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Individual differences in cognitive performance increase from early to late adulthood, likely 
reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and 
anatomical brain resources in normal aging modulate the effects of common genetic variations 
on cognitive functioning. Our hypothesis is based on the assumption that the function relating 
brain resources to cognition is nonlinear, so that genetic differences exert increasingly large 
effects on cognition as resources recede from high to medium levels in the course of aging. 
Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008), who 
reported that the effects of the Catechol-O-Methyltransferase (COMT) gene on cognitive 
performance are magnified in old age and interacted with the Brain-Derived Neurotrophic 
Factor (BDNF) gene. We conclude that common genetic polymorphisms contribute to the 
increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to 
other polymorphisms are discussed. (150 of 150 words)
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IntroductIon
Cognitive aging is marked by heterogeneity: Older 
adults who preserve high levels of cognitive func-
tioning into very old age stand in sharp contrast 
to age peers whose cognitive resources are waning 
by the time they reach later adulthood (Bäckman 
et al., 1999). Longitudinal studies confirm that 
individual differences in cognitive performance 
increase from early to late adulthood (e.g., de Frias 
et al., 2007), and suggest that both genetic and 
environmental factors contribute (Finkel et al., 
2005). This increasing cognitive heterogeneity in 
aging likely stems from a multitude of factors, an 
obvious category being disease (e.g., the presence 
or absence of dementia and old-age depression). 
Here, we focus on another potential determi-

nant of increased between-person differences in 
late-life cognition: That losses of brain resources 
associated with normal aging amplify the effect 
of common genetic polymorphisms on human 
cognition, thereby contributing to the observed 
increase in heterogeneity.

Normal cognitive aging is associated with a 
general loss of resources (Craik, 1983; Kinsbourne 
and Hicks, 1978). At the neurochemical level, 
the continuous decline of striatal and extrastri-
atal dopamine (DA) systems from early to late 
adulthood and old age is particularly important 
(Bäckman et al., 2000, 2006; Erixon-Lindroth 
et al., 2005; Volkow et al., 1998). Molecular 
imaging studies indicate that age-related DA 
losses are powerful mediators of age-related 
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sodic memory show considerable overlap, and the 
proteins coded by different genes are generally 
active in more than one brain region. Therefore, 
recent publications stress the need to consider 
gene–gene interactions (de Geus et al., 2008; 
Kovas and Plomin, 2006; Tan et al., 2007; Yacubian 
et al., 2007). Despite (or perhaps because of) these 
complications, the identification of cognitively 
relevant genes bears the promise to refine and 
constrain our knowledge about neurobiological 
mechanisms in human cognition, including its 
age-graded changes, especially if the physiologi-
cal effects of the respective gene are reasonably 
well understood.

resource ModulatIon  
of GenetIc Influence: a HypotHesIs
As summarized above, human cognition in adult-
hood and old age is characterized by two features: 
(1) normative decline in neurochemical, anatomi-
cal, and functional brain resources, with resulting 
impairments in the mechanisms supporting exec-
utive functioning, WM, and episodic memory; 
and (2) a high degree of heritability and stability 
of individual differences in cognitive functioning, 
at least up to the eighth decade of life.

Based on these two observations, we put 
forward the hypothesis that losses in neuro-
chemical and structural brain resources associ-
ated with normal aging modulate the extent to 
which common genetic variations affect cogni-
tive functioning. Specifically, we expect that the 
effects of genetic polymorphisms on cognitive 
performance should be magnified in late rela-
tive to early adulthood. Our hypothesis rests on 
the assumption that the function relating brain 
resources to cognitive performance is nonlinear, 
so that genetic variability is more likely to result 
in performance differences when resources move 
away from close-to-optimal levels, as in normal 
aging (see Figure 1).

The postulated non-linear shape of the 
resource-performance relationship, with a steeper 
slope in the middle of the function, is consistent 
with item response theory and empirical data. 
In item response theory, the item-characteristic 
curve denotes the probability that a person with 
a given level of resources will respond correctly 
(Lord, 1980; Mellenbergh, 1994). By definition, 
almost everybody solves easy items, and only few 
solve difficult items. Items of medium difficulty 
are solved by about half the population, and 
therefore discriminate best between individuals. 
This property is captured by Figure 1, where the 
slope of the function relating resources to per-
formance is steepest at the medium resource level. 
As normal aging moves individuals’ resources 

impairment in multiple cognitive tasks, includ-
ing those assessing WM, executive functions, and 
episodic memory (see Bäckman et al., 2006, for 
review). Anatomically, reductions in white-matter 
 integrity and volume are particularly pronounced 
in prefrontal and medio-temporal areas of the 
brain (e.g., Raz et al., 2005, 2008b). Accordingly, 
normal human aging is associated with decline 
across a wide range of sensory, perceptual, and 
 cognitive abilities (Baltes and Lindenberger, 
1997). Higher-order cognitive functions that rely 
on the integrity of the prefrontal cortex (PFC) 
and the medial- temporal lobes (MTL), such as 
executive functions, working memory (WM), and 
episodic memory, show particularly pronounced 
normative age-related decline (Bäckman et al., 
1999; Brehmer et al., 2007; Shing et al., 2008; 
West, 1996).

Individual differences in complex phenotypes 
such as cognition result from gene–gene and gene–
context interactions (Baltes et al., 1999; Diamond, 
2007; Li, 2003; McClearn, 2006; Posner et al., 2007; 
Reynolds et al., 2007). Twin studies indicate that 
individual differences in human cognition are 
closely linked to genetic variability (McClearn 
et al., 1997; McGue et al., 1993). In normal popu-
lations, more than 60% of individual differences 
in cognitive abilities are heritable, including 
 reliability-adjusted measures of fluid intelligence, 
WM, and executive functioning (Friedman et al., 
2008). Furthermore, individual differences in 
cognition are remarkably stable across the adult 
lifespan (Deary et al., 2004; Hertzog and Schaie, 
1986), suggesting a powerful synergy between 
genetic and environmental conditions (Baltes 
et al., 1999). For instance, Hertzog and Schaie 
(1986) found that 7-year stability coefficients for a 
composite of general cognitive ability ranged from 
0.89 to 0.96 in samples with mean ages between 
25 and 67 years at first testing, indicating a sub-
stantial degree of stability of individual differ-
ences. Finally, twin studies suggest that individual 
differences in the acceleration of cognitive decline 
from adulthood to old age are strongly influenced 
by genetic factors (Finkel et al., 2005).

Advances in molecular genetics make it pos-
sible to identify specific genes affecting brain 
chemistry, structure, and function, as well as asso-
ciated cognitive functions in humans (Goldberg 
and Weinberger, 2004). At present, close to 100 
candidate genes influencing human brain func-
tions and cognition have been reported (e.g., de 
Geus et al., 2008). Any given gene is likely to affect 
more than one cognitive function, and variations 
in any given cognitive function are likely to be 
influenced by more than one gene. For example, 
the brain circuitries implementing WM and epi-
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port and are able to profit from it. By analogy, 
performance-enhancing allelic variants can be 
construed as a form of “genetic support.” It fol-
lows that their leverage on cognition should be 
greatest at intermediate resource levels.

coMt and Bdnf Gene effects on 
executIve functIonInG and WorkInG 
MeMory In younGer and older adults
Among the numerous genes that have been 
identified as affecting human cognition, the 
Catechol-O-Methyltransferase (COMT) gene, 
implicated in executive functions and WM, and 
the Brain-Derived Neurotrophic Factor (BDNF) 
gene, associated with memory-related functions, 
have received much attention (e.g., Goldberg and 
Weinberger, 2004; Savitz et al., 2006). Recently, 
Nagel et al. (2008) examined the effects of the 
COMT and BDNF genes on executive function-
ing and spatial WM performance in younger and 
older adults. The rationale and results of this study 
are directly pertinent to the resource modulation 
hypothesis, and are reported in detail below.

COMT enzymatic activity results in degra-
dation of DA and thus influences endogenous 
DA levels in PFC. A common polymorphism of 
the COMT gene is associated with variation in 
intrinsic prefrontal DA levels. The COMT single 
nucleotide polymorphism leads to a substitu-
tion of valine (Val) with methionine (Met) at the 
codon 158 on chromosome 22q11 (Val158Met). 
This substitution affects enzymatic activity, which 
is three to four times higher in Val than in Met 
homozygotes. Lower enzymatic activity among 
Met carriers leads to less frontal DA degradation, 
and hence greater DA availability at the receptors 
(Meyer-Lindenberg et al., 2007).

Some behavioral studies using tasks that tax 
executive functioning, such as the Wisconsin Card 
Sorting Test (WCST), or working memory tasks, 
such as n-back, have found an advantage of Met 
over Val carriers among younger adults. However, 
effect sizes are generally small (Egan et al., 2001; 
Malhotra et al., 2002; Meyer-Lindenberg et al., 
2006) and not always statistically reliable (Barnett 
et al., 2007). One reason for the relatively small 
effects may be that the advantage of Met car-
riers in executively demanding tasks applies to 
sustained processes such as maintaining a cog-
nitive set, but not to transient processes related 
to cognitive flexibility (Bilder et al., 2004; Grace 
et al., 2007).

Animal and human data suggest that the rela-
tion between DA levels and cognitive functioning 
follows an inverted U-shaped function (Goldman-
Rakic et al., 2000; Li and Sikström, 2002; Li 
et al., 2001; Mattay et al., 2003; Vijayraghavan 

from the top to the middle portion of the func-
tion, constant amounts of genetic variation are 
translated into increasingly larger perform-
ance differences. The situation changes again 
when individuals eventually reach exceedingly 
low  levels of resources; with severely depleted 
resources, genetic effects are expected to dwin-
dle again. We will come back to the latter issue 
toward the end of this article.

In addition to psychometric considerations, 
the hypothesis that genetic effects are amplified 
at intermediate resource levels is also consistent 
with general models of cognition (Kliegl et al., 
1994; Norman and Bobrow, 1975), and with 
research on the effects of environmental support 
on memory performance in old age and dementia 
(Bäckman and Small, 1998; Bunce et al., 2004b; 
Naveh-Benjamin et al., 2002; Shing et al., 2008). 
As to the latter, individuals with high levels of 
resources, such as young adults, require little 
or no environmental support to improve their 
cognitive performance. By contrast, individuals 
with depleted resources, such as patients suf-
fering from dementia, experience difficulties in 
using environmental support, and show mini-
mal improvement when such support is pro-
vided. Perhaps not surprisingly, environmental 
support is most effective for individuals with an 
intermediate amount of task-relevant cognitive 
resources, that is, individuals who need sup-

Figure 1 | The resource modulation hypothesis posits that losses in chemical and structural 
brain resources associated with normal aging modulate the effects of common genetic 
variation on cognitive performance. As normal aging moves individuals’ resources from the top 
to the middle portion of the resource function, constant amounts of genetic variation are translated 
into increasingly larger performance differences. With depleted resources, genetic effects are 
expected to dwindle again. The colored circles represent eight individuals with different 
combinations of genetic polymorphisms as they move from early adulthood over old age to 
dementia or terminal decline.
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ers on tasks assessing WM and related cognitive 
functions (de Frias et al., 2004, 2005; Harris et al., 
2005; Mattay et al., 2006; Starr et al., 2007). Studies 
on gene–gene interactions involving COMT have 
focused on interdependencies between the COMT 
gene and other genes linked to the catecholamin-
ergic system, such as the DA transporter gene 
(Yacubian et al., 2007), the serotonin transporter 
gene 5-HTTLPR (Smolka et al., 2007), and the DA 
D2 receptor gene DRD2 (Gosso et al., 2008). In 
contrast, Nagel et al. (2008) focused on the inter-
action between the COMT gene and the common 
Val/Met polymorphism affecting the BDNF pro-
tein, which enhances MTL-related mechanisms 
such as long-term potentiation and associative 
binding (Egan et al., 2003). Secretion of BDNF is 
higher in Val homozygotes than in Met carriers. 
BDNF Val homozygotes also have greater hippoc-
ampal volume and task-related brain activation, 
as well as higher performance in memory tasks 
than Met carriers (Egan et al., 2003; Hariri et al., 
2003; Pezawas et al., 2004).

The influence of BDNF on brain and cogni-
tion is not restricted to MTL-dependent memory 
processes. Met carriers show reduced grey- matter 
volume in prefrontal cortex (Xu et al., 2007) and 
perform less well on the WCST (Rybakowski et al., 
2003). Furthermore, BDNF influences DA release 
in striatal regions (Narita et al., 2003), which 
may interact with COMT effects on prefrontal 
DA catabolism through basal ganglia-thalamo-
cortical loops (Alexander et al., 1986). Thus, for 
several reasons, Nagel et al. (2008) predicted 
that the COMT and BDNF genes would interac-
tively influence executive functioning and WM. 
First, PFC and MTL are strongly connected and 
co-activated during a wide range of executive 
tasks (Cabeza et al., 2003; Courtney et al., 1997; 
Rypma and D’Esposito, 2000). Second, although 
COMT has primarily been associated with PFC 
(Meyer-Lindenberg et al., 2007), and BDNF with 
MTL (Hariri et al., 2003), both genes influence 
both brain regions (Bertolino et al., 2006; Pezawas 
et al., 2004). Therefore, Nagel et al. (2008) also 
examined whether age differences in the effects of 
the COMT Val/Met polymorphism on executive 
functioning and WM are modulated by the Val/
Met BDNF polymorphism.

In sum, the key prediction by Nagel et al. (2008) 
was that human aging magnifies the functional 
consequences of genetic variations affecting DA 
signaling (Figure 2). This prediction was derived 
from inverted U-shaped relation of DA activity 
to cognitive performance, and the important 
role of deficient dopaminergic neuromodula-
tion in cognitive aging. Further, given the role of 
BDNF in frontal integrity (Pezawas et al., 2004) 

et al., 2007). The DA system undergoes marked 
decline across the adult life span, with a grad-
ual loss of both pre- and post-synaptic markers 
of DA neurotransmission from early through 
late adulthood (Antonini and Leenders, 1993; 
Erixon-Lindroth et al., 2005; Kaasinen et al., 
2000; Suhara et al., 1991). This loss is consist-
ently found in  striatal, neocortical (e.g., frontal), 
and limbic areas (Bäckman et al., 2006). Given 
the close association between deficient dopamin-
ergic neuromodulation and age-related cognitive 
decline (Bäckman et al., 2006), it is plausible to 
assume that advancing adult age shifts individuals 
toward the left-hand portion of the curve relat-
ing DA signaling to cognitive performance, that 
is, further and further away from the functional 
optimum. The deleterious effects of this leftward 
shift should be particularly pronounced among 
individuals with relatively low DA levels in young 
adulthood, such as Val carriers of the COMT gene. 
Therefore, Nagel et al. (2008) predicted that the 
loss of cognitive resources associated with normal 
human aging would magnify the effects of the 
COMT polymorphism on executive functioning 
and WM (Figure 2). Note that the logic behind 
this prediction is a mechanistic instantiation of 
the more general hypothesis that lower levels of 
cognitive resources are associated with lower per-
formance and greater genetically-induced vari-
ability in behavior.

Thus far, most studies investigating COMT 
effects on cognitive performance have involved 
younger adults. However, in line with our hypoth-
esis, the few studies on older adults consistently 
reported a clear advantage of Met over Val carri-

Figure 2 | Function relating the strength of frontal DA signaling to cognitive performance. 
The inverted U shape of the curve implies that performance differences between Met and Val 
carriers of the COMT gene are greater for older adults than for younger adults, reflecting the decline 
in dopaminergic neuromodulation with advancing adult age.
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The data obtained on the two tasks were con-
sistent with both predictions. First, for the WCST, 
the COMT Val allele was associated with a higher 
number of perseverative errors in older, but not 
in younger, adults. In addition, reaction times for 
correct responses on the WCST were also depend-
ent on BDNF status: Older adults carrying two 
COMT Val alleles and at least one BDNF Met allele 
took a particularly long time to respond, resulting 
in an age × gene × gene interaction (see Figure 3). 
Second, for the spatial WM task, genetic modu-
lation of performance was restricted to reaction 
times for correct responses. In the low-load con-
dition (set size 4), COMT effects on processing 
efficiency were not reliable in younger adults, but 
present in older adults. This age × gene interaction 
pattern closely resembled that found for persever-
ative errors in the WCST. In the high-load condi-
tion (set size 7), Nagel et al. (2008) again observed 
a triple interaction of age, COMT, and BDNF. In 
line with expectations, response times were par-
ticularly slow in older adults carrying two COMT 
Val alleles and at least one BDNF Met allele. This 
pattern mirrors the WCST latency data for correct 
responses.

The results from both tasks support the notion 
that effects of the Val/Met COMT polymorphism 
on executive functioning and WM increase in 
old age, and are further accentuated by the cor-
responding BDNF polymorphism. The observed 
age × gene and age × gene × gene interactions 
explained between 2.3% and 4.1% of the total 
variance in the cognitive variables.

Most investigations on cognitive effects of 
the COMT gene have included younger adults 
(Bilder et al., 2004; Egan et al., 2001; Ho et al., 
2005; Mattay et al., 2003; Montague et al., 2004). 
It may seem surprising that Nagel et al. (2008) 
did not observe reliable COMT effects in younger 
adults, as such effects have been observed in ear-
lier studies with smaller samples (Egan et al., 
2001; Mattay et al., 2003; Montague et al., 2004). 
As noted, however, the evidence on COMT effects 
on executive functioning and WM in early adult-
hood is not unequivocal, for several studies have 
failed to find such effects (Barnett et al., 2007; 
Bilder et al., 2004; Ho et al., 2005; Tsai et al., 2003). 
In contrast, the few cognitive studies with older 
adults have invariably reported COMT effects 
in the expected direction (de Frias et al., 2004, 
2005; Harris et al., 2005; Mattay et al., 2006; Starr 
et al., 2007). The direct age-comparative evidence 
obtained in this study provides novel support 
for the view that COMT effects are unmasked 
in old age, presumably because older adults are 
operating at suboptimal levels of dopaminergic 
neuromodulation.

and the role of the MTL in executive function-
ing (Courtney et al., 1997; Takahashi et al., 2007), 
Nagel et al. (2008) also predicted that the relation 
between COMT status and adult age would be 
modulated by BDNF genotype. Specifically, Nagel 
et al. (2008) expected that older COMT Val carri-
ers who also carry the Met allele of the BDNF gene 
would show particularly low levels of executive 
performance.

To test these predictions, 164 younger adults 
aged 20–31 years and 154 older adults aged  
60–70 years were assessed on the WCST and a spa-
tial WM task. A computer-administered adapted 
version of the standard 128-cards WCST was 
used (Heaton et al., 1993), and participants were 
instructed to perform as fast and accurately as 
possible. Performance was evaluated by applying 
the WCST standard scoring rules, as described 
by Heaton et al. (1993). The percentage of per-
severative errors and reaction times for correct 
responses were used to index performance. In 
the spatial WM task, participants were visually 
presented with a series of dots, displayed con-
secutively in a specific location in a 4 × 4 grid of 
circles. Load level was manipulated by the number 
of dots in the sequence (i.e., four or seven). DNA 
was extracted from peripheral blood, and ana-
lyzed using standard methods (for details, see 
Nagel et al., 2008). The allelic distributions of 
both genes did not deviate significantly from 
those expected according to Hardy-Weinberg 
equilibrium in either age group.

Figure 3 | Results from Nagel et al. (2008). Mean reaction time for correct WCST responses  
as a function of age, COMT genotype, and BDNF genotype. The age × COMT interaction accounted 
for 4.1%, and the age × COMT × BDNF interaction for 3.1% of the variance.



Frontiers in Neuroscience www.frontiersin.org December 2008 | Volume 2 | Issue 2 | 239

Lindenberger et al. Genes, aging, and human cognition

show that various forms of MTL damage affect 
WM in addition to episodic memory (Olson et al., 
2006; Piekema et al., 2007).

The results reported by Nagel et al. (2008) are 
novel in two ways. First, the age-associated mag-
nification of COMT gene effects provides new 
evidence in support of the inverted U-shaped 
relation between dopaminergic neuromodulation 
in PFC and cognitive performance (but see Raz 
et al., in press). Second, the modulation of COMT 
gene effects by the BDNF gene extends recent evi-
dence of close interactions between frontal and 
MTL circuitries in executive functioning and 
WM. Taken together, the results are consistent 
with our hypothesis that resource losses in nor-
mal aging magnify the effect of common genetic 
variations on human cognition.

furtHer tests of tHe resource 
ModulatIon HypotHesIs
In this article, we advance the hypothesis that 
normal aging modulates genetic effects on 
human cognition (see Figure 1), and reviewed 
initial evidence by Nagel et al. (2008) support-
ing this hypothesis. The Nagel et al. (2008) study 
was restricted to two genes, COMT and BDNF, 
and their effects on executive functioning and 
spatial WM. Obviously, the results reported by 
Nagel et al. (2008) need to be replicated, and the 
resource modulation hypothesis should be tested 
in additional cognitive domains, and with a larger 
array of candidate genes as well as their inter-
actions. Here, we will not attempt to provide a 
comprehensive overview of candidate genes and 
cognitive domains (for summaries, see de Geus 
et al., 2008; Mattay et al., 2008). Rather, to com-
plement the focus of Nagel et al. (2008) on execu-
tive functioning and WM, we will selectively focus 
on four genes that are particularly relevant for 
episodic memory, namely GRM3, BDNF, KIBRA, 
and APOE.

In addition to DA, working memory func-
tioning is critically dependent upon glutamater-
gic and GABAergic systems (Seamans and Yang, 
2004). Therefore, we expect that the effects of 
genes regulating the expression of glutamate and 
GABA on working memory should increase with 
advancing age, and interact with the COMT gene. 
To our knowledge, age-comparative evidence 
testing this prediction is not yet available. In a 
study with young adults, Tan et al. (2007) recently 
reported interactive effects of the COMT gene 
and the type II metabotropic glutamate receptor 
3 (GRM3) gene on the engagement of prefrontal 
cortex during working memory performance. 
The GRM3 genotype, putatively associated with 
suboptimal glutamatergic signaling, was associ-

Based on animal research, molecular imag-
ing studies in humans, and neurocomputational 
modeling, Nagel et al. (2008) assumed that age-
related decline in DA signaling leads to noisier 
and less efficient processing in PFC (Bäckman 
et al., 2006; Li et al., 2001). DA signaling is known 
to affect PFC-related cognitive functions in an 
inverted U-shaped manner (Goldman-Rakic 
et al., 2000; Li and Sikström, 2002; Mattay et al., 
2003; Vijayraghavan et al., 2007). Nagel et al. 
(2008) also assumed that normal aging moves 
individuals further to the left on the inverted 
U-shaped curve, and that Val COMT carriers 
start this lifespan shift further to the left than 
Met COMT carriers. As a result, it follows that 
Val COMT carriers undergo a greater loss of DA 
signaling than Met carriers (see Figure 2). The 
results are in excellent agreement with this model, 
thereby extending the validity of the inverted-U 
shaped function to normal human aging. At the 
same time, the results by Nagel et al. (2008) also 
match the general expectation that normal aging 
modulates the behavioral consequences of genetic 
variability (see Figure 1).

Finally, Nagel et al. (2008) also found that the 
BDNF gene modulates the interaction between 
age and COMT status. There is evidence that car-
riers of the BDNF Met allele perform more poorly 
in tasks assessing memory and fluid intelligence 
than Val carriers (Egan et al., 2003; Hariri et al., 
2003; Ho et al., 2006; Tsai et al., 2004). Nagel et al. 
(2008) found that older Met BDNF carriers took 
more time to respond in the WSCT and in the 
high-load condition of the spatial WM task if they 
were Val homozygotes on the COMT gene. The 
resulting triple interaction among age, COMT, 
and BDNF, in which BDNF further exacerbated 
the processing disadvantage of older individuals 
who are Val homozygotes on COMT, lends fur-
ther support to the view that COMT and BDNF 
are jointly involved in regulating the PFC–MTL/
executive control–episodic memory circuitry 
(Buckner et al., 1996; Miller and Cohen, 2001). 
The influence of BDNF on this circuitry may have 
at least three origins. Anatomically, BDNF affects 
both PFC and hippocampal gray-matter volumes 
(Pezawas et al., 2004). Neurochemically, BDNF 
influences DA release in striatal regions (Narita 
et al., 2003) that may affect PFC functions through 
the striato-thalamo-cortical pathway (Alexander 
et al., 1986). Functionally, the MTL and the PFC 
jointly contribute to executive functioning, 
WM, and episodic memory circuitries (Naghavi 
and Nyberg, 2005). For instance, a recent study 
showed that DA D2

 receptor binding potential in 
MTL is strongly related to WCST performance 
(Takahashi et al., 2007). Similarly, patient studies 
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exchange within the ninth intron of the KIBRA 
gene. KIBRA encodes a protein that interacts 
with protein kinase C and probably plays a 
role in synaptic plasticity and memory forma-
tion (Buther et al., 2004). In three independent 
young and middle-aged samples, CC carriers 
performed less well on verbal and visual epi-
sodic memory tasks than CT and TT  carriers. 
Schaper et al. (2008) replicated these results in 
a small sample of healthy older adults, using 
the German version of the Rey Auditory Verbal 
Learning test as a measure of episodic memory. 
In this study, the effect sizes for the KIBRA gene 
were at least as large or larger than those reported 
by Papassotiropoulos et al. (2006). Again, direct 
age comparisons with identical measures would 
be needed to test whether KIBRA gene effects on 
memory increase from early to late adulthood.

The apolipoprotein E gene (APOE) is the 
most clearly established genetic risk factor for 
Alzheimer’s disease (AD). It codes for apolipo-
protein E, the primary cholesterol transporter in 
the brain, which, among other things, is impli-
cated in brain repair mechanisms. The APOE 
gene has three alleles, e2, e3, and e4, the most 
common being e3. Negative effects of the e4 allele 
on cognition are generally absent in young adults 
(e.g., Alexander et al., 2007; Schultz et al., 2008), 
but the e4 disadvantage is present in healthy 
older adults for episodic memory and executive 
functioning (e.g., Deary et al., 2002; Small et al., 
2004). Compared to non-e4 carriers, AD risk is 
significantly increased for people with genotypes 
e2/e4 (odds ratio = 2.6), e3/e4 (odds ratio = 3.2), 
and e4/e4 (odds ratio = 14.9; see meta-analysis 
by Farrer et al., 1997). However, APOE genotype 
does not modify rate of decline in AD after the 
clinical diagnosis has been made (e.g., Corder 
et al., 1995; Growdon et al., 1996), and even pro-
gression from the preclinical stage to clinically 
verified AD is indistinguishable for carriers and 
non-carriers of the e4 allele (Bäckman et al., 2003; 
Bunce et al., 2004a).

The absence of deleterious effects of the 
e4 allele on cognition in younger adults (high 
resource levels) and the presence of such effects 
in normal older adults (medium resource  levels) 
is in good agreement with the resource modula-
tion hypothesis. Similarly, the observation of a 
waning influence of APOE on cognition during 
the preclinical and later phases of AD is consist-
ent with the hypothesis, as genetic effects on cog-
nition are expected to decrease when resource 
levels are exceedingly low (see Figure 1). A 
study by Almeida et al. (2008) on the effects of 
the KIBRA gene on episodic memory consti-
tutes another case in point. Almeida and col-

ated with inefficient prefrontal engagement and 
altered prefrontal-parietal coupling in COMT Val 
homozygotes, whereas GRM3 gene effects were 
less pronounced in COMT Met homozygotes. If 
we conceive of variations in the COMT gene as 
a resource manipulation, with Val homozygotes 
being lower in working memory-related prefron-
tal resources than Met homozygotes, then the 
greater effect of GRM3 in COMT Val homozy-
gotes is consistent with the resource modulation 
hypothesis. We expect that advancing adult age 
will further enhance the epistatic interaction 
between COMT and GRM3.

Following up on the findings reported by Nagel 
et al. (2008), future research also needs to exam-
ine whether the effects of the BNDF gene also 
increase with advancing adult age in the domain 
of episodic memory. In Nagel et al. (2008), the 
BDNF gene effects on executive functioning and 
WM were confined to old COMT Val/Val carriers. 
In the other age and COMT groupings, the effect 
of the BDNF gene was negligible. In view of the 
robust BDNF gene effects on episodic memory 
(Egan et al., 2003; Hariri et al., 2003; Ho et al., 
2006), we predict that the BDNF Val advantage 
in episodic memory is exacerbated in old age. 
So far, most studies on BDNF gene effects on 
cognition were confined to one age group (but 
see Raz et al., 2008a), and did not allow for a 
direct test of age × gene interactions. Recently, 
Miyajima et al. (2008) found a reliable BDNF 
Val advantage on tests of delayed recall, process-
ing speed, and a  general intelligence factor in a 
sample of 722 adults aged 50–85 years. Relative 
to homozygous Val individuals, heterozygous and 
homozygous Met individuals scored 3% and 13% 
lower on the delayed recall test, respectively. In a 
sample of 103 healthy adults aged 19–77 years, 
Raz et al. (2008a) found that elevated levels of 
fasting blood glucose, included in the study as 
an indicator of vascular risk, was associated with 
lower memory scores only in carriers of the BDNF 
Met allele. Given that elevated blood glucose lev-
els are more prevalent at older ages (for review, 
see Morley, 2008), and accompanied by losses in 
cognitive resources (e.g., Huber, 2008; Rolandsson 
et al., 2008), this finding fits the general scenario 
depicted in Figure 1.

Papassotiropoulos et al. (2006) recently 
discovered the role of the KIBRA gene in epi-
sodic memory. These authors performed a 
 hypothesis-free whole genome wide associa-
tion scan, covering more than 500,000 single 
nucleotide polymorphisms (SNPs) to identify 
genes linked to episodic memory performance. 
The strongest association was observed for the 
rs17070145 SNP, which is a common T→C 
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To further test the prediction that brain aging 
magnifies genetic effects on cognition from early 
to late adulthood, research designs need to include 
groups of younger and older adults or sample indi-
viduals in a continuous fashion across the lifespan. 
In addition, sample sizes need to be  sufficiently 
large to detect higher-order  interactions between 
multiple genes and age. We also recommend that 
future research on aging, genetics, and cognition 
pays greater attention to sample differences in 
task-relevant resources, as such differences may 
predictably modulate (e.g., magnify or attenuate) 
the size of genetic effects. Age differences in genetic 
effects on human cognition are occasionally attrib-
uted to mechanisms that are difficult to test and 
hard to verify, such as antagonistic pleiotropy 
(e.g., Finch and Tanzi, 1997; Reynolds et al., 2006) 
or complex gene × environment interactions (e.g., 
Reynolds et al., 2007). Although we do not deny 
that these explanatory options may be valid, we 
invite researchers to consider resource modulation 
as a likely and parsimonious alternative.
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leagues examined a sample of 312 adults aged 
50–89 years. Of these, 133 were classified with 
mild cognitive impairment (MCI). In line with 
the findings reported by Papassotiropoulos et al. 
(2006) and Schaper et al. (2008), the KIBRA gene 
influenced episodic memory in the normal range 
of functioning, with lower scores for the CC gen-
otype. However, the risk for MCI did not differ 
reliably between CC homozygotes and T carriers 
of the KIBRA gene, and this gene was not asso-
ciated with memory performance among the 
MCI individuals, leading the authors to  suggest 
that the KIBRA gene “plays all but a limited 
role after scores fall below a  certain threshold” 
(Almeida et al., 2008, p. 1675). At a more general 
level, results from twin studies indicate that the 
genetic contribution to individual differences in 
cognitive functioning may decrease in very old 
age (Finkel et al., 1998). Thus, in line with the 
resource modulation hypothesis, there is initial 
evidence that the influence of common genetic 
polymorphisms may decrease in AD and in the 
terminal phase of the lifespan, when cognitive 
resources are greatly depleted.

conclusIon and outlook
In this article, we propose the hypothesis that 
neurochemical and anatomical brain resources 
modulate the influence of common genetic 
polymorphisms on human cognition because 
the function relating brain resources to cogni-
tive performance is nonlinear. We applied this 
hypothesis to cognitive aging, and summarized 
the results of an age-comparative study by Nagel 
et al. (2008) of COMT and BDNF gene effects 
on executive functioning and spatial WM, which 
provides initial support for our hypothesis.
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