
100 µM NaHS at the earlier (blue plots) or the later (red plots) phases of growth were plotted. Specifically, NaHS was added once or twice 
into cell cultures at the 12 hours (A), 24 and 48 hours (B), 84 hours (C), 96 hours (D), or 72 and 96 hours (E) after inoculation. (F) NaHS was 
added into cell cultures every 24 hours after 72 hours of inoculation. Arrows indicate the time of NaHS treatment. Triplicate cultures were 
used to achieve mean ± SD of viabilities. *p < 0.05, **p < 0.01, ***p < 0.001. 
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(Figure 1F), probably due to the cytotoxic effect of 

longterm treatments. These results suggest that one or 

two NaHS treatments later than 72 hours after 

inoculation are required for CLS extension. 

 

Next, we examined if the extension of CLS was 

dependent on the concentration of NaHS. Two 

treatments with 10 or 20 µM of NaHS at 72 and 96 

hours after inoculation extended lifespan (Figure 2A), 

although less significantly than treatments at 100 µM 

(comparing to Figure 1E). And treatments with 500 µM 

or 1000 µM of NaHS were not more beneficial for 

lifespan extension than treatment with 100 µM of NaHS 

(comparing Figure 2B and 2C to Figure 1E). The day to 

day treatments with 20 µM of NaHS extended the CLS 

without an accelerated decline in the later stage of 

lifespan as observed in day to day treatments with 

100 µM of NaHS (comparing Figure 2D to Figure 1F), 

suggesting that the longterm H2S treatment at lower 

level was less toxic, while still cytoprotective. However, 

treatments with different concentrations of NaHS at 24 

and 48 hours after inoculation did not extend CLS 

(Figure 2E and 2F). These data suggest that exogenous 

H2S does not extend yeast CLS if the H2S treatment 

before 72 hours of growth, which we refer to as the 

early H2S treatment. Instead, the extension of yeast CLS 

requires H2S treatment after 72 hours of growth, which 

we refer to as late H2S treatment. 

 

Both early and late H2S treatments alter the 

expression of a wide range of yeast genes 

 

To gain detailed insights into the molecular mechanisms 

of H2S induced longevity in yeast; we performed RNA-

seq analysis of cells with early and late NaHS treatment 

and their respective untreated controls (Figure 3A). 

Using (|log2 FC| ≥1, p ≤ 0.05) as the threshold, we 

identified the differentially expressed genes (DEGs) by 

comparing the gene expression profiles of the untreated 

controls to NaHS treated samples at two treatment time

 

 
 

Figure 2. CLS in response to various concentrations of NaHS. Cells were treated with different concentration of NaHS at the early 

and the late phases of growth. (A–G) Viabilities of Cells treated with or without NaHS at the indicated time were plotted. Arrows indicate 
the time of NaHS treatment. Triplicate cultures were used to achieve mean ± SD of viabilities. *p < 0.05, **p < 0.01, ***p < 0.001. 
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points. We identified 928 and 723 DEGs in cells treated 

with NaHS at the early and late stages, respectively. 

Among them, 408 genes were upregulated and 520 genes 

were downregulated in the early NaHS treatment (Figure 

3B, Supplementary Table 1), whereas 202 genes were 

upregulated and 521 genes were downregulated in the late 

NaHS treatment (Figure 3C, Supplementary Table 2).  

 

The KEGG pathway enrichment analysis reveals that 

both the early and late NaHS treatments have similar 

impacts on several pathways including biosynthesis of 

secondary metabolites, carbon metabolism, TCA cycle 

and metabolism of several amino acids (Figure 3D, 3E 

and 3F). These results show that early and late NaHS 

treatments share some gene expression changes. Late 

NaHS treatment does change a few pathways including 

oxidative phosphorylation, sulfur metabolism and 

metabolism of some amino acids and metabolites 

(Figure 3E and 3F), which may contribute to CLS 

extension effect of the late NaHS treatment. 

 

 
 

Figure 3. Transcriptomic alterations by the early and late NaHS treatments. (A) Schematic of the early and late NaHS treatments 

in relation to their untreated controls. 100 µM of NaHS were used for each dosing. (B, C) The volcano plots represent DEGs of indicated 
controls and treatments. (D, E) The bubble charts representing KEGG enrichment analysis of indicated DEGs. The rich factor indicates the 
degree of enrichment represented by the ratio of DEGs in a pathway to the number of total genes annotated to that pathway. (F) 
Comparison of enriched pathways in (D and E). 
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To have a deeper insight to the transcriptomic effects of 

the early and late NaHS treatments, we identified and 

analyzed genes, which were altered similarly and 

differently by these two treatments. There are 213 

DEGs common in both treatments, including 177 DEGs 

regulated in same direction (Supplementary Figure 2A, 

Supplementary Table 3) and 36 DEGs regulated 

oppositely (Supplementary Figure 2B, Supplementary 

Table 3). The remaining 715 DEGs in the early 

treatment (Supplementary Table 4) and 510 DEGs in 

the late treatments (Supplementary Table 5) are specific 

for those treatments, respectively. The KEGG analysis 

of these DEGs indicates that many metabolic pathways 

were similarly or specifically regulated by the early and 

late NaHS treatments (Figure 4A–4D). Therefore, 

similar to the initial analysis (Figure 3F), the KEGG 

analysis of DEGs expressed in same direction and 

DEGs specific to each treatment case also revealed the 

similarities and differences in the transcriptomic effects 

of the early and late NaHS treatments. Taken together, 

these data indicate that both the early and late NaHS 

treatments had similar and profound influences on some 

metabolic pathways, which may relate to CLS regulation. 

 

The late NaHS treatment provided more 

cytoprotection for life span extension 

 

Genes involved in oxidative stress response and heat 

shock response play essential roles in the regulation of 

life span [27–31]. To explore the effects of H2S in these 

stress responses, we identified and analyzed antioxidant 

genes and heat shock protein (HSP) genes from the 

DEGs of early and late NaHS treatments. There are 7 

antioxidant genes altered by the early and late NaHS 

treatments (Figure 5A and 5B, Supplementary Table 6). 

Among them, expression of 3 genes was similarly

 

 
 

Figure 4. Analysis of common and specific DEGs in the early and late NaHS treatments. (A–C) The bubble charts representing 

KEGG enrichment analysis of common or specific DEGs in the early and late NaHS treatments. (D) Comparison of enriched pathways in (A–C). 
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altered in both treatments including GPX2, TRR2 and 

CTT1 (Figure 5A–5C). As to HSP genes, 25 and 14 

DEGs were found in the early and late NaHS treatments 

respectively with 12 genes were similarly altered in 

both treatments (Figure 5D–5F, Supplementary Table 7). 

The similar alteration in the expression of 

 

 
 

Figure 5. The late NaHS treatment is more cyto-protective. (A and B) Heat maps of antioxidant DEGs in the early and late NaHS 

treatments. (C) Venn diagram representing overlapped antioxidant DEGs. (D and E) Heat maps of HSP DEGs in the early and late NaHS 
treatments. (F) Venn diagram representing overlapped HSP DEGs. (G) The generation of Reactive oxygen species (ROS) in the early and late 
NaHS treatments at day 5 (120 hours after inoculation) was imaged by fluorescence microscope (left) and quantified by calculating the ratio 
of positively stained cells (right). (H–J) qPCR analysis of GPX2 (H) HSP78 (I) and HSP104 (J) at 53 hours or 120 hours after inoculation with or 
without the indicated NaHS treatment. The expression of these genes were normalized with the expression of actin (ACT).*p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001 
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antioxidant genes and HSP genes under NaHS 

treatments at two different time points is consistent to 

the observation that both treatments have some common 

effects on transcriptome (Figure 4). However, when 

intracellular ROS was monitored at the 5th day (120 

hours after inoculation), the late NaHS treatment 

decreased ROS production but the early NaHS 

treatment did not (Figure 5G). When the expression of 

some of similarly altered antioxidant or HSP genes were 

examined by qPCR, we found that the up-regulation of 

HSP78 and HSP104 by the early NaHS treatment 

persisted to the 5th day of the growth but the up-

regulation of GPX2 could not (Figure 5H–5J). Instead, 

the increased GPX2 level induced by the late NaHS 

treatment stayed up at the 5th day (Figure 5H, right 

panel). These data suggest that although the early NaHS 

treatment provided cyto-protective effects, some of 

them did not last to the later growth stage when the 

fitness of the cell is essential for increased lifespan. 

 

The regulation of cell wall integrity contributed to 

the life span extension by the late NaHS treatment 

 

Further analysis of the early and late NaHS treatments 

identified 36 DEGs that are regulated oppositely 

(Supplementary Figure 2B, Supplementary Table 4). 

Interestingly, GO analysis revealed that most of these 

DEGs regulate cell wall components and transport 

functions which are also influenced by cell wall [32] 

(Figure 6A), suggesting there may be a significant 

difference in the regulation of cell wall integrity 

between the early and late NaHS treatments. More 

importantly, these DEGs include YPK2, an AGC-type 

protein kinase and a key regulator of cell wall integrity 

[33, 34]. The YPK2 is one of the most significant DEGs 

by the late NaHS treatment while its expression was not 

altered by the early NaHS treatment (Supplementary 

Table 6). The qPCR analysis also verified that the 

expression of YPK2 was up-regulated about 8-fold by 

the late NaHS treatment, but not the early NaHS 

treatment (Figure 6B). Therefore, protein kinase Ypk2 

is a potential target of the late NaHS treatment. To test 

if the increased expression of YPK2 induced by the late 

NaHS treatment contributes to the life span extension, 

the life span of RCD490, a YPK2 deletion mutant in the 

BY4742 background, was monitored with or without 

the late NaHS treatment. We found that the late NaHS 

treatment did not increase the life span of RCD490 cells 

(Figure 6C), indicating YPK2 is required for the life 

span extension induced by the late NaHS treatment. In 

addition, the effect of the late NaHS treatment on the 

CLS of wild type and the ypk2 mutant from BY4741 

background was examined. The late NaHS treatment 
also increased the life span of wild-type BY4741 cells, 

although to a less extend than it did to BY4742 (Figure 

6D).YMR104C, a ypk2 mutant at BY4741 background, 

lived longer than wild-type cells (compare black lines in 

Figure 6D and 6E). However, the late NaHS treatment 

did not increase the life span of YMR104C and even 

decreased the life span (Figure 6E). These data indicate 

that, although YPK2 is not a longevity gene by itself, it 

is required for the life span extension of yeast cells 

induced by the late NaHS treatment. Therefore, we 

conclude that in addition to the other pathways altered 

by the late NaHS treatment, the regulation of cell wall 

integrity is important for the life span extension. 

 

DISCUSSION 
 

The beneficial effects of aging interventions are likely 

to only be achieved with a correct dosage and timing. 

The relationship between the treatment timing and 

lifespan extension is studied less due to the complexity 

of the roles of these interventions during the growth of 

different organisms. Yeast Saccharomyces cerevisiae is 

a well-established model system for studying aging 

[35–38]. The growth of yeast cells consists of lag, 

exponential, stationary and death phases, which are 

more straightforward for investigating the timing of 

aging interventions. In this study, we found that one or 

two NaHS treatments at later time (>96 hrs) are 

required for CLS extension whereas NaHS treatments 

earlier than 72 hours of inoculation did not bring any 

considerable change in CLS (Figure 1). We also found 

that there is a similar effect on CLS by NaHS treatments 

at concentrations from 10 μM to 1mM (Figure 2), 

suggesting that the H2S signaling on CLS regulation is 

not concentration dependent if a critical threshold is 

crossed. These results indicate that the most crucial 

factor for the promotion of CLS extension is the timing 

of NaHS treatment. 

 

In order to achieve greater insight into the underlying 

mechanism of the differential outcomes from different 

timing of NaHS treatments, we compared the gene 

expression profile of the early and late NaHS treated 

cells to their respective untreated control. We found that 

both treatments shared some common effects on many 

metabolic and stress response pathways including 

biosynthesis of secondary metabolites, carbon 

metabolism, TCA cycle and metabolism of several 

amino acids which are related to aging process (Figures 

3–5) [39–43].  

 

Despite the obvious similarity of gene expression 

regulated by the early and late NaHS treatments, there are 

some DEGs specific to late NaHS treatment were shown 

by the comparison of the transcriptomes (Figures 4 and 

6). Among them, genes related to cell wall integrity seem 

contribute to CLS extension by the late NaHS treatment 

because of the importance of cell wall in maintaining 

yeast lifespan [44]. Indeed, we found that YPK2, a key 
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regulator of cell wall integrity, is up-regulated at 

stationary stage only by the late NaHS treatment and 

plays essential roles in NaHS induced CLS extension. 

 

ROS, especially mitochondrial ROS are the key 

regulators of yeast life span [45, 46]. Increased 

mitochondrial membrane potential and superoxide 

production are suggested as an adaptive signal during 

growth that promotes CLS extension [47]. We show 

that the late NaHS treatment decreased intracellular 

ROS significantly but the early NaHS treatment had no 

effect.  In addition, apart from some antioxidant genes 

specifically regulated in each case, both treatments shared 

common effects on many antioxidant genes. However, 

we found that some of those effects caused by the early 

treatments, such as the altered expression of GPX2, did 

 

 
 

Figure 6. The late NaHS treatment regulates the cell wall integrity for the extension of CLS. (A) Gene ontology analysis of genes 

expressed oppositely in response to the early and late NaHS treatments. (B) The qPCR analysis of YPK2, an AGC-type protein kinase 
regulating cell wall integrity. (C) CLS of the late NaHS treated RCD490, a ypk2 mutant in BY4742 background. (D) CLS of the late NaHS 
treated BY4741. (E) CLS of the late NaHS treated YMR104C, a ypk2 mutant in BY4741 background. Triplicate cultures were used to achieve 
mean ± SD of viabilities. *p < 0.05, **p < 0.01, ***p < 0.001, ns nonsignificant. 
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not last longer and reverted back after sometime 

(Figure 5), which may contribute to their incompetence 

to reduce ROS and promote the CLS extension. 

Furthermore, the observation of changed expression of 

antioxidant and HSP genes suggested that there are 

some intracellular alterations in redox status. It also 

provided potential candidates which may be 

responsible for some of the effects induced by NaHS 

treatment. 

 

Together, our data demonstrate that the timing of H2S 

treatment is vital for promoting CLS extension in yeast. 

The systematic comparison of the gene expression 

dynamics of the early and late NaHS treatments 

indicates that the persistence and specificity of H2S 

induced changes in gene expression are crucial for the 

longevity benefits. Indeed, these data provided new 

insights in to the aging intervention by using H2S and 

suggesting that the timing of H2S-type of interventions 

in multicellular eukaryotes is likely to be critical for 

maximizing health benefits and will require further 

research efforts. 

 

MATERIALS AND METHODS  
 

The yeast strains and their genetic backgrounds are 

enlisted in the Supplementary Table 8. Yeast cells 

were grown in synthetic dextrose complete (SDC) 

having composition as shown in Supplementary Table 

9. The initial pH of SDC was adjusted to 6.0 [48]. For 

NaHS treatments, the desired amount of freshly 

prepared aqueous solution of NaHS (50 mM, Sigma-

Aldrich) was added to the cell cultures at the indicated 

times.  

 

For CLS analysis, yeast cells were grown overnight at 

30ºC in SDC medium and then  inoculated into 10 ml 

medium in 50 ml capacity flasks to achieve an initial 

A600nm of 0.005. These cultures were further kept in a 

shaking incubator (200 rpm for proper aeration) at 30ºC 

for indicated time and cell viability was measured by 

spreading the diluted cultures on YPD agar plates (1% 

yeast extract, 2% peptone, 2% glucose). The CLS was 

estimated by counting the number of colonies obtained 

from the incubation at 30ºC and expressed as fraction of 

day 3 (72 hours) value.  

 

The 2′, 7′-dichlorodihydrofluorescein diacetate 

(H2DCF-DA) staining was used for the analysis of ROS 

[49]. For the H2DCF-DA staining, cells (OD600nm of 

1.0) were collected and incubated with 10 µM H2DCF-

DA at 30 °C for 60–90 minutes. After the staining, cells 

were thoroughly washed twice with PBS buffer and 

then re-suspended in 1 ml PBS. The H2DCF-DA-stained 

cells were observed by fluorescence microscopy 

(excitation/emission: 488 nm/530 nm). 

For transcriptome and real-time quantitative PCR (RT-

qPCR) analysis, the early treatment comprised 2 doses 

of 100 µM NaHS at the time as indicated in the 

figures. The total RNA was extracted using TRIzol 

Reagent according the manufacturer’s instructions 

(Invitrogen) and genomic DNA was removed using 

DNase I (TaKara, China). RNA-seq transcriptome 

library was prepared using TruSeq RNA sample 

preparation Kit from Illumina (San Diego, CA, USA). 

Libraries were size selected for cDNA target 

fragments of 200–300 bp on 2% Low Range Ultra 

Agarose followed by PCR amplified using Phusion 

DNA polymerase (NEB) for 15 PCR cycles. After 

quantified by TBS380, paired-end RNA-seq 

sequencing library was sequenced with the Illumina 

HiSeq xten/NovaSeq 6000 sequencer. The raw paired 

end reads were trimmed and quality controlled by 

SeqPrep and Sickle software with default parameters. 

Then clean reads were separately aligned to reference 

genome with orientation mode using TopHat software. 

R statistical package software EdgeR was used for 

differential expression analysis, heat maps, volcano 

graphs and bubble charts. For gene ontology term and 

KEGG (Kyoto encyclopedia of genes and genomes) 

pathways enrichment analysis, David bioinformatics 

database (version 6.8) was used. 

 

For RT-qPCR analysis, reverse transcription reactions 

were performed by using a Prime Script RT reagent  

kit (Takara, China). The primers are listed in 

Supplementary Table 10. Quantitative PCR was 

performed by using SYBR Premix Ex Taq II (TaKaRa 

Bio, China) and Bio-Rad CFX manager RT-qPCR 

system. Data were collected and analyzed by Bio-Rad 

CFX manager software. All RT-qPCR data from at least 

three independent experiments are presented as averages 

± SD. Statistical analysis and comparisons were 

performed by using two-tailed, unpaired Student t-tests. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 
 

 

Supplementary Figure 1. The effect of NaHS treatment on yeast cell growth. Yeast cells (BY4742 background) were treated with 

or without 100 μM of NaHS at 24 and 48 hours after inoculation as indicated as arrows. Biomass growth was measured at OD600.
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Supplementary Figure 2. DEGs common in both the early and late NaHS treatments. (A) Heat maps of similar behaving 
DEGs. (B) Heat maps of opposite behaving DEGs. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–7. 

 

Supplementary Table 1. DEGs induced by the early NaHS treatment. 

Supplementary Table 2. DEGs induced by the late NaHS treatment. 

Supplementary Table 3. Common DEGs induced by the early and late NaHS treatments. 

Supplementary Table 4. Specific DEGs induced by the early NaHS treatment and the expression of these genes in the 
late NaHS treatment. 

Supplementary Table 5. Specific DEGs induced by the late NaHS treatment and the expression of these genes in the 
early NaHS treatment. 

Supplementary Table 6. Antioxidant DEGs induced by the early and late NaHS treatments. 

Supplementary Table 7. HSP DEGs induced by the early and late NaHS treatments. 

Supplementary Table 8. Yeast strains. 

Strain Genotype Source 

BY4742 MATa his3-∆1 leu2-∆0 ura3-∆0 lys2-∆0 Lab stock 

BY4741 MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 Lab stock 

YMR104C MATa ypk2::KAN his3-∆1 leu2-∆0 ura3-∆0 met15-∆0  Saccharomyces Genome Deletion Project 

RCD490 MATa ypk2::KAN his3-∆1 leu2-∆0 ura3-∆0 lys2-∆0 Gift (Dr. Robert Dickson) 

 

Supplementary Table 9. Composition of SDC. 

Component  Concentration  Component  Concentration  

YNB 1.8 g/L Trp 80 mg/L 

NaH2PO4 1.82 g/L Glu 100 mg/L 

(NH4)2SO4 5.0 g/L Arg 40 mg/L 

Tyr 40 mg/L Met 80 mg/L 

Adenine 80 mg/L Ile 60 mg/L 

Leu 120 mg/L Val 150 mg/L 

Asp 100 mg/L Phe 60 mg/L 

Ser 400 mg/L Lys 60 mg/L 

Thr 200 mg/L His 80 mg/L 

Ura 40 mg/L D-glucose 20 g/L or 5 g/L 

 

Supplementary Table 10. RT-qPCR primers. 

ACT1-F CGTTCCAATTTACGCTGGTT 

ACT1-R AGCGGTTTGCATTTCTTGTT 

Hsp104-F GGCCATCAAGCAACAAGCTC 

Hsp104-R GCGGTCTTACCGATACCTGG 

Hsp78-F CGCGCGACGGTAAATTAGAC 

Hsp78-R GCGCCAGCAATCAAAGATCC 

YPK2-F TGAGATGATGACAGGGCTGC 

YPK2-R CTGTACCGTTAACGCCGAGT 

GPX2-F TAATGTTGCCTCCAAGTGCG 

GPX2-R GGTTCCTGCTTCCCGAACTG 

 


