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Abstract: Background: Little is known about the role of artificial intelligence (AI) as a decisive tech-
nology in the clinical management of COVID-19 patients. We aimed to systematically review and
critically appraise the current evidence on AI applications for COVID-19 in intensive care and
emergency settings. Methods: We systematically searched PubMed, Embase, Scopus, CINAHL,
IEEE Xplore, and ACM Digital Library databases from inception to 1 October 2020, without language
restrictions. We included peer-reviewed original studies that applied AI for COVID-19 patients,
healthcare workers, or health systems in intensive care, emergency, or prehospital settings. We as-
sessed predictive modelling studies and critically appraised the methodology and key findings of
all other studies. Results: Of fourteen eligible studies, eleven developed prognostic or diagnostic AI
predictive models, all of which were assessed to be at high risk of bias. Common pitfalls included
inadequate sample sizes, poor handling of missing data, failure to account for censored participants,
and weak validation of models. Conclusions: Current AI applications for COVID-19 are not ready for
deployment in acute care settings, given their limited scope and poor quality. Our findings under-
score the need for improvements to facilitate safe and effective clinical adoption of AI applications,
for and beyond the COVID-19 pandemic.

Keywords: artificial intelligence; machine learning; COVID-19; emergency department; intensive
care; critical care

1. Introduction

The ongoing coronavirus disease 2019 (COVID-19) pandemic has challenged health-
care systems and healthcare practitioners worldwide. Intensive care units (ICU) and
emergency departments (ED) in badly afflicted areas have been overwhelmed by the surge
in patients suspected or diagnosed with COVID-19 [1–3]. This exerts significant pressure on
healthcare resources, necessitating novel diagnostic and care pathways to rationally deploy
scarce emergency and intensive care healthcare resources. Current strategies and recom-
mendations on clinical management and resource rationalisation draw on past pandemic
experiences and expert recommendations [3–5]; however, there has been growing interest
in novel applications of artificial intelligence (AI) to assist in the COVID-19 response within
these settings.
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AI is a branch of computer science that uses computational methods to mimic hu-
man intelligence. AI is becoming increasingly ubiquitous; from self-driving cars to Siri,
drone-assisted farming to diagnosis, AI applications have become indispensable in many
industries, including the healthcare sector. Exponential advances in computer processing
speeds, increased access to big data, and electronic medical record usage have all been
crucial factors in driving the uptake of AI applications within the medical field. In medical
research, AI often refers specifically to machine learning, which is a subset of AI that
focuses on automatic improvement of computer programmes through experience [6,7].
For example, simple forms of machine learning such as logistic, linear, or Cox regression
have commonly been used to investigate associations between predictors and disease
outcomes. More advanced machine learning models, including random forest models,
neural networks, or support vector machines, are also becoming more common in the
medical literature. Such models can assist with more complex tasks, for example, im-
age analysis and diagnosis in radiology [8], dermatology [9], and ophthalmology [10],
amongst others. In this review, AI is not limited to machine learning models but includes
broader forms of AI such as natural language processing, decision trees, and computational
decision assistance software. In pre-COVID-19 intensive care and emergency settings,
AI applications have assisted with automated patient monitoring [11–14], prognostica-
tion [15], and optimisation of staffing allocations [16–19]. Given the unprecedented volume
of COVID-19 patients, recent reviews have also identified resource optimisation of ICU
beds as a potentially significant application of AI [20,21].

Earlier systematic reviews have identified significant issues in the quality and report-
ing of predictive models for COVID-19 diagnosis and prognosis [22] and AI applications
for classifying COVID-19 medical images [23]. Shillian, et al. [24] in a systematic review of
machine learning studies in pre-COVID-19 ICUs reported similar issues, such as limited
sample size and poor validation of predictions. However, no study has evaluated the scope
and quality of all available AI applications for COVID-19 in intensive care and emergency
settings. We hypothesise that issues in quality and reporting will exist across all AI applica-
tions in these settings due to the urgency and limited time afforded to developing these
applications during pandemic. However, we also anticipate that diverse, pre-COVID-19
applications of AI may have been repurposed for use in the COVID-19 pandemic, includ-
ing diagnosis, prognostication, monitoring, and resource optimisation. An exploration of
the quality and breadth of current AI applications will provide valuable insight for improv-
ing the development and deployment of AI applications in intensive care and emergency
settings, for and beyond the COVID-19 pandemic. We aim to systematically review and
critically appraise the current evidence on AI applications for COVID-19 in intensive care
and emergency settings, focussing on methods, reporting standards, and clinical utility.

2. Materials and Methods

We reported this systematic review according to the Preferred Reporting Items for
Systematic Reviews (PRISMA) guidelines (Supplementary File S1). A review protocol was
developed but was not publicly registered.

2.1. Search Strategy and Selection Criteria

We searched six databases: (PubMed, Embase, Scopus, CINAHL, IEEE Xplore, and
ACM Digital Library) by combining search terms related to AI, COVID-19, and intensive
care or emergency settings. PubMed, Embase, Scopus, and CINAHL were chosen for their
broad coverage across biomedical, nursing, allied health, and general scientific literature,
while IEEE Xplore and ACM Digital Library were included for coverage of more technical
AI literature. For brevity, the truncated search strategy showing only the first three terms in
each concept set is as follows: ((“Artificial intelligence” OR “Deep learning” OR “Machine
learning” OR . . . ) AND (“COVID-19” OR “Coronavirus disease 2019” OR “2019-nCoV”
OR . . . ) AND (Emergency OR “ED” OR “intensive care” OR . . . )). The complete search
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strategy can be found in Supplementary File S2. We also screened the reference lists of
included articles to identify additional relevant studies.

We included articles that met the following criteria: (1) applied AI; (2) investigated
COVID-19 operations of ICU, ED, or emergency medical services (EMS) or analysed data
from COVID-19 patients in the ED or within a prehospital setting, COVID-19 patients
requiring intensive care (admission to the ICU, mechanical ventilation, or a composite
including either of these outcomes), or the healthcare workers treating these patients,
including ED or ICU physicians and nurses as well as paramedics; and (3) were original,
peer-reviewed research articles. For this review, only conventional machine learning algo-
rithms such as random forest models, neural networks, or support vector machines were
considered AI; multivariable logistic regression predictive models (including ridge and
least absolute shrinkage and selection operator (LASSO) regression) were excluded. No re-
strictions were placed on the language of articles; all non-English articles that appeared
in our search were translated and assessed for suitability, however, we did not search the
databases using equivalent non-English search terms.

2.2. Literature Selection and Data Extraction

We conducted an initial search on 30 August 2020 and updated the results on 1
October 2020. Articles were screened by title, abstract, and, if ambiguous, full text by two
independent reviewers (MLC and NL). Subsequently, the two reviewers (MLC and NL)
independently extracted data using a standardised data extraction form. Discrepancies in
article selection and data extraction were resolved between reviewers through discussion.

We extracted the following data for all included articles: country of study population,
outcome predicted, sample size of the training and validation datasets, AI algorithms used,
discrimination (e.g., C-index, accuracy) and calibration (e.g., calibration slope, Brier loss
score) of models on the strictest form of validation, features included in the final model,
and transparent reporting of a multivariable prediction model for individual prognosis or
diagnosis (TRIPOD) study type [25], if applicable.

2.3. Data Analysis

For studies including multivariate AI predictive models, we evaluated the risk of
bias within the study methodology using prediction model risk of bias assessment tool
(PROBAST) [26]. PROBAST is a structured tool comprising 20 signalling questions for as-
sessing the risk of bias and applicability across the four domains of participants, predictors,
outcome, and analysis. Applicability of included studies was not assessed as our study
was not concerned with a specific application of AI predictive models. In lieu of specific
reporting standards for AI studies at the time of study conception [27], we assessed the
reporting quality of multivariable predictive modelling studies using an adaptation of
Wang, et al. [28] modified TRIPOD statement [29] for AI models (Supplementary File S3).
The TRIPOD statement is a reporting guideline for studies that develop, validate, or update
a prediction model, often for diagnostic or prognostic purposes. It contains 22 checklist
items for assessing the reporting quality of predictive modelling studies. For studies that
could not be assessed using the above guidelines (for example, non-predictive modelling
studies), we summarised the study methodology, including data sources, application of AI,
and validation methods, as well as the key findings of the study.

3. Results
3.1. Study Characteristics

Our search of the six databases returned 764 studies, of which 14 were included and
analysed in this review (Figure 1). Table 1 presents the main characteristics of the study.
Eleven of the 14 studies investigated predictive models and were assessed according to
PROBAST and TRIPOD: eight studies developed prognostic models [30–37] and three stud-
ies developed diagnostic models [38–40]. Of the remaining three studies, two evaluated the
prognostic potential of existing AI-based lung segmentation software (without integration
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into a multivariate predictive model) [41,42] and one investigated an AI-based system for
resource optimisation in the ICU [43]. Eleven studies used patient data collected from the
ICU and four studies used data from the ED. No study collected data from the prehospital
setting, despite including prehospital-related search terms in the search strategy.

In terms of country of study, Italy (n = 3) and United States (n = 3) were represented by
more than one study, while Brazil, Canada, China, France, Germany, Israel, Turkey, and the
United Kingdom had one study each.

According to the TRIPOD classification of predictive models, two studies were clas-
sified as Type 2b (validation using a non-random split of data by time and/or location),
three studies as Type 2a (validation using a random split of data such as a train-test split),
four studies as Type 1b (validation using re-sampling techniques such as bootstrapping
or k-fold cross-validation), and one study as Type 1a (no validation, only evaluation of
apparent model performance on the same training dataset). One study that conducted
development and validation using data from separate studies was considered Type 3.
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Table 1. Main study characteristics.

Author
[Reference] Study Type

Country of
Study

Population

Relevant
Setting of

Collected Data
(ED, ICU, or
Prehospital)

Outcome Predicted
Sample Size of

Training
Dataset

Sample Size of Test
Dataset Model Performance TRIPOD

Classification

Diagnostic

Brinati, et al. [38] Retrospective Italy ED Positive COVID-19 status 279 N/A
(cross-validation) Random forest (C-index = 0.84) 1b

Fraser, et al. [39] Prospective Canada ICU Positive COVID-19 status 20 N/A
(cross-validation) Decision tree (accuracy = 98%) 1b

Vasse, et al. [40] Retrospective France ED Positive COVID-19 status 744 2390 Decision tree (Sensitivity = 60.5%,
Specificity = 89.7%) 2b

Prognostic

Abdulaal, et al.
[30] Retrospective United Kingdom ED In-patient mortality 318 80 Neural network (C-index = 0.901) 2a

Assaf, et al. [31] Retrospective Israel ED; ICU

Critical illness (mechanical
ventilation, ICU admission,
multi-organ failure, and/or

death)

162 N/A
(cross-validation) Random forest (C-index = 0.93) 1b

Burdick, et al. [32] Prospective United States ICU
Decompensation leading to

mechanical ventilation
within 24 h

49,623 197 Gradient boosting machine
(C-index = 0.866) 3

Burian, et al. [33] Prospective Germany ICU ICU admission 65 N/A
(cross-validation) Random forest (C-index = 0.79) 1b

Cheng, et al. [34] Retrospective United States ICU ICU admission within 24 h 401 521 Random forest (C-index = 0.799) 2a

Durhan, et al. [41] Retrospective Turkey ICU
ICU admission (software

evaluates the extent of
normal lung parenchyma)

90 N/A Deep learning software (C-index
= 0.944) N/A

Jackson, et al. [35] Retrospective United States ICU Invasive mechanical
ventilation 297 N/A Fast-and-frugal decision tree

(accuracy = 70%) 1a

Liang, et al. [36] Retrospective China ICU
Critical illness (ICU
admission, invasive
ventilation, death)

1590 710
Deep learning survival Cox

model
(C-index = 0.852–0.967)

2b
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Table 1. Cont.

Author
[Reference] Study Type

Country of
Study

Population

Relevant
Setting of

Collected Data
(ED, ICU, or
Prehospital)

Outcome Predicted
Sample Size of

Training
Dataset

Sample Size of Test
Dataset Model Performance TRIPOD

Classification

Prognostic

Mushtaq, et al.
[42] Prospective Italy ICU

ICU admission (software
evaluates the extent of lung
opacity and consolidation)

697 N/A
Deep learning software based on

convolutional neural
networks (C-index = 0.77)

N/A

Schwab, et al. [37] Retrospective Brazil ICU ICU admission 391 167 Support vector machine (C-index
= 0.98) 2a

Resource optimisation

Belciug, et al. [43] Retrospective Italy ICU
Developed a model for

simulating ICU bed
occupancy

N/A N/A
Artificial immune system

algorithm (no accuracy measure
estimated)

N/A

COVID-19: coronavirus disease 2019, ED: Emergency Department, N/A: Not applicable, ICU: Intensive Care Unit; a: Performance of the best performing model is reported if multiple models were constructed.
Only the performance on the strictest form of validation is reported. A range is given if the model was validated on multiple datasets. b: TRIPOD classification according to strictest validation used (higher values
indicate stricter classification, i.e., type 3 is the strictest amongst included studies). 1a: Performance is evaluated directly on the same data; 1b: Performance and optimism of the model are evaluated using
re-sampling techniques, such as bootstrapping or k-fold cross-validation; 2a: Model development and performance evaluation are done separately on a random split of the data, such as a train-test split; 2b:
Model development and performance evaluation is done separately on a non-random split of the data by time, location, or both; 3: Model development and performance evaluation are conducted on separate
data sets, for example, from different studies.
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3.2. Risk of Bias

Table 2 presents the risk of bias assessment of AI predictive models according to
PROBAST. All 11 predictive modelling studies had a high overall risk of bias. Two out of
11 studies had an unclear risk of bias within the participant domain. Unclear risk of bias in
the participant domain was mainly due to ambiguous exclusion criteria that may lead to
the study population not being representative of the intended target population [36,37].

Table 2. PROBAST (prediction model risk of bias assessment tool) assessment of predictive mod-
elling studies.

Author
[Reference]

Risk of Bias according to PROBAST Domain

Participants Predictors Outcomes Analysis Overall

Diagnostic

Brinati, et al. [38] Low Low Low High High
Fraser, et al. [39] Low Unclear Low High High
Vasse, et al. [40] Low Low Low High High

Prognostic

Abdulaal, et al. [30] Low Low Low High High
Assaf, et al. [31] Low Low Unclear High High

Burdick, et al. [32] Low Low Unclear High High
Burian, et al. [33] Low Low Low High High
Cheng, et al. [34] Low High Unclear High High
Jackson, et al. [35] Low High High High High
Liang, et al. [36] Unclear High High High High

Schwab, et al. [37] Unclear Unclear Unclear High High
Vasse, et al. [40] Low Low Low High High

All three studies at a high risk of bias in the predictor domain were prognostic.
Two studies [35,36] used retrospective, multicentre data and were at risk of bias from
varying methods of predictor assessment at different centres. The remaining study [34]
obtained predictor data from the most recent assessments available, instead of assessing
predictors at the intended time of use. Two studies did not report adequately on the
assessment of computed tomography (CT) [39] or other features [37], resulting in an
unclear risk of bias.

Two and four out of 11 studies were at high and unclear risk of bias within the
outcome domain, respectively. In many prognostic studies [31,32,34,37], the criteria for
ICU admission and blinding of outcome determination to predictor variables were often
not reported, leading to an unclear risk of bias.

Within the analysis domain, all eleven studies had insufficient outcome events per
variable (EPV) (<20 EPV for model development studies and <100 for model validation
studies) leading to a high risk of bias. Furthermore, no study reported on model calibration
and only two studies [37,38] appropriately handled and reported on missing data. Prognos-
tic predictive models were particularly at risk of inadequately accounting for, or reporting
on, censored patients who were still hospitalised without the outcome (e.g., ICU admission)
at the end of the study period. Only one study appropriately accounted for censored data
by combining deep learning techniques with traditional Cox regression [36].

3.3. Adherence to Reporting Standards

The modified TRIPOD checklist comprised 25 terms, including 17 terms for reporting
of methods and eight terms for results. Figure 2 describes the adherence of studies to
reporting standards, as assessed by the modified TRIPOD checklist. Studies reported on
a median of 48% (IQR: 48–59%) of relevant TRIPOD items, with 10 of 25 TRIPOD items
having 50% adherence or less. Additionally, the following eight TRIPOD items had 25%
adherence or less: reporting on treatments administered to study participants (item 5c),
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blinding of outcome and predictor assessment (items 6b and 7b), study size determina-
tion (item 8), reporting on characteristics of study participants, including proportions of
participants with missing data (item 13b), reporting of unadjusted associations between pre-
dictors and outcomes in multivariable logistic regression models (item 14b), explanation of
how to use the prediction model (item 15b), and calibration and method of calibration
(adjusted item 16b).
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3.4. Diagnosis

Three studies investigated diagnostic AI predictive models; two studies developed
models to predict the outcome of COVID-19 status at admission to the ED. Only one
study was externally validated: Vasse, et al. [40] developed a decision tree based on
cellular population data using random forest for feature selection (accuracy = 60.5%).
Brinati, et al.’s [38] random forest model (C-index = 0.84, accuracy = 82%) and three-way
random forest model (accuracy = 86%) achieved better performance, but were validated
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using weaker k-fold cross-validation. Both studies included leucocyte or a leucocyte
sub-population count as a predictor in their final model.

The third study [39] developed a decision tree for determining COVID-19 infection
status in the ICU based on plasma inflammatory analyte features selected by a random
forest classifier. On five-fold cross-validation, this classifier achieved an accuracy of 98%.

3.5. Prognosis

Most studies on prognostic AI predictive models (9/10, 90%) predicted ICU admis-
sion, mechanical ventilation, or a similar composite outcome of severe or critical illness.
Collectively, such studies reported C-indices between 0.79 and 0.98. Liang, et al.’s [36]
deep learning survival Cox model had the largest training cohort of 1590 patients and
achieved a C-index of 0.890, 0.852, and 0.967 when externally validated on cohorts of 801,
305, and 73 patients from Wuhan, Hubei, and Guangzhou, respectively. Schwab et al.’s [37]
support vector machine achieved a superior C-index of 0.98 on a weaker internal validation
and a smaller sample size for testing model performance.

The artificial neural network trained by Abdulaal, et al. [30] using data collected at
ED admission (C-index = 0.901) was the only prognostic AI model developed to predict
in-hospital mortality in COVID-19 patients.

Apart from predictive modelling, Durhan et al. [41] and Mushtaq et al. [42] evaluated
the prognostic utility of two separate deep learning-based software that determine the
normal lung proportion and total lung involvement, respectively. Scores obtained from each
software achieved a C-index of 0.944 and 0.77 for predicting ICU admission, respectively.
While multivariate predictive models were not developed, both studies were subject
to similar issues in development and reporting, including ambiguous criteria for ICU
admission, inappropriate handling of missing data using complete-case analysis, and lack
of reporting on treatments received by participants and on blinding of the outcome.

3.6. Other Applications

Apart from diagnostic and prognostic applications, Belciug, et al. [43] utilised an
artificial immune system algorithm, a type of evolutionary AI algorithm, to optimise
a queueing model for simulating hospital bed allocation in the ICU. The final model,
intended as a tool for hospital managers, proposes an optimal admission rate and number
of beds while balancing the costs associated with increasing capacity and refusing patients.
The model was applied to ICU data published by the Ministry of Health of Italy and
estimated a minimum rejection rate of 3.4% and 1.7% of patients requiring ICU admission
from 13 March 2020 to 23 March 2020 (average daily volume of 200 patients) and 23
March 2020 to 30 March 2020 (average daily volume of 63 patients), respectively. However,
these estimates were not validated.

4. Discussion

Our study is the first systematic review of AI applications for COVID-19 in inten-
sive care and emergency settings. Applications were largely limited to diagnostic and
prognostic predictive modelling, with only one study investigating a separate application
of simulating ICU bed occupancy for resource optimisation. Due to high risk of bias,
inadequate validation, or poor adherence to reporting standards in all reviewed studies,
we have found no AI application for COVID-19 ready for clinical deployment in intensive
care or emergency settings.

Among the reviewed articles, we found a limited range of AI applications being
studied within intensive care and emergency settings. An exploratory review identified
early detection and diagnosis, resource management of hospital beds or healthcare work-
ers, and automatic monitoring and prognostication as possible applications of AI for the
COVID-19 pandemic [20]. However, current applications within the reviewed articles
mainly comprised prognostic models for critical illness or diagnostic models to predict
COVID-19 status, none of which are ready for clinical use. Only one preliminary study
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by Belciug et al. [43], which lacked validation, investigated allocative simulation and
resource optimisation in the ICU, while no study investigated automatic monitoring or
prognostication of COVID-19 patients. Belciug, et al. studied ICU resource optimisation
employing queueing theory, a mathematical field of study, and artificial immune systems,
an evolutionary AI algorithm that is uncommonly utilised in medical research. Unfamiliar-
ity and the absence of general adoption of these methods within the medical community
may contribute to the paucity of studies exploring less common but potentially impactful
AI applications. As highlighted in previous literature [22,44], robust interdisciplinary
collaboration and communication will be crucial in stimulating broader applications of AI
for COVID-19 in intensive care and emergency settings, as well as the in medical literature
at large.

Assessment of AI predictive models also revealed significant deficiencies in model
development, validation, and reporting. These findings corroborate with earlier system-
atic reviews on predictive models for COVID-19 [22] and in intensive care settings [24].
Studies developing AI models should adhere to the TRIPOD reporting guidelines [25],
PROBAST [26], or, ideally, recent AI-specific guidelines. These include the guidelines for
transparency, reproducibility, ethics, and effectiveness (TREE) [45], Consolidated Stan-
dards of Reporting Trials-Artificial Intelligence (CONSORT-AI) [46], and Standard Protocol
Items: Recommendations for Interventional Trials-Artificial Intelligence (SPIRIT-AI) [47].
While the above guidelines provide comprehensive explanations and elaborations, we em-
phasise hereinafter several common problematic areas within the reviewed studies and
recommendations for future studies.

The most common source of bias was an inadequate sample size, which was found
in all studies. A low sample size introduces the risk of over-fitting and model opti-
mism. A benchmark for the development of logistic regression models is 20 EPV [4,26,48],
while models using AI algorithms like random forest, support vector machines, and neural
networks may require up to 200 EPV to account for model optimism [49]; a minimum
of 100 EPV is recommended for validation studies [26]. Missing data also contributed
significantly to bias; only two studies appropriately handled and reported on missing
data. Ideally, the proportion of missing data for each variable should be reported [25] and
multiple imputation should be used to avoid bias from inappropriate exclusion of partici-
pants with missing data (i.e., complete-case analysis) [50–53]. However, if complete-case
analysis is used, authors should provide a comparative analysis of model performance
with and without excluded participants to facilitate the judgement of bias from exclusion.
For prognostic studies, studies often failed to appropriately account for censored patients
(e.g., neither discharged nor admitted to the ICU). Censored patients should be handled
using a time-to-event analysis such as Cox regression; inappropriate exclusion of these
patients may lead to a skewed dataset that includes fewer patients without the outcome,
introducing bias into the model [26]. For diagnostic studies, bias was often introduced
by using the reverse transcription-polymerase chain reaction (RT-PCR) test as the ground
truth or gold-standard for COVID-19 diagnosis, despite potentially poor sensitivity [54].
We recommend repeat RT-PCR testing to minimise the likelihood of false-negative tests in
both diagnostic model development and validation studies.

Several key areas for improvements in reporting were identified in our study, includ-
ing treatments received by participants, blinding, and study size determination. In partic-
ular, no study reported on calibration, a crucial yet often unevaluated measure of model
performance [55]. We recommend assessing calibration using the calibration hierarchy
described by Van Calster, et al. [56] instead of the commonly used Hosmer-Lemeshow
test [57]. This avoids artificial stratification of patients into risk groups and other limitations
associated with the Hosmer-Lemeshow test [55].

Studies should also strive to validate their data using stricter validation techniques.
Studies with smaller sample sizes should utilise re-sampling techniques, such as bootstrap-
ping or k-fold cross-validation. Studies with larger sample sizes should use a non-random
split of data (e.g., by location or time) or perform external validation on independent data,
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for example, from a different study [25,26,58]. Validation using the same data for model
development is inappropriate as it only provides apparent model performance. Similarly,
validation using a random split of data, such as a ‘train-test’ split, has lower power than
re-sampling techniques [25,59] and should be avoided.

In addition to the limitations in quality and reporting of AI applications, the narrow
scope of applications being investigated naturally leads to fewer AI applications eventually
being suitable for clinical use. While AI has been practically applied for the identification
of candidate drugs for drug repurposing [60] and contact tracing [21], its application and
utility for COVID-19 in clinical settings have been insignificant to date. Several studies
have employed AI techniques for the detection and classification of COVID-19 images [23],
however, none have been validated as a clinical diagnostic adjunct in the ED. Factors that
may contribute to this lack of clinical validation include the high risk of bias within existing
models [22,61], limited applicability of radiographic images for discriminating between
multiple differential diagnoses, and the high prevalence of asymptomatic radiographs
in patients who present soon after the onset of symptoms [62,63]. Notwithstanding the
high risk of bias and poor reporting of the reviewed AI models, AI algorithms tend to
produce uninterpretable “black box” predictive models, which may lead to decreased
acceptability of both diagnostic and prognostic AI applications amongst clinicians and
hospital administrators. Some studies [35,39,40] have attempted to overcome this by using
AI techniques for feature selection and presenting the final model as a decision tree or
scoring system with clearly defined input variables. However, such simplifications of AI
models curtail performance and limit the utility of the final model.

The above barriers to the validation and integration of AI in clinical settings may
preclude significant contribution of AI to combatting the COVID-19 pandemic in intensive
care units and emergency departments in the near future. However, improvements in the
development, validation, and reporting of AI applications will be critical in advancing
the applicability and acceptance of these systems in clinical settings in later phases of the
COVID-19 pandemic and in future global health crises. Encouragingly, leading journals
such as the Lancet family of journals have committed to enforcing AI-specific guidelines
such as CONSORT-AI and SPIRIT-AI for submissions with an AI intervention [64]. How-
ever, concerted effort is needed from the entire research community, including journals,
editors, and authors, to normalise the use of these guidelines and checklists. Such changes
will encourage improved development, reporting, and eventual clinical uptake of future
AI applications.

Limitations

The results from our systematic review should be considered along with the fol-
lowing limitations. Firstly, our search excluded non-peer-reviewed articles, such as ab-
stracts, posters, conference proceedings, and papers from preprint servers like bioRxiv and
medRxiv, which may neglect the most recent literature but ensures a baseline quality of
included studies. Secondly, we may have missed some relevant articles despite using a
comprehensive search strategy due to publication in journals not indexed in the searched
databases and variations in terminology used to describe AI algorithms and intensive care
and emergency settings. We may also have missed AI applications that were deployed
without publication in scientific literature; in particular, given the intense media attention
and the pressure to deploy solutions quickly, AI solutions developed by governments
and industry are more likely to be published in mass media formats rather than scientific
journals. Thirdly, assessment according to PROBAST and, to a lesser extent, TRIPOD re-
porting guidelines still rely on a degree of subjectivity, despite comprehensive explanations
and elaborations. Hence, other reviewers may arrive at slightly differing results. Lastly,
the unprecedented volume of research on COVID-19 has resulted in a rapidly evolving
body of literature. Hence, our findings are merely descriptive of the current situation,
which may change with welcome improvements and additions to the medical literature.
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5. Conclusions

Despite widespread interest in novel technologies for the COVID-19 pandemic, our sys-
tematic review of the literature reveals that current AI applications were limited in both
the range of applications and clinical applicability. Several significant issues in the de-
velopment, validation, and reporting of AI applications undermine safe and effective
implementation of these systems within intensive care units or emergency departments.
The integration of new AI-specific reporting guidelines like CONSORT-AI and SPIRIT-AI
into research and publication processes will be a vital step in creating future AI applica-
tions that are clinically acceptable in the current pandemic, future pandemics, and within
the wider medical field. We also emphasise the importance of closer interdisciplinary
collaboration between AI experts and clinicians.
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