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ABSTRACT

While previous studies reported aberrant expression of microRNAs (miRNAs) in non-small cell lung cancer (NSCLC), little is
known about which miRNAs play central roles in NSCLC’s pathogenesis and its regulatory mechanisms. To address this issue,
we presented a robust computational framework that integrated matched miRNA and mRNA expression profiles in NSCLC
using feed-forward loops. The network consists of miRNAs, transcription factors (TFs), and their common predicted target
genes. To discern the biological meaning of their associations, we introduced the direction of regulation. A network edge
validation strategy using three independent NSCLC expression profiling data sets pinpointed reproducible biological
regulations. Reproducible regulation, which may reflect the true molecular interaction, has not been applied to miRNA–TF co-
regulatory network analyses in cancer or other diseases yet. We revealed eight hub miRNAs that connected to a higher
proportion of targets validated by independent data sets. Network analyses showed that these miRNAs might have strong
oncogenic characteristics. Furthermore, we identified a novel miRNA–TF co-regulatory module that potentially suppresses the
tumor suppressor activity of the TGF-β pathway by targeting a core pathway molecule (TGFBR2). Follow-up experiments
showed two miRNAs (miR-9-5p and miR-130b-3p) in this module had increased expression while their target gene TGFBR2
had decreased expression in a cohort of human NSCLC. Moreover, we demonstrated these two miRNAs directly bind to the
3′ untranslated region of TGFBR2. This study enhanced our understanding of miRNA–TF co-regulatory mechanisms in NSCLC.
The combined bioinformatics and validation approach we described can be applied to study other types of diseases.
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INTRODUCTION

Lung cancer is the second most common cancer among both
men and women in the United States and led to an estimated
160,000 deaths in 2013 (Siegel et al. 2013; Henley et al. 2014).
Non-small cell lung cancer (NSCLC) accounts for ∼80%–

85% of all cases of lung cancer (Dempke et al. 2010). Despite
the advent of new drugs and therapeutic regimens, lung can-
cer prognosis has not changed significantly in the last two
decades (Fabbri et al. 2007). Hence, the development of ef-
fective treatments for this disease requires rapid innovations
of therapeutic strategies. Recently, several studies have dem-
onstrated that therapeutic strategies based on the modulation
of microRNA (miRNA) activities are promising, as these
small RNAs have the ability to influence cellular behavior
(Kota et al. 2009; Jackson and Linsley 2010; Trang et al.
2010).

MicroRNAs (miRNAs) are small endogenous non-coding
RNAmolecules that are∼21–23 nucleotides (nt) in length. In
animals, a single-stranded miRNA typically binds to the 3′

untranslated regions (UTRs) of the target mRNA, and this re-
sults in mRNA degradation or translational repression of
protein production. This process is commonly called post-
transcriptional regulation (Bartel 2004). Recent studies indi-
cate aberrant expression of miRNAs can contribute to cancer
development by promoting the expression of proto-onco-
genes or inhibiting the expression of tumor suppressor genes
(Bandyopadhyay et al. 2010). Several miRNAs are reported to
have aberrant expression in NSCLC (Guan et al. 2012; Vosa
et al. 2013); however, researchers have yet to pinpoint which
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miRNAs play critical roles in the pathogenesis of NSCLC or
the relevant targets of these miRNAs.
The other type of important regulators during cancer pro-

gression is transcription factors (TFs), which bind to genes’
promoter regions and either induce or repress gene tran-
scription. A major portion of oncogenes and tumor suppres-
sor genes encode TFs (Libermann and Zerbini 2006) that
control gene and miRNA expression and signaling pathways
in cancer. The expression of these TFs, on the other hand, can
be regulated by miRNAs at the post-transcriptional stage.
Therefore, miRNA(s) and TF(s) may regulate each other
reciprocally and form a feed-back loop (FBL), or both can
jointly regulate the expression of target genes and form a
feed-forward loop (FFL) (Guo et al. 2010). FFL-based com-
binatorial regulatory network approaches recently emerged
as promising tools to elucidate complex diseases such as
schizophrenia (Guo et al. 2010), glioblastoma multiforme
(Setty et al. 2012; Sun et al. 2012), ovarian cancer (Zhao et
al. 2013), and osteosarcoma (Poos et al. 2013). However, cur-
rent FFL studies mostly rely on the predicted regulation in-
formation, leading to high false positive rates.
To increase the confidence in true and biologically relevant

regulations, one may identify regulatory relationships that are
consistent or reproducible in multiple independent studies
(Langfelder et al. 2011; Dutta et al. 2012). So far, such a strat-
egy has not been applied to miRNA–TF co-regulatory net-
work analyses in cancer or other diseases. However, with the
rapid growth in high-throughput expression profiling stud-
ies, this strategy has become not only feasible, but also neces-
sary to identify complex gene regulation in cellular systems.
In this study, we aimed to decipher miRNA- and TF-me-

diated reproducible regulations in NSCLC by utilizing four
matched miRNA and gene expression profiling data sets.
We constructed the network by integrating in silico target
prediction results and one matched miRNA and gene ex-
pression profiling data set. We then applied a network edge
validation strategy using three other independent data sets,
aiming to pinpoint reproducible biological regulations. A
sub-network from a well-known pathway in NSCLC, the
transforming growth factor-β (TGF-β) signaling pathway,
identified two promising oncogenic miRNAs that coopera-
tively regulate the core pathway molecule TGFBR2. This reg-
ulation was supported by our qRT-PCR and luciferase
reporter assays.

RESULTS

An integrative framework for reproducible
regulatory network construction

Figure 1 illustrates our integrative framework to construct
a comprehensive miRNA–TF co-regulatory network in
NSCLC. This network consisted of feed-forward regulations
among three major components: miRNAs, genes, and TFs.
We restricted our analysis of miRNAs and genes that were

differentially expressed (DE) in NSCLC compared with nor-
mal lung tissue samples (see Supplemental Fig. S1; Fig. 1A).
Specifically, to identify the DE molecules, we extracted ex-
pression data from a cohort study of 16 NSCLC patient sam-
ples and 16 matched normal lung tissue samples from TCGA
(Hammerman et al. 2012). The RNA-Seq data for mRNA ex-
pression and matched miRNA-Seq data for miRNA expres-
sion were available from the same samples, making our
analyses more reliable. Hereafter, we refer to this data set as
Discovery_data (see Materials and Methods). Details of rele-
vant patient characteristics, study references, and profiling
platforms for this data set are provided in Supplemental
Tables S1, S2. Using the Discovery_data, our analyses yielded
30 up- and 27 down-regulated miRNAs, as well as 680 up-
and 823 down-regulated genes in NSCLC compared with
normal lung tissue samples that passed the strict DE criteria
(twofold change and adjusted P-value < 10−4; see Materials
and Methods). Known human TFs were collected from the
TRANSFAC professional database (release 2011.4) (Matys
et al. 2006). We identified 49 TFs (hereafter, referred to as
active TFs) that either were DE in NSCLC or had enriched
numbers of their predicted targets identified as DE
(Materials and Methods) (Fig. 1B,C). In this network, there
are four types of regulatory relationships: miRNA regulation
of gene expression (miRNA to gene), miRNA regulation of
TF expression (miRNA to TF), TF regulation of gene expres-
sion (TF to gene), and TF regulation of miRNA expression
(TF to miRNA). We nominated regulator-mediated target
activation or repression event based on the observed positive
or negative expression correlation computed by Spearman
rank correlation statistic (Fig. 1D). To integrate these regula-
tions into a miRNA–TF co-regulatory network, we only in-
cluded miRNA- and TF-mediated FFLs (Fig. 1E).
To assess if the observed expression correlations between

regulator-target pairs were reproducible, we introduced a
network edge validation strategy using three independent
NSCLC expression profiling data sets, Validation_data1, Val-
idation_data2, and Validation_data3, among which the
matched miRNA and gene expression profiles are available
(seeMaterials andMethods). Relevant patient characteristics,
study references, and profiling platforms for these data sets
are described in Supplemental Tables S1 and S3–S5. Of
note, Discovery_data was used to construct the miRNA–TF
co-regulatory network and introduce the direction of the
biological regulations by measuring the expression correla-
tion, while the three validation data sets were used to assess
whether the inferred expression correlation between a regu-
lator and a target could be consistently observed in inde-
pendent studies. We performed functional enrichment and
pathway analyses to pinpoint important regulatory mod-
ules, their component miRNAs, and their targets that have
pathogenic potential in the NSCLC progression. Follow-up
experimental results confirmed the reliability of a regu-
latory module associated with the important TGF-β pathway
(Fig. 1E).
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Highly confident regulatory relationships among
miRNAs, TFs, and genes

Table 1 summarizes four types of potential regulatory rela-
tionships explained above and related methods. We provided
more details below.

For a miRNA, we predicted conserved miRNA to gene
relationships by parsing the TargetScan prediction results
(Friedman et al. 2009). To assign the direction of the regula-
tion, we combined the prediction results and Discovery_data.
We predicted miRNA-mediated repression of genes if (1)
miRNAs and their predicted targets were discordantly ex-
pressed in NSCLC and (2) they were significantly anti-

correlated (Spearman ρ <−0.3, P-value < 0.05, and false dis-
covery rate [FDR] < 0.1) (see Materials and Methods).
Based on the available miRNAs in TargetScan database and
the pairs that satisfied our filtering criteria above, we obtained
744 miRNA–target gene pairs from 19 up-regulated miRNAs
and 301 down-regulated genes in NSCLC compared with the
normal lung tissue. In addition, we obtained 575 miRNA–
target gene pairs from 17 down-regulated miRNAs and 221
up-regulated genes in NSCLC compared with the normal
lung tissue (Fig. 1A). We employed the same strict criteria
for identifyingmiRNA-mediated TF repression. This resulted
in 89 miRNA–TF pairs from 29 miRNAs and 31 TFs (see
Materials and Methods). To find the regulation of an active

FIGURE 1. Schematic flowchart for constructing and analyzing the comprehensive miRNA–TF co-regulatory networks in NSCLC. miR represents
microRNA (miRNA). The computational framework has the following major steps. (A) Prediction of miRNA-mediated gene repression based on
differentially expressed (DE) miRNAs and genes, target prediction results from TargetScan database, and significant anti-correlation measured by
Spearman rank correlation statistic. Group 1 consisted of down-regulated miRNAs and up-regulated genes and Group 2 consisted of up-regulated
miRNAs and down-regulated genes. Up- or down-regulation was measured in NSCLC compared with the normal lung tissue. (B) A pipeline to iden-
tify conserved TF and target gene/miRNA relationships. (C) Identification of active TFs. A TF is regarded as active if its encoding gene is DE or its
predicted targets are statistically enriched with DE genes/miRNAs in NSCLC compared with the normal lung tissue (hypergeometric test, P-value <
0.05; see Materials and Methods). (D) Establishment of the direction of regulation by measuring expression correlation between a regulator and a
target. (E) Construction of the miRNA–TF co-regulatory network and sub-network from a given pathway. The network consisted of 32 DE
miRNAs, 31 active TFs, 147 DE genes, and 688 edges. Edges with different colors represent their validation status as found using three independent
data sets (details are shown in Fig. 3). To confirm the regulatory relationships in one pathway module, follow-up experiments were conducted using
quantitative RT-PCR and luciferase reporter assays.
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TF to genes or miRNAs, we explored the active TFs and their
binding profiles from the TRANSFAC Professional database
and predicted TF-binding sites using its Match software (Kel
et al. 2003). To reduce the false positive predictions, we re-
quired the predicted pairs to be conserved among humans,
mice, and rats (Guo et al. 2010) (see Materials and Methods).
Again, to assign the direction of the regulation, we combined
the TF–target prediction results and Discovery_data. The cri-
teria for TF-mediated repression of gene/miRNA were the
same as those of the miRNA-mediated gene/TF repression
procedure, which was described above. For the TF-mediated
gene/miRNA activation, we required that the TF and the pre-
dicted target need to be concordantly expressed (either up-
or down-regulated) in NSCLC and that they must be posi-
tively correlated (Spearman ρ > 0.3, P-value < 0.05, and
FDR < 0.1) (see Materials and Methods). We predicted 576
TF–target gene pairs and 46 TF–target miRNA pairs that
were negatively correlated and 799 TF–target gene pairs
and 39 TF–target miRNA pairs that were positively correlated
(see Table 1).

miRNA–TF co-regulatory network in NSCLC
with 57% validated regulations

Our network was constructed based on the transcriptional
regulation of TFs tightly coupled with the post-transcrip-
tional regulation of miRNAs. These two types of gene regula-
tors frequently form three-node FFLs (i.e., each FFL has a TF,
a miRNA, and a common target gene). To study the DE
miRNA and active TF-mediated co-regulation in NSCLC,
we utilized their three-node FFL motifs. We then performed
the randomization test using the tool FANMOD (Wernicke
2006; Wernicke and Rasche 2006) to assess whether a three-
node FFL motif was unlikely generated from a network by
chance (Supplemental Text S1). Consequently, we identified
four types of overrepresented FFLs in NSCLC (P-value <
10−2, randomization test); they were named motifs A, B, C,
and D (Table 2). There were a total of 417 FFLs belonging
to these four types of FFL motifs (Table 2; Fig. 1E).
In motif A, the TF induces target gene expression at the

transcriptional level, and the miRNA represses both TF and

gene expression at the post-transcrip-
tional level. Motifs B and C share a
common design structure: The TF reg-
ulates the miRNA and the protein-cod-
ing gene at the transcriptional level,
and the miRNA represses the target
gene at the post-transcriptional level.
However, in motif B, the TF induces
miRNA expression and represses gene
expression, while in motif C, the TF re-
presses miRNA expression and induces
gene expression. In motif D, the regu-
lators mutually repress each other; the
TF induces target gene expression at the

transcriptional level, and the miRNA represses target gene
expression at the post-transcriptional level. We constructed
a miRNA–TF co-regulatory network by merging these 417
FFLs, as mentioned above. The network consisted of 32 DE
miRNAs, 31 active TFs, 147 DE genes, and 688 edges. Expres-
sion patterns, fold-changes, and adjusted P-values for these
miRNAs, TFs, and genes are provided in Supplemental Ta-
bles S6–S9. The detailed information about the direction of
biological regulation in terms of expression correlation for
the 688 edges is provided in Supplemental Table S10.
Among the 688 edges, 578 were commonly detected in the

three independent validation data sets. A Venn diagram was
provided in Supplemental Figure S2. To define if one edge
was validated, we required that the direction of expression
correlationof that edge should be consistent in at least two val-
idation data sets. Furthermore, the summary of the three cor-
relationP-values, combined by the Fisher’smethod, shouldbe
<0.05 with its FDR < 0.1. The detailed network edge valida-
tion strategy is described in Materials and Methods. Among
the 578 edges, 332 (57.44%) edges were validated by inde-
pendent validation data sets. We further divided the validated
edges into three groups according to the number of validated
data sets and related significance. The first and second groups
included 36 (6.23%) and 133 (23.01%) edges that were
stronglyvalidatedby three and twovalidationdata sets, respec-
tively. The last group included 163 edges (28.20%) that were
validated by two validation data sets. Among these 163 edges,
159 were strongly validated by one independent validation
data set. We defined a validated edge as “strongly validated”
if it showed the expression correlation P-value of <0.05.
Detailed validation results are provided in Supplemental
Figure S3 and Supplemental Table S11. Throughout theman-
uscript, we synonymously used the terms “validated edges”
and “validated targets” to represent a reproducible biological
regulation. For clarity, we assigned different colors and line
styles to explain different groups of edges.

Systematic filtering of critical miRNAs in NSCLC

A general view of the regulatory network can be observed
by calculating the node degree (connectivity) and its

TABLE 1. Summary of the integrated regulatory relationship among miRNAs, TFs, and genes

Relationship
Potential

regulation type # pairs # miRNAs # genes # TFs
Detection
methoda

miRNA–gene Repression 1319 36 522 — A
miRNA–TF Repression 89 29 — 31 B
TF–gene Activation 799 — 293 48 C
TF–gene Repression 576 — 252 46 C
TF–miRNA Activation 39 16 — 23 C
TF–miRNA Repression 46 19 — 20 C

aA: Differential expression, TargetScan, and Spearman rank correlation. B: Differential expres-
sion, TargetScan, Spearman rank correlation, and TRANSFAC. C: Differential expression,
Spearman rank correlation, TRANSFAC, and MATCH.
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distribution, which are basic topological network measures
(Barabasi and Oltvai 2004). The degree values for TFs, miR-
NAs, and genes in this miRNA–TF co-regulatory network
ranged from 2 to 33, 2 to 29, and 2 to 14, respectively. Degree
distributions of all nodes were right-skewed, indicating that a
high degree could be observed for a small portion of nodes,
and these nodes might be considered as hubs in the network
(Supplemental Fig. S4). Based on the definition proposed by
Yu et al. (2004), we pinpointed hub nodes in the network us-
ing the degree cutoff value of 10. Thus, we obtained 40 hub
nodes, including 20 miRNAs, 17 TFs, and three protein-cod-
ing genes.

For each of the hub miRNAs and TFs,
we conducted a functional analysis of its
targets using the software WebGestalt
(Zhang et al. 2005). We found a profiling
set of 12 hub miRNAs and six hub TFs
whose targets were significantly enriched
with 12 gene ontology (GO) terms that
are closely related to cancer-specific bio-
logical processes (hypergeometric test P-
value < 0.05, followed by the Benjamini-
Hochberg [BH] method [Benjamini and
Hochberg 1995] for multiple test correc-
tion) (Fig. 2A). Functional enrichment of
target genes and TFs in a number of can-
cer-related biological processes suggest
that these hub regulators might have im-
portant roles in cancer development.
Figure 2A shows that targets of three
up-regulated miRNAs in NSCLC (miR-
9-5p, miR-183-5p, and miR-200b-3p)
were enriched in the apoptotic process

or programmed cell death. The down-regulation of their tar-
gets in NSCLC suggests that the apoptotic process might be
hampered because of the involvement of these miRNAs. In
contrast, targets of miR-30a-5p were significantly enriched
in the negative regulation of the apoptotic process. Targets
of miR-30a-5p were up-regulated in NSCLC, which might
be due to the down-regulation of miR-30a-5p, and the con-
sequence of this would be reduced apoptosis. Furthermore, a
large set of eight miRNAs (miR-130b-3p, miR-17-5p, miR-
200c-3p, miR-183-5p, miR-200b-3p, miR-96-5p, miR-9-
5p, and miR-182-5p) and three TFs (E2F3, ZEB1, and
EGR2) were significantly associated with at least one of the

FIGURE 2. Critical hub regulators that are potentially involved in cancer progression. (A) Enriched gene ontology (GO) terms in the targets of
18 hubs (six TFs and 12 miRNAs). (B) Scatter plot of hub nodes illustrating the percentage of validated targets and cancer-related GO terms. The
x-axis represents the number of cancer-related GO terms associated with the targets for each miRNA or TF. The y-axis represents the percentage
of validated targets observed for each node. Squares and triangles represent TFs and miRNAs, respectively. Red corresponds to up-regulation, and
green corresponds to down-regulation.

TABLE 2. Summary of significantly enriched three-node FFLs based on DE miRNAs, DE
genes, and active TFs

Number of nodes Number of links
Motif #FFLs TFs miRNAs Genes miRNA-

Gene TF
miRNA- TF-

Gene
TF-
miRNA

A 223 23 26 101 180 63 146 0

B 80 18 13 57 64 0 76 27

C 70 13 17 48 57 0 63 25

D 44 9 8 23 34 13 34 13

Total 417 31 32 147 273 76 274 65

Mitra et al.

1360 RNA, Vol. 20, No. 9



following biological processes: cell migration, cell differenti-
ation, and intracellular signal transduction. These biological
processes are associated with epithelial-to-mesenchymal
transition (EMT), a process thought to be essential in cancer
metastasis (Kalluri andWeinberg 2009; Liu 2010). The num-
bers of targets for all miRNAs presented in this regulatory
network are provided in Supplemental Figure S5.
Remarkably, among the 12 hub miRNAs and six hub

TFs, eight miRNAs (miR-130b-3p, miR-17-5p, miR-200c-
3p, miR-183-5p, miR-200b-3p, miR-96-5p, miR-9-5p, and
miR-182-5p) and four TFs (ZEB1, EGR2, HMGA1, and
SMAD3) had at least 50% of their targets validated by inde-
pendent validation data sets (Fig. 2B). The proportions of
validated targets of three miRNAs (miR-130b-3p, miR-
200c-3p, and miR-17-5p) were >90%. The proportions of
other two miRNAs (miR-183-5p and miR-200b-3p) and
the TF ZEB1 were >80%. The higher proportion of validated
targets for a miRNA or a TF may increase the possibility of
having true positive associations with cancer-related biolog-
ical functions. Conversely, two miRNAs (miR-30d-5p and
miR-30b-5p) and one TF (SMAD1) had a considerably lower
proportion of validated targets (<30%) (Fig. 2B) and might
be susceptible to false-positive predictions.
Next, we pinpointed to uncover crit-

ical biological regulations that might
govern the tumorigenesis of NSCLC.
Recently, pathway analysis has been re-
ported as a useful approach to assess
the biological mechanisms involved in
the disease pathogenesis (Wang et al.
2011). We examined enriched pathways
in this regulatory network. For the 31
TFs and 147 genes, we identified 32 sig-
nificantly enriched pathways (adjusted
P-value < 10−2, hypergeometric test fol-
lowed by BH multiple testing correction)
from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (Kane-
hisa and Goto 2000). A list of these path-
ways is provided in Supplemental Table
S12. Among these 32 pathways, 21
(65.62%) are related to cancer. Of these
cancer-related pathways, six are known
to have association with NSCLC progres-
sion, including Wnt, NSCLC, cell cycle,
TGF-β, ErbB, and MAPK.

Potential suppression of TGF-β
signaling by critical hub miRNAs

TGF-β signaling plays a major role in
tumorigenesis (Pino et al. 2010; Yang
and Yang 2010). Based on the canonical
KEGG pathway database (Kanehisa and
Goto 2000), our miRNA–TF co-regula-

tory network could recruit five genes in the TGF-β signaling
pathway: four SMAD family TFs (SMAD1, SMAD2, SMAD3,
and SMAD7) and the gene TGFBR2. We extracted a sub-
network from the miRNA–TF co-regulatory network by
merging all the FFLs that included at least one of these TFs
or TGFBR2. This sub-network included 194 edges, 22
miRNAs, six TFs, and 36 genes (Fig. 3A). The sub-network
showed some meaningful results. For example, the two hub
TFs Smad2/3 that appeared in this sub-network are well-
known surrogates for TGF-β activation (Nyati et al. 2011).
Furthermore, down-regulation or loss of the tumor suppres-
sor gene TGFBR2 in cancer impedes TGF-β-mediated tumor
suppressor functions (Jeon and Jen 2010).
We used the software CFinder (Palla et al. 2005) to identify

tightly connected overlapping interaction modules in
NSCLC. This analysis resulted in four modules (Modules
1–4) (Fig. 3A) whose size was more than five nodes. Modules
1, 2, 3, and 4 consisted of 12.5%, 33.04%, 50.89%, and
88.89% validated targets, respectively (Fig. 3B). Module 4 ap-
peared to have the most confident regulatory interactions in
which a significantly enriched number of edges were validat-
ed by independent data sets (P-value = 5.3 × 10−3, randomi-
zation test, see Materials and Methods). It consisted of the

FIGURE 3. miRNA- and TF-mediated sub-network specific to the TGF-β signaling pathway. (A)
The network consisted of four modules (Modules 1–4). Module 4 contains three miRNAs (miR-
17-5p, miR-9-5p, and miR-130b-3p), two TFs (IRF1 and ZEB1), and one gene (TGFBR2). Edges
with different colors represent their validation status as assessed using three independent data sets.
Blue edge: Regulations were strongly validated by three independent data sets; black edge: strongly
validated by two independent data sets; red edge: validated by two independent data sets; and,
green edge: either not validated or do not exist commonly in all the three validation data sets.
Strong validation is defined as a Spearman rank correlation P-value < 0.05. (B) Bar plot illustrates
percentage of validated targets for four modules. The x-axis represents the four modules. The y-
axis represents percentage of validated targets observed for each module.
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core TGF-β pathway gene TGFBR2 and five regulators (three
miRNAs: miR-9-5p, miR-130b-3p, and miR-17-5p; two TFs:
ZEB1 and IRF1). Among these five regulators, we identified
four (miR-9-5p, miR-130b-3p, and miR-17-5p, and ZEB1)
as cancer-causing critical hub nodes. The direction of the
network edges demonstrated that TGFBR2 could be positive-
ly regulated by the two TFs at the transcriptional level and
repressed by the three miRNAs at the post-transcriptional
level (Fig. 3A). Of note, out of the five edges connected
to TGFBR2, three edges were strongly validated by all three
independent validation data sets (miR-17-5p-TGFBR2,
miR-130b-3p-TGFBR2, and ZEB1-TGFBR2), and two were
strongly validated by two independent validation data sets
(miR-9-5p-TGFBR2 and IRF1-TGFBR2). Repression of
TGFBR2 expression could occur through up-regulation of
its targeting miRNAs.

A previous study has confirmed the up-regulation of miR-
17-5p in NSCLC compared with the normal lung tissue
(Navarro et al. 2009). Moreover, TGFBR2 was reported as a
direct target of miR-17-5p (Dews et al. 2010). So far, the ex-
pression pattern for miR-9-5p in lung tumor versus non-tu-
mor samples has been inconsistently reported: up-regulation
(Crawford et al. 2009; Kang et al. 2013; Xu et al. 2014), down-
regulation (Yanaihara et al. 2006), or insignificant change
in expression (Jusufovic et al. 2012). To the best of our
knowledge, there is no report on miR-130b-3p expression
in NSCLC.

Tumor suppressor gene TGFBR2 regulated
by miR-9-5p and miR-130b-3p cooperatively

To validate the regulation of TGFBR2 in Module 4, we first
performed qRT-PCR to assess the expression of miR-9-5p,
miR-130b-3p, and TGFBR2 in 14 human NSCLC tumor
and 10 normal lung tissue samples. Relative expression of
miR-9-5p (Wilcoxon rank-sum test, P = 5.76 × 10−4) and
miR-130b-3p (Wilcoxon rank-sum test, P = 3.35 × 10−4)
was significantly higher in NSCLC when compared with nor-
mal lung tissue (Fig. 4). In contrast, the expression of
TGFBR2 mRNA was significantly lower (Wilcoxon rank-
sum test, P = 3.569 × 10−6) in NSCLC compared with the

normal lung tissue (Fig. 4). Additionally, we observed signifi-
cant negative correlations between the expression levels of
miR-9-5p and TGFBR2 (Spearman ρ =−0.47, P-value =
0.02), as well as between miR-130b-3p and TGFBR2 (Spear-
man ρ =−0.54, P-value = 7.13 × 10−3).
We then tested whether TGFBR2 is a direct target of miR-

9-5p and miR-130b-3p. A luciferase expression plasmid with
the 3′ UTR of TGFBR2 was co-transfected with mimics of
miR-9-5p, miR-130b-3p, or miR-10b-5p, or control RNA,
in NIH3T3 cells. The cells with miR-9-5p mimic had a signif-
icant reduction in luciferase activity, compared with the RNA
control transfected cells (P-value = 0.01) (Fig. 5). Cells with
miR-130b-3p mimic also showed a significant reduction in
luciferase activity compared with the control (P-value =
0.026) (Fig. 5). miR-10b-5p is not predicted to bind to the
3′ UTR of TGFBR2. In our experiments, cells with miR-
10b-5p mimic did not show a reduction in luciferase activity,
indicating that the reductions in luciferase activity we detect-
ed withmiR-9-5p andmiR-130b-3p were specific. These data
indicate that TGFBR2 is likely a direct target of miR-9-5p and
miR-130b-3p. Interestingly, when miR-9-5p and miR-130b-
3p were transfected together, they reduced luciferase activity
more than either one alone (P-value = 2.0 × 10−6) (Fig. 5).
This result suggested that these two miRNAs might have
functioned cooperatively to suppress TGFBR2 expression.

DISCUSSION

In this study, we constructed a miRNA and TF co-regulatory
network, which provided several important insights into the
etiology of NSCLC. Our framework started with the identifi-
cation of significantly DE genes and miRNAs in NSCLC,
since differential miRNA and gene expression have function-
al relevance in tumorigenesis. Furthermore, we restricted the
TFs to those that are potentially active in NSCLC. We in-
ferred regulatory relationships, including the direction of bi-
ological regulations among the DE miRNAs, active TFs, and
DE genes using a panel of computational tools, and matched
miRNA and gene expression profiles from carefully selected
Discovery_data.

FIGURE 4. Increased expression of miR-9-5p and miR-130b-3p and decreased expression of TGFBR2 in NSCLC. Expression levels of miR-9-5p,
miR-130b-3p, and TGFBR2 were assessed by qRT-PCR in 14 NSCLC stage I tumor samples and 10 normal lung samples. Data are relative to an in-
ternal RNA control and represent median with interquartile range. A statistical analysis was performed using the Wilcoxon rank-sum test. Statistically
significant differences were marked as (∗) P-value < 10−3 or (∗∗) P-value < 10−5.
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One main issue in such a large-scale computational data
analysis is to control the false positives during the construc-
tion of regulatory relationships. To minimize the effects of
false positives, we applied the following procedures. First,
we used the most annotated databases and appropriate soft-
ware and algorithms to conduct the prediction. Second, we
applied stringent parameters in the prediction of miRNA to
gene/TF and TF to gene/miRNA relationships. Third, we re-
quired the observed regulatory relationships to be conserved
across multiple mammalian genomes. Fourth, and more im-
portantly, we imparted the direction of the biological regu-
lation in order to pinpoint only biologically meaningful
regulatory relationships. Our framework could potentially
detect meaningful regulatory relationships and might be ap-
plied to other complex diseases for the purpose of decipher-
ing their regulatory systems and identifying critical miRNAs.
Due to the rapid growth of high-throughput expression pro-
filing studies, we could access multiple miRNA and gene
expression data sets involving NSCLC samples and even their
matched normal samples (see Materials and Methods; Sup-
plemental Table S1). We addressed the reproducible biolog-
ical regulations in this miRNA–TF co-regulatory network
through an application of a novel network edge validation
strategy using three independent validation data sets. These
reproducible regulatory relationships are expected to more
likely reflect the true biological regulations in a cellular sys-
tem (Langfelder et al. 2011; Dutta et al. 2012).
One important outcome of this comprehensive study is the

eight hub miRNAs (miR-130b-3p, miR-17-5p, miR-200c-
3p, miR-200b-3p, miR-183-5p, miR-182-5p, miR-96-5p,
and miR-9-5p) that were identified with a higher proportion
of targets as validated by independent validation data sets

(in the range of 50%–94.5%). Target genes/TFs for these eight
miRNAs were found to be significantly associated with mul-
tiple cancer-related biological processes. These eight miRNAs
were significantly up-regulated in NSCLC compared with
normal samples. We conducted qRT-PCR analyses and con-
firmed the up-regulation of miR-130b-3p and miR-9-5p
in NSCLC (Fig. 4). Up-regulation for the other six miRNAs
(miR-17-5p, miR-200c-3p, miR-200b-3p, miR-183-5p,
miR-182-5p, and miR-96-5p) had been established by qRT-
PCR analysis in previous studies (Supplemental Table S13).
Collectively, these results demonstrate that our regulatory
network analysis is effective to identify oncogenic miRNAs.
An in-depth literature search elucidated that there are 16

(∼9% of total genes and TFs) candidate tumor suppressor
genes/TFs in this regulatory network. Intriguingly, the analy-
sis of RNA-Seq expression profiles fromDiscovery_data could
explain that these 16 tumor suppressors were significantly
down-regulated (at least twofold change with BH adjusted
P-value < 10−4) in NSCLC compared with the normal lung
tissue (Supplemental Table S14). Down-regulation of tumor
suppressors in cancer tissues or cell lines might support the
general understanding that they are involved in tumorigene-
sis. Interestingly, these 16 tumor suppressor nodes in our reg-
ulatory network connected with the eight hub miRNAs,
mentioned above, and formed a sub-network that included
32 edges (Fig. 6A). Among these 32 edges, 30 (93.7%) were
validated using independent validation data sets. We per-
formed an empirical re-sampling approach to assess whether
the observed edge validation result is by chance. The empiri-
cal P-value was 2.0 × 10−4, suggesting that this is unlikely by
randomness. miR-17-5p targeted eight tumor suppressor
genes/TFs (TGFBR2, RASSF2, FAT4, SPRY4, DAB2, QKI,
IRF1, and EGR2). Among these eight genes/TFs, TGFBR2,
RASSF2, IRF1, andEGR2 are experimentally validated targets,
as reported previously (see Supplemental Table S15). miR-9-
5p targeted six tumor suppressor genes/TFs (TGFBR2,
EFEMP1, LIFR, RPS6KA2, STARD13, and IRF1). Recently,
Namlos et al. (2012) reported an anti-correlation between
miR-9-5p and TGFBR2 in osteosarcoma. The remaining six
hub miRNAs were potentially involved in the repression
of a range of two to five tumor suppressor genes/TFs.
Moreover, from the Discovery_data we observed that the tu-
mor suppressor genes/TFs and the regulating hub miRNAs
have a stronger anti-correlation comparedwith the remaining
miRNA–target pairs in the network (P-value = 6.95 × 10−3,
Wilcoxon rank-sum test) (Fig. 6B). Collectively, these lines
of evidence further supported that these eight miRNAs might
have oncogenic potential in the pathogenesis of NSCLC.
Among these eight hub miRNAs, our follow-up ex-

perimental results confirmed that TGFBR2 is a direct target
of both miR-9-5p and miR-130b-3p. Intriguingly, we de-
termined that miR-9-5p and miR-130b-3p cooperatively
suppressed TGFBR2 3′ UTR reporter activity (Fig. 5), indicat-
ing that these two miRNAs could act together to effectively
block TGFBR2 expression. The TGF-β signaling pathway is

FIGURE 5. TGFBR2 is a direct target of miR-9-5p and miR-130b-3p.
Luciferase activity was measured in NIH3T3 cells transfected with the
indicated miRNA mimic or RNA control, a plasmid with TGFBR2 3′
UTR, and a β-galactosidase plasmid. Luciferase activity was relative to
β-galactosidase activity, which controlled for transfection efficiency
for each. ±SEM; n = 4; (∗) P-value = 0.01, (∗∗) P-value = 0.026, (∗∗∗)
P-value = 2.0 × 10−6; ns, not significant; t-tests. miR-10b was not pre-
dicted to bind to the 3′ UTRof TGFBR2, and thus, served as an addition-
al negative control.
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reportedly impeded by the loss of TGFBR2 (Anumanthan
et al. 2005; Munoz et al. 2006; Biswas et al. 2008; Jeon and
Jen 2010). Thus, our results provided additional evidence
of alterations in the TGF-β signaling pathway in NSCLC
through miRNA co-regulation.

There are some limitations in this study. First, we em-
ployed strict criteria to identify regulatory relationships
among miRNAs, TFs, and genes. While this practice is com-
mon to reduce false positives, it might result in missing some
true positive regulations. Second, the study was conducted
based on the available patient samples from both lung squa-
mous cell carcinoma and lung adenocarcinoma and eluci-
dated critical regulatory mechanisms for NSCLC. While we
pointed this out as a limitation, several studies regarded these
two subtypes together in order to infer critical biomole-
cules that have potential implications for the pathology of
NSCLC (Raponi et al. 2006; Ma et al. 2011; Xu et al. 2014).
For example, after analyzing 116 tumor samples (69 squa-
mous cell carcinoma and 47 adenocarcinoma) and adjacent
normal lung tissue samples, Xu et al. (2014) demonstrated
that high miR-9-5p expression is associated with poorer pro-
gression-free survival (P-value < 10−3) and overall survival
(P-value < 10−3) in the NSCLC patients. Third, in this study,
the direction of biological regulation was based on the avail-
able tumor and normal samples from Discovery_data. How-
ever, complex diseases incorporate many changes at the
genomic and transcriptomic levels through a gradual process
(Zheng et al. 2011). Matched miRNA and gene expression
profiles from time point data could be used to address mean-
ingful node association changes over different time points.
However, a lack of such comprehensive data sets is a current
limitation to decipher the accurate regulatory mechanism for
most of the complex diseases.

There is one scope to extend the current computational
framework by integrating other regulation information. We
may include another filter step that regards gene expression
as a function of DNA methylation, copy number variation,
miRNA, and TF expression. Using multivariate regression
model we could evaluate miRNA–gene or TF–gene expres-
sion associations in the presence of DNA copy number and
promoter methylation aberrations that extensively influence
gene expression.
In summary, our miRNA–TF co-regulatory network anal-

yses elucidated some critical regulators and clues for the reg-
ulatory mechanisms of NSCLC.We confirmed up-regulation
of miR-9-5p and miR-130b-3p and down-regulation of tu-
mor suppressor gene TGFBR2 in NSCLC. We experimentally
validated miR-9-5p and miR-130b-3p mediated co-operative
regulation ofTGFBR2. These experimental results, along with
previous studies, support that miR-9-5p and miR-130b-3p
might play critical roles in the pathology of NSCLC.
Consequently, our study provided a new strategy that com-
bined bioinformatics analyses of miRNA–TF co-regulation
with experimental validation to study complex diseases.

MATERIALS AND METHODS

Expression profiles for genes and miRNAs

We collected four data sets, including one for discovery purpose and
three for validation purposes.

Discovery_data

The Cancer Genome Atlas (TCGA) utilized RNA sequencing (RNA-
Seq) to quantify gene expression for lung squamous cell carcinoma,
a subtype of NSCLC (Hammerman et al. 2012). To explain the

FIGURE 6. Association between hub miRNAs and candidate tumor suppressors in NSCLC. (A) Combinatorial interactions between eight hub
miRNAs and 16 tumor suppressor genes/TFs. (B) Empirical cumulative distribution plot of Spearman rank correlation. Significantly higher anti-cor-
relations were observed in the pairs of hub miRNAs and tumor suppressors compared with the remaining miRNA–target pairs (Wilcoxon rank-sum
test, P-value = 6.95 × 10−3) within the miRNA–TF co-regulatory network.
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abundance of gene expression, TCGA provided two measures—the
read count and tau value. We transformed the tau value to tran-
scripts per million (TPM) as recommended by Li and Dewey
(2011). TCGA also archived the NSCLC miRNA-Seq data to quan-
tify miRNA expression. The data consisted of read counts and reads
per million (RPM) values for mature miRNAs. We utilized read
counts to perform the differential expression analysis. We utilized
RPM and TPM to compute the expression correlation between a
regulator and a target molecule.
In February 2013, TCGA archived 16 NSCLC patient samples and

16 matched normal samples for which the gene expression and
miRNA expression profiles were available. Specifically, both the
RNA-Seq and the miRNA-Seq expression profiles from the same
samples were retrieved from TCGA (https://tcga-data.nci.nih.gov/
tcga/) (see Supplemental Tables S1, S2 for more details).

Validation_data1

Matched miRNA and gene expression profiles for a set of 57 lung
squamous cell carcinoma samples were obtained from the Gene
Expression Omnibus (Edgar et al. 2002). Processed and quantile
normalized miRNA expression profiles were available in the GEO
database (accession number: GSE16025), submitted by Raponi
et al. (2009). Microarray gene expression profiles (GEO accession
number: GSE4573) were normalized according to the instructions
provided by Raponi et al. (2006) (see Supplemental Tables S1, S3
for more details).

Validation_data2

An integrative lung cancer study was carried out by Nymark et al.
(2011) using both miRNA and matched gene expression profiling
data. The study considered lung cancer patients that were “highly ex-
posed” and “nonexposed” to asbestos. miRNA and matched micro-
array gene expression profiles were provided by the authors (P
Nymark and S Knuutila, pers. comm.). Both the data sets were pro-
cessed and normalized accordingly as described by Nymark et al.
(2011). We considered seven asbestos-nonexposed NSCLC samples
and corresponding matched normal samples that had both miRNA
and gene expression profiling information (see Supplemental Tables
S1, S4 for more details).

Validation_data3

From the original publication of TCGA (Hammerman et al. 2012),
matched miRNA and gene expression profiles from 154 lung squa-
mous cell carcinoma patient samples were retrieved. This data set
is completely independent from the Discovery_data and was not
used to construct the regulatory network. Normalized miRNA and
matched gene expression profiles were directly obtained from the
TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) (see Supple-
mental Tables S1, S5 for more detail).

Differential expression analysis using Discovery_data

Both miRNA-Seq and RNA-Seq expression profiles from the
Discovery_data were analyzed for identifying DE miRNAs and genes
through the R/Bioconductor package edgeR (Robinson et al. 2010),
which was designed to analyze digital miRNA and gene expression
data. The read counts were imported into EdgeR for differential ex-
pression analysis. The data were normalized based on negative bino-

mial distribution. The differential expression of miRNAs/genes
between tumor and normal samples was assessed by estimating an
exact test P-value, which is similar to the Fisher’s exact test. Then,
the results were further adjusted using the BH multiple testing cor-
rection method (Benjamini and Hochberg 1995). Two types of dif-
ferential expression, namely up-regulation and down-regulation,
were defined according to the following criteria: twofold change
and adjusted P-value < 10−4.

miRNA-mediated gene/TF repression

We integrated TargetScan (release 6.2) prediction results with the
miRNA and gene expression profiling data set (Discovery_data) to
identify miRNA-mediated repression of target genes/TFs. Target-
Scan searches for the presence of conserved and nonconserved
miRNA–target sites in the 3′ UTR of the target transcript (Friedman
et al. 2009). The algorithm distinguishes conserved and poorly con-
served targets of each miRNA by measuring the “probability of con-
served targeting” (PCT) values of the target sites. We restricted our
analysis to only conserved miRNA–target pairs using “Predicted
Conserved Targets Info” file, which was provided by the TargetScan
database. We placed miRNAs and their predicted target genes into
group 1 in which miRNAs were down-regulated and genes were
up-regulated. We placed miRNAs and their predicted target genes
into group 2 in which miRNAs were up-regulated and genes were
down-regulated (see Fig. 1A). Furthermore, we selected miRNA–
gene pairs from the two groups that were anti-correlated, had a
Spearman rank correlation of ρ <−0.3, and had a correlation P-val-
ue of <0.05. Finally, we performed multiple testing correction using
the BH method (Benjamini and Hochberg 1995) and required the
adjusted P-values (FDR) <0.1 to define significant anti-correlations.
To obtain miRNA-mediated TF repression, we utilized all the TFs

that were potentially active (see description below) in NSCLC and
retrieved predicted miRNA–TF pairs using TargetScan (Friedman
et al. 2009). We placed down-regulated miRNAs and up-regulated
predicted target TFs into one group and up-regulated miRNAs
and down-regulated predicted target TFs into another group.
Finally, we extracted miRNA–TF pairs from the two groups that
were significantly anti-correlated (Spearman rank correlation of ρ
<−0.3, P-value < 0.05, and FDR < 0.1).

TF-mediated gene/miRNA regulation

We extracted the promoter region (−1500/+500 around TSS) of hu-
man genes and miRNAs from the UCSC Table Browser (Kent et al.
2002) as explained by Sun et al. (2012). We performed binding site
searches using the software Match (Kel et al. 2003), which was avail-
able in the TRANSFAC professional version (release 2011.4) (Matys
et al. 2006). We utilized pre-calculated cutoffs and a high-quality
matrix to minimize false positive matches. To restrict the search,
we selected a TF by requiring a core score of 1.00 and a matrix score
of 0.95. To further reduce false positive predictions, we required the
predicted pairs to be conserved among human, mouse, and rat data
(Guo et al. 2010).

Active TF identification

To define a TF as active or not, we examined the expression of the
TF-encoding gene and its targets in NSCLC. If the TF-encoding
gene was DE (category 1) or most of its targets were DE (category
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2), the TF was considered to be active (Sohler and Zimmer 2005;
Essaghir et al. 2010; Liu et al. 2010; Naeem et al. 2011). To identify
the active TFs by their targets’ DE status, we applied the hypergeo-
metric test to estimate the significance of the TFs based on the ob-
served overrepresentation of their targets among the DE genes or DE
miRNAs. We obtained 479 DE targets (450 DE genes and 29 DE
miRNAs) of TFs. We also obtained 2495 non-DE targets (less
than twofold change and adjusted P-value > 0.25) of TFs. DE
and non-DE status were determined from the Discovery_data. The
P-value was computed according to the following hypergeometric
formula:

p =
∑i=n

i=k

m
i

( )
N −m
n− i

( )
/

N
n

( )
,

wherem is the number of DEmiRNAs and genes, n is the number of
miRNAs and genes targeted by a TF of interest,N is the total number
of DE and non-DE miRNAs and genes, and k is the number of DE
miRNAs and genes targeted by the TF of interest. We obtained 19
active TFs in category 2 whose significant number of targets (hyper-
geometric test, P-value < 0.05) were DE. Lists of active TFs are pro-
vided in Supplemental Tables S7, S8.

Active TF-mediated gene/miRNA regulation

We selected active TFs and their predicted target genes if both the
TFs and their target genes were either up- or down-regulated in
NSCLC. For all such TF and target gene pairs, we computed their
Spearman rank correlations. If the pairs were significantly positively
correlated (Spearman ρ > 0.3, P-value < 0.05, and FDR < 0.1), we
selected them as TF-mediated activations of target genes. However,
pairs were selected as TF-mediated repression of target genes if they
had both of the following traits: (1) Active TFs were up-regulated in
NSCLC and their predicted target genes were down-regulated in
NSCLC (or vice-versa), and (2) they were significantly anti-correlat-
ed (Spearman ρ <−0.3, P-value < 0.05, and FDR < 0.1). Here, we
applied FDR threshold value 0.1 to define significantly positive or
negative correlations.

We selected the active TFs and their predicted target miRNAs if
both the TFs and the miRNAs were either up- or down-regulated
in NSCLC. If the pairs were significantly positively correlated
(Spearman ρ > 0.3, P-value < 0.05, and FDR < 0.1), we selected
these pairs as TF-mediated activations of target miRNAs. On the
other hand, if the TFs were up-regulated and the predicted target
miRNAs were down-regulated in NSCLC (or vice-versa), and the
pairs were significantly negatively correlated (Spearman ρ <−0.3,
P-value < 0.05, and FDR < 0.1), the pairs were selected as TF-medi-
ated repressions of target miRNAs.

Network edge validation strategy using three
independent validation data sets

Using the Discovery_data, we computed a Spearman rank correla-
tion to impart the direction of regulation for each regulator–target
pair. Next, we used three validation data sets to assess whether the
expression correlation for a regulator–target pair is consistent in
independent studies. Therefore, for one regulator–target pair, we
obtained three Spearman rank correlation scores and corresponding
P-values from the three validation data sets. We employed Fisher’s
method to combine the three P-values and obtained a summary

P-value. Furthermore, we performed multiple testing corrections
using the FDR method (Benjamini and Hochberg 1995). To define
if an edge was validated, we required that the direction of the regu-
lation (positive/negative correlation score observed in Discovery_
data) should be consistent in at least two independent validation
data sets; and, the combined P-value measured by Fisher’s com-
bined method should be <0.05 with its FDR < 0.1. Detailed valida-
tion results are shown in Supplemental Figure S3. To perform the
Fisher’s combined method, we used an R/Bioconductor package
“survcomp” (Schroder et al. 2011).

Network randomization analyses

We applied an empirical re-sampling approach in order to evaluate
the enrichment of the validated edges in a sub-network. Assuming
that among n edges in the sub-network, m edges were validated
by the independent validation data sets. From the miRNA–TF
co-regulatory network, we took into account 578 edges that were
common in the three validation data sets. We first excluded the ob-
served sub-network from the 578 edges and then randomly selected
n number of edges. We compared the occurrences of number of val-
idated edges in the randomly generated sub-network and repeated
the process 10,000 times. We counted the number of randomly gen-
erated sub-networks (N) whose number of validated edges was
greater than m. Finally, we calculated an empirical P-value by
N/10,000; here, the P-value indicates whether the observed sub-net-
work with m-validated edges was unlikely generated by chance.

Quantitative real-time PCR with human samples

We obtained de-identified frozen human samples (14 lung adeno-
carcinoma and 10 normal lung) from the Lung Biorepository at
Vanderbilt University Medical Center. All samples were collected
prior to chemotherapy and/or radiotherapy, and all tumors were in
stage I NSCLC. Total RNA was isolated using Trizol (Life Tech-
nologies) following the manufacturer’s protocol. miRNA analysis
was performed as previously reported by Arrate et al. (2010). Briefly,
the Taqman miRNA reverse transcription kit (Life Technologies)
was used to make miRNA-specific cDNA. The expression of miR-
9-5p, miR-130b-3p, and RNU48 (as an endogenous control) was
measured in triplicate on an Applied Biosystems instrument with
Taqman primer probes (Life Technologies) specific for each. The
expression of TGFBR2 and β-ACTIN mRNA was measured in trip-
licate as previously described by Wang et al. (2008) using the Super-
Script III Reverse Transcriptase kit (Life technologies) and SYBR
Green (Qiagen). The TGFBR2 primers (forward: 5′-GTAGCTCT
GATGAGTGCAATGAC-3′; reverse: 5′-CAGATATGGCAACTCCC
AGTG-3′) were from the Harvard Primer Bank, and the β-ACTIN
primers (forward: 5′-GGATGCAGAAGGAGATCA-3′; reverse: 5′-
CTAGAAGCATTTGCGGTG-3′) were published previously (Gon-
zalez et al. 2010). We calculated the expressions of miR-130b-3p,
miR-9-5p, and TGFBR2 relative to endogenous controls, which
were presented as 2−ΔCt.

Luciferase assay

Luciferase assays were conducted as previously reported by McGirt
et al. (2014), except in the following cases. NIH3T3 cells were co-
transfected with 100 ng of psiCHECK-2-TGFBR2 3′ UTR plasmid
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(31883, Addgene) (Subramanyam et al. 2011), 200 nM miRNA
mimic (miR-9-p, miR-130b-3p, or miR-10b-5p) or control RNA,
and 100 ng pMIR-REPORT β-galactosidase for normalizing trans-
fection efficiency. Luciferase activity and β-galactosidase were
assayed 24 h following transfection, as previously described by
McGirt et al. (2014).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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