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Abstract: Chemoradiotherapy remains the most common management of locally advanced head and
neck cancer. While both treatment components have greatly developed over the years, the quality of
life and long-term survival of patients undergoing treatment for head and neck malignancies are
still poor. Research in head and neck oncology is equally focused on the improvement of tumour
response to treatment and on the limitation of normal tissue toxicity. In this regard, personalised
therapy through a multi-omics approach targeting patient management from diagnosis to treatment
shows promising results. The aim of this paper is to discuss the latest results regarding the person-
alised approach to chemoradiotherapy of head and neck cancer by gathering the findings of the
newest omics, involving radiotherapy (dosiomics), chemotherapy (pharmacomics), and medical
imaging for treatment monitoring (radiomics). The incorporation of these omics into head and
neck cancer management offers multiple viewpoints to treatment that represent the foundation of
personalised therapy.
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1. Introduction

The heterogenous nature of head and neck carcinomas (HNCs) renders this malig-
nancy challenging to cure. While in an early stage resectable cancers are usually treated with
single-modality treatment in the form of surgery or radiotherapy with very good disease
control and survival, locally advanced head and neck carcinomas are managed with com-
bined therapies that usually include surgery followed by risk-adapted chemo/radiotherapy
or primary chemotherapy alone. Nevertheless, the long-term prognosis for advanced HPV-
negative HNC has not improved significantly over the last few decades, the overall survival
being often burdened by long-term toxicities [1].

Next to tumour staging, biological factors such as tumour repopulation, acute and
chronic hypoxia, cancer stem cell density, DNA damage repair and, more generally, a
high degree of tumour heterogeneity have a strong influence on tumour response to treat-
ment [2]. Tumour markers related to the above factors were shown to have independent
prognostic value in advanced HNC patients, illustrating the important and individual role
of biological factors for locoregional control in these patients [2]. In-depth patient-specific
evaluation of biological parameters and their impact on treatment outcome is the key to
personalised therapy.

Precision medicine is a commonly encountered terminology which focuses on medicine
that is tailored to a subgroup of patients based on similar genetic/epigenetic features or
medical-imaging-based diagnostic characteristics. This stratification of patients is usu-
ally met within current clinical trials. As opposed to precision medicine, personalised
therapy aims to target the individual patient rather than a subgroup, offering a more
customised treatment.
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Lately, research has focused on correlating validated imaging biomarkers for specific
biological parameters (hypoxia, proliferation, stemness, etc.) with ‘omics’ features, using
machine learning algorithms in order to achieve better patient stratification.

The aim of this work is to present the newest trends in personalised chemoradio-
therapy of head and neck cancer by discussing the findings of the latest omics involving
radiotherapy (dosiomics), chemotherapy (pharmacomics), and medical imaging for treat-
ment monitoring (radiomics). It is postulated that by incorporating these omics into the
management of head and neck cancer, a holistic approach to treatment can be achieved
which represents the next step in personalised therapy.

2. Radiomics in Head and Neck Cancer

Recent employment of artificial intelligence in image processing has shown the poten-
tial for the identification of highly detailed and robust tumour imaging features that are not
perceptible by the naked eye, known as radiomic features. This information is used for the
development of radiomics-based machine learning models for clinical decision support [3].

Radiomics in head and neck cancer research is employed for several purposes, in-
cluding automated radiation targeting using region-based PET/CT texture analysis [4],
automatic detection and classification of head and neck cancer subtypes based on PET/CT
support vector machines [5], outcome prediction in terms of tumour control (Table 1) [6–8],
and outcome prediction of normal tissue toxicity [9–14].

Given the radiobiological challenges encountered during HNC treatment, radiomics
has found a way to be utilised for the identification of treatment-resistant sub-volumes that
are caused by various factors, such as hypoxia, a high proliferation rate, inherent resistance,
or the existence of cancer stem cells [15]. Differences in radiomics features extracted from
various tumour sub-volumes allow for a better characterisation of the targeted region,
information that serves treatment adaptation and potential dose intensification in the
areas that show resistance to therapy. As stipulated by Aerts et al., a prognostic radiomics
signature that depicts tumour heterogeneity is correlated with gene expression patterns [16].
Quantification of medical image features combined with individual genomic phenotypes
reveals radiogenomic characteristics of a tumour, facilitating decision making in both
diagnosis and treatment.

The human papilloma virus (HPV) is another key factor that differentiates among
HNC regarding patient response to treatment. The clinical evidence where HPV-positive
HNC patients (oropharyngeal, HPV/p16) show better outcomes to conventional therapy
than their HPV-negative counterparts [17] was further investigated by researchers for the
potential role of radiomics in identifying radiological differences between the two tumour
subtypes. Cantrell et al. reported on a blinded matched-pair analysis based on pretreatment
CT images aiming to evaluate pattern differences among patients as a function of HPV
status. The study showed that HPV-positive tumours have well-defined boundaries, while
HPV-negative tumours present with poorly defined margins that are prone to invade adja-
cent tissues [18]. Using contrast-enhanced CT images from patients with oropharyngeal
carcinoma and known HPV status, Buch et al. reported statistically significant differ-
ences in a number of radiomic features as a function of HPV: histogram feature median
(p = 0.006), histogram feature entropy (p = 0.016), and grey-level co-occurrence matrix
features (p = 0.043) [19]. Within a study incorporating non-oropharyngeal cancer patients
with known HPV status, Fujita et al. confirmed previous findings that contrast-enhanced
CT for initial staging allowed the identification of texture features that distinguish between
tumours as a function of HPV status [20]. Based on image feature analysis that encom-
passed five histogram features (p ≤ 0.03), three grey-level co-occurrence matrix features
(p ≤ 0.02), one grey-level run length feature (p = 0.009), two grey-level gradient matrix fea-
tures (p ≤ 0.02), and five Law features (p ≤ 0.04), the study demonstrated that morphologic
differences characteristic to HPV status can be identified in non-oropharyngeal cancers as
well, thus proving the utility of radiomics as an HPV classification tool.



J. Pers. Med. 2021, 11, 1094 3 of 13

A large number of studies have demonstrated the usefulness of radiomics in terms of
normal tissue toxicity prediction after radiotherapy to allow for adaptive therapy planning
in patients at high risk of developing acute and late side effects [9–14]. A special focus
is on the association between the post-radiotherapy structural and textural changes in
the parotid gland and the level of xerostomia. It is known that radiation-induced parotid
shrinkage leads to a shift of the gland towards the head midline that is generally the
high-dose region; thus, the parotid will be affected by a larger dose than planned. Most
radiomics studies conclude that conventional imaging techniques used in HNC (CT, MR,
and ultrasound) offer a set of textural features that can serve as predictors for xerostomia,
thus identifying the subgroup of patients that requires the adaptation of treatment planning
to reduce toxicity (see Table 1). Beside xerostomia, machine learning was employed to
identify radiomics features that correlate with a high risk of radiation-induced hearing
loss [21] and whole-brain white matter injury after radiotherapy [22].

Lately, there is research interest in combining clinical, dosimetric, and radiomic fea-
tures in classification models to increase their predictive power for both tumour response
and normal tissue toxicity [10]. This approach offers a more comprehensive understanding
of the patient’s individual characteristics, allowing for tailored management from diagnosis
to treatment follow-up.

Table 1. Radiomic studies in HNC, studying tumour control and normal tissue toxicity.

Study Type/Goal Imaging Modality/Radiomic Features Observations/Conclusions

Radiomic Studies for Outcome Prediction: Tumour Control

Staging and risk stratification model in
oropharyngeal carcinomas

(Cheng et al., 2013) [23]

PET/CT imaging
Grey-level co-occurrence matrix,

uniformity, and coherence

A risk stratification strategy was
developed based on total lesion

glycolysis (TLG) and uniformity. TLG,
uniformity, and HPV positivity are

significantly associated with
overall survival.

Prognostic imaging biomarkers for
overall survival

(Parmar et al., 2015) [24]

CT imaging
First-order intensity statistics, shape, and

volume textural featuresArea under
receiver operating characteristics curve
(AUC) used to quantify the prognostic

performance of different feature selection

Three feature selection
methods—minimum redundancy

maximum relevance, mutual information
feature selection, and conditional

infomax feature extraction had high
prognostic stability and performance for

the prediction of overall survival.

Prediction of local control using
pre-treatment PET vs. CT
(Bogowicz et al., 2017) [6]

PET/CT imaging
CT density, HLH intensity, grey-level size

zone texture matrices, and
spherical disproportion

The model overestimated tumour control
probability in high-risk patients.

Combined PET/CT added no extra value
when compared to either imaging

method alone.

Risk prediction models of locoregional
recurrences and distant metastases

(Vallieres et al., 2017) [7]

CT imaging
Large zone high grey-level emphasis;

zone size non-uniformity

No significant correlation was found
between radiomic features and

locoregional recurrence. Image-derived
features combined with clinical variables

offer the highest predictive values.

Risk prediction models of all-cause
mortality, local failure &

distant metastasis
(Folkert et al., 2017) [8]

CT imaging
Image features: statistical, shape,

and texture

Multiparametric models had the
strongest predictive power. The local

failure model demonstrated robustness
when conveyed onto independent

patient cohorts.
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Table 1. Cont.

Study Type/Goal Imaging Modality/Radiomic Features Observations/Conclusions

Radiomic Studies for Outcome Prediction: Normal Tissue Toxicity

Assessment of structural changes in
parotid glands

(Scalco et al., 2013) [9]

CT imaging
Textural features and gland volume

Variations in mean intensity and fractal
dimension (after the second and last
week of radiotherapy) were the best

predictors of parotid shrinkage.

Early prediction of parotid shrinkage
and toxicity

(Pota et al., 2017) [10]

CT imaging
Textural features, spatial patterns, fractal
dimensions, and gland volume combined

with fuzzy classification

The final parotid shrinkage rate strongly
correlated with 12-month xerostomia:
glands that presented strong volume

variation post-radiotherapy could be less
affected by late xerostomia.

Prediction of radiation-induced
xerostomia and sticky saliva

(Van Dijk et al., 2017) [11]

CT imaging
Geometric features, CT intensity, and

textural features

Prediction of 12-month xerostomia and
sticky saliva were improved by the

addition to the initial CT image
biomarkers of the short-run emphasis

(quantifies heterogeneity of parotid) and
of the maximum CT intensity of the

submandibular gland (gland density).

Prediction of late xerostomia using
parotid gland fat

(Van Dijk et al., 2018) [12]

MR imaging
T1-weighted MR-image-based intensity

(90th intensity percentile) and
textural features

The ratio of
fat-to-functional-parotid-tissue is

associated with 12-month xerostomia.
MR-based radiomics
improved prediction.

Prediction of severe late xerostomia
(Nardone et al., 2018) [25]

CT imaging
Textural features: grey-level

co-occurrence matrix (GLCM),
neighbourhood grey-level dependence
matrix (NGLDM), grey-level run length
matrix (GLRLM), grey-level zone length
matrix (GLZLM), sphericity, indices from

the grey-level histogram, and
parotid volume

Parameters with the strongest correlation
with severe chronic xerostomia: V30,

mean dose, kurtosis, grey-level
co-occurrence matrix (GLCM), and run

length non-uniformity (RLNU). CT
texture analysis could allow for the
enhancement of dose constraints to

organs at risk to avoid severe side effects.

Multivariable modelling study of
chemotherapy-induced hearing loss

(Abdollahi et al., 2018) [21]

CT imaging
Textural features with highest predictive

power: intensity histogram (IH) and
grey-level co-occurrence matrix (GLCM)

Ten machine learning classifiers used for
radiomic feature selection, classification,
and prediction, with over 70% accuracy.
No single algorithm showed superiority
for all problems. CT image features of

cochlea can serve as biomarkers for
predicting hearing loss after therapy.

Early prediction of acute xerostomia
during therapy

(Wu et al., 2018) [26]

CT imaging
Histogram-based features: mean CT
number (MCTN), volume, skewness,

kurtosis, and entropy

Daily CT images analysis during IMRT
indicated that changes in gland volume

or MCTN are not correlated with grade of
xerostomia if considered separately but

when combined in a CT-based xerostomia
score model. This can predict severity

with a precision of 100% at the 5th week
of therapy.

Assessment of whole-brain white matter
injury after radiotherapy

(Leng et al., 2019) [22]

MR diffusion tensor imaging
Fractional anisotropy (FA) and FA

skeleton matrix

Post-therapy decreased FA values (that
quantify the degree of water diffusion in

cerebral white matter) showed
microstructure damage of the white

matter. Radiation brain injury in HNC
patients can be quantified using MR

diffusion-tensor-based radiomics.
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Table 1. Cont.

Study Type/Goal Imaging Modality/Radiomic Features Observations/Conclusions

Predictive model of acute
radiation-induced xerostomia

(Sheikh et al., 2019) [13]

CT and MR imaging
Shape, first-order statistics, grey-level

co-occurrence matrix (GLCM), grey-level
run length matrix (GLRLM), and

grey-level size zone matrix
(GLSZM)Model performance improved
when DVH was combined with CT and

MRI features

Higher-order texture features for salivary
glands were key predictors of xerostomia.

MRI: patients with xerostomia appear
more heterogeneous and hypointense.
CT: submandibular glands of patient

with xerostomia appear more hypodense
and heterogeneous.

Baseline CT and MRI features can
potentially reflect baseline salivary gland

function and the risk of
radiation-induced effects.

Longitudinal study on post-radiotherapy
parotid gland changes in nasopharyngeal

cancer patients
(Wu et al., 2020) [14]

MR and ultrasound (US) imaging
MRI features: volumeUS features:
echogenicity and hemodynamic

parameters (resistive index, pulsatility
index, and peak diastolic and

end-diastolic velocity)

Parotid and submandibular gland
shrinkage associated with xerostomia

was observed post-radiotherapy (IMRT),
with most significant changes detected
after 6 months. Mild correlation found

between gland dose and
post-radiotherapy gland volume.

3. Dosiomics in Head and Neck Cancer

Radiotherapy is the main therapeutic choice for the locoregional management of
unresectable head and neck carcinomas. To optimise radiation delivery to the target
volume, treatment techniques have evolved from 2D to 3D conformal radiotherapy, then
further to intensity-modulated radiation therapy (IMRT) using fixed beam angles. More
recently, rotational IMRT such as VMAT/RapidArc is employed to create conformal dose
distribution via rotational techniques with dose intensity modulation. The steep dose
gradient achieved with VMAT offers better normal tissue sparing, usually with fewer
monitor units than IMRT and shorter treatment delivery, thus also increasing patients’
comfort [27].

Treatment planning verifications concerning both dose prescription to the target
volume and dose constraints for the organs at risk involve dose-volume histograms (DVH)
that provide quantitative analysis of the dose delivered to different volumes, though
without supplying spatial information. This aspect is a clear shortcoming of the treatment
plan evaluation, as the lack of spatial dosimetric data can lead to omissions within the
target and/or overdose of critical normal structures. Both consequences can result in
unwanted outcomes that are difficult or even impossible to rectify. For instance, while
clinical studies established that the mean dose to the parotid gland is a good predictor of
xerostomia, this measure failed to identify patients at risk in larger cohorts where most
patients met the dose constraints, leading to adverse effects [28,29].

Since accurate prediction of normal tissue toxicity based on DVH is not achievable,
a number of studies have embraced machine learning classifiers in normal tissue com-
plication probability (NTCP) models to identify dosimetric or patient-related factors that
could predict severe side effects such as xerostomia. Using data from the PARSPORT phase
III trial (parotid-sparing IMRT in patients with HNC), Buettner et al. have developed
dose–response models by using Bayesian logistic regression and spatial dose distribution
(dose-shape features) in the submandibular gland while also including clinical and radio-
biological factors (such as regional variations in radiosensitivity of the parotid glands)
for outcome prediction [30]. By analysing the spatial dose distribution pattern of the
parotid, it was observed that xerostomia can be limited or even avoided by minimising
the dose to the lateral and cranial sections of the gland. Moreover, data analysis showed
that resection of the submandibular gland considerably increased the risk of this side effect.
The study concluded that models that take into account the shape of the dose distribution
are significantly better predictors of xerostomia than standard mean-dose models.
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The use of machine learning techniques for the analysis of spatial dose distribution in
radiotherapy was coined dosiomics. Considered as an extension of radiomics, dosiomics
entails the extraction of spatial features of the dose distribution within the investigated
organ, features that are further used to build prediction models with machine learning
classification algorithms.

In both disease control and normal tissue toxicity prediction models, dosiomics is
often integrated with radiomic features as well as other clinical and/or patient-related
factors, to increase the predictive power of omics-based models. In view of this, Gabryś
et al. designed a study to evaluate the precision of a radiomics–dosiomics model to
predict the risk of xerostomia among HNC patients when compared to the more classical
NTCP models that are based on the mean dose to the parotid [31]. The modelling study
was built on a cohort of 153 HNC patients’ data and aimed to evaluate early, late-, and
long-term xerostomia after radiotherapy. Radiomic features included the shape of the
parotid (volume, area, sphericity, compactness, and eccentricity) while dosiomic features
encompassed dose shape (DVH, spatial dose gradient, spread, correlation, and skewness).
Univariate analysis showed that parotid and dose-shape features are very good predictors
of xerostomia, the highest risk group in developing long-term effects consisting of patients
with a small parotid gland (9.55 mm3 median volume high-risk vs. 14.37 mm3 low-risk)
and steep dose gradients in the right–left direction (1.7 Gy/mm high-risk vs. 1.2 Gy/mm
low-risk). Multivariate analysis highlighted the important role of personalised treatment
planning, as the models showed strong patient specificity. Thus, females with small and
elongated parotid presented with a higher risk of long-term xerostomia compared to males
with large and round glands. The most representative dosiomic feature was the spread
of the contralateral DVH that quantifies the standard deviation of the parotid dose. The
authors concluded that in a highly conformal radiotherapy regimen, dosiomic features
(dose shape) add value to treatment outcome prediction modelling, which combined
with patient-specific factors (parotid shape, sex) lead to a more accurate personalised risk
assessment [31].

In a recent study conducted on 237 patients with HNC, Wu et al. investigated the
predictive power of radiomics and dosiomics for locoregional recurrence after IMRT [32].
Radiomics features were extracted from both CT and PET scans and selected according to
their concordance index values, which were condensed via principal component analysis.
The condensed features served as input parameters for multivariate Cox proportional
hazard regression models. The dosiomics prognostic model, which was built on similar
initial features, additionally included 3D dose distribution data from IMRT treatment plans.
Results showed that while the integration of dosiomics into radiomics lead to a successful
patient classification into different risk groups, the radiomics-only model was not able to
offer an accurate stratification, thus highlighting the importance of volumetric knowledge
of dose distribution for outcome prediction after radiotherapy [32].

While dosiomic research is still in its early phases of development and application,
studies so far showed that the inclusion of 3D dosimetric texture analysis in predictive
modelling can improve prediction accuracy, highlighting the need to surpass current DVH
constraints in radiotherapy planning for a more personalised approach.

4. Pharmacogenomics and Pharmacogenetics in Head and Neck Cancer
4.1. Introduction—Chemotherapy in Head and Neck Cancer

There is clear evidence through randomised clinical trials that the addition of chemother-
apy to radiation improves both locoregional control and survival among HNC patients
compared to radiotherapy alone [33]. While there are continuous advances in targeted
and immune-therapy, combined chemoradiotherapy is still the standard of care for locally
advanced head and neck cancer, with cisplatin-based chemotherapy as the mainstay of
first-line treatment.

One of the main shortcomings of cisplatin is the drug-induced normal tissue toxicity
that is often a dose-limiting factor. Another limitation of cisplatin administration is tumour
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resistance to the drug, which is often developed during therapy, drastically decreasing its
efficacy [34,35]. Cisplatin is rarely administered as a sole chemotherapy agent and is most
often combined with different classes of drugs to offer better radiosensitisation of tumour
cells and to overcome drug resistance. Beside alkylating agents, other commonly used drug
classes in HNC management are antimetabolites, antibiotics, topoisomerase inhibitors, and
taxanes. More recently, targeted agents in the form of monoclonal antibodies have been
used in combination with conventional chemotherapy, agents that were designed to target
programmed cell death protein 1 (PD-1), which is often overexpressed in tumour cells, or
the epidermal growth factor receptor (EGFR), which is also overexpressed in 90% of HNC
patients and is associated with poor outcomes [36].

Owing to the large tumour heterogeneities among head and neck malignancies
and considerable inter-patient variation regarding tumour response and adverse effects
to chemoradiotherapy it is greatly challenging, if at all possible, to define the optimal
chemotherapy cocktail for HNC patients. Furthermore, considering the current trends
in dose de-escalation and the limitation of chemotherapy to avoid unnecessary toxicities
among well-responding non-smoking HNC patient subgroups with HPV-positive cancers,
a more personalised approach would allow better patient stratification without compro-
mising the expected therapeutic outcome [37,38]. This aspect of treatment optimisation has
stimulated new research avenues into personalised therapy through pharmacogenomics
and pharmacogenetics to establish correlations between patients’ genetics characteristics
and response to specific drugs.

4.2. Pharmacomics—Towards Personalised Chemotherapy

Pharmacomics is a new research field that encompasses pharmacogenomics and
pharmacogenetics, aiming to investigate the genetic basis of individualised responses to
various drugs. In cancer research, pharmacomics shows promise in new drug development
as well as in better management of cancer patients in need of chemotherapy. Given that
drug-caused toxicity is often added to radiation-induced normal tissue effects, it is critical
for cancer patients to receive chemotherapeutic agents that are more compatible with their
genetic makeup in order to maximise tumour response and to minimise normal tissue
toxicity. Furthermore, knowing the genetic basis for drug resistance in individual patients
would point towards the administration of more compatible agents. In view of the above,
pharmacomics could play an important role in personalised chemotherapy.

Tumour heterogeneity and the high genomic instability identified in the genomes of
malignant cells lead to treatment resistance, tumour progression, and an overall aggressive
nature in tumours. The latest developments in genome research have resulted inadvance-
ments from microarray-based platforms to next-generation sequencing (NGS) technologies,
with more user-friendly software for data analysis and reduced costs for data storage.
NGS-based research has focused on the identification of molecular mechanisms behind
carcinogenesis, tumour progression, and distant spreading of cancer cells, while uncovering
new oncogenes, tumour suppressor genes, and tumour-specific signalling pathways.

In head and neck cancer, the most frequently mutated genes known from earlier
genomic research include TP53 (with up to 67.5% frequency of mutations), CDKN2A, and
PIK3CA (around 16.5% mutated) [39]. NGS analysis identified additional genes that are
commonly mutated in HNC, revealing NOTCH1 as the third most frequent mutation,
observed in up to 15% of the studied HNC cell lines [39].

Beside mutations in the TP53 gene, recurrent mutations in caspase-8 (CASP8), which
initiates programmed cell death, were also found with high frequency in HNC. It was
shown that the expression of CASP8 triggers apoptosis caused by chemotherapeutic agents
through the production of reactive oxygen species inside the cell [40]. Agents such as
taxanes were observed to promote CASP8-mediated programmed cell death, whereas
mutations in this gene could lead to drug resistance.

Mutations in a number of other genes found in HNC were also shown to be responsible
for resistance to chemotherapy. Yamano et al. have identified five genes, LUM, PDE3B,
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PDGF-C, NRG1, and PKD2, that showed a strong correlation with cisplatin resistance in
HNC cell lines that could serve as predictors of treatment efficacy [41]. Overexpression
of the cell surface transmembrane glycoprotein CD147 is widely found in a variety of
cancers, including head and neck, and is responsible for cancer progression, metastases,
and chemoresistance. Studies investigating the mechanisms of resistance to chemotherapy
revealed that CD147 was overexpressed in cisplatin-resistant HNC, causing not only
cisplatin but multidrug resistance. Downregulation of CD147 expression by deactivating
the MAPK/ERK signalling pathway led to increased sensitivity to the drug, which could
represent a therapeutic target for the affected tumours [42,43].

A common drug cocktail employed in HNC chemotherapy due to its potential syn-
ergistic effect is the combination of cisplatin, docetaxel, and 5-FU. To elucidate some of
the mechanisms behind drug resistance triggered by this drug combination, triple-drug-
resistant cell lines were generated by exposing the cell lines to increasing drug concentra-
tions [44]. The study aimed to evaluate both cellular and molecular effects by assessing cell
viability, cell cycle properties, apoptosis, and gene expression associated with multidrug
resistance. The mRNA expression levels of the following genes associated with multidrug
resistance were determined: MDR1, MRP2, ERCC1, CTR1, survivin, and thymidylate
synthase (TS). On the cellular level, the resistant cell lines showed prolonged arrest in the
G2/M phase, a common mechanism exhibited by cancer stem cells to evade apoptosis.
On the molecular level, overexpression of the ERCC1 and upregulation of CTR1 gene
were observed, both mutations being indicative of cisplatin resistance: platinum-based
drugs are predominantly linked to and eradicate cancer cells with negative ERCC1 expres-
sion, and the expression of the copper transporter receptor 1 (CTR1) is correlated with
intratumoral platinum accumulation, with increased expression being indicative of poor
uptake. Overexpression of the MRP2 gene was shown to mediate docetaxel resistance in
cisplatin-resistant cell lines, thus suggesting a role in multidrug resistance. An increased
expression of thymidylate synthase, also observed in this study, is a mechanism that under-
lies resistance to 5-FU. Overall, expression profiling analysis revealed a synergistic effect
of multidrug resistance genes, suggesting that sequential drug administration could lead
to better sensitisation compared to combined treatment [45]. For instance, in a study on
oral cancers, Tamatani et al. observed that the antitumour efficacy of 5-FU is enhanced by
prior administration of docetaxel, thus deeming sequential docetaxel followed by 5-FU
a more efficient treatment strategy in HNC than combined chemotherapy [45]. Table 2 is a
compilation of gene mutations responsible for chemotherapy resistance.

Table 2. Gene mutations in HNC responsible for chemotherapy resistance.

Resistance to Chemotherapy
Agent/Group of Agents

Gene Mutation Responsible for
Chemoresistance Normal Function of the Gene

Platinum compounds
(cisplatin and carboplatin)

Copper transporter receptor 1 (CTR1)
(Govindan et al., 2015) [44] Major copper influx transporter in cells

Excision repair cross-complementation
group 1 (ERCC1)

(Govindan et al., 2015) [44]

Critical role within the nucleotide excision
repair system of DNA

Excision repair cross-complementation
group 4 XPF (ERCC4)
(Vaezi et al., 2011) [46]

Protein involved in DNA binding and
protein–protein interaction

Lumican (LUM)
(Yamano et al., 2010) [41]

Proteoglycan involved in epithelial cell
migration and tissue repair

Cyclic nucleotide phosphodiesterase
type 3 (PDE3B)

(Yamano et al., 2010) [41]

Intracellular messengers that regulate
numerous signalling pathways

Platelet-derived growth factor C
(PDGF-C)

(Yamano et al., 2010) [41]

Important role in connective tissue growth and
function. Belongs to the PDGF/vascular

endothelial growth factor family
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Table 2. Cont.

Resistance to Chemotherapy
Agent/Group of Agents

Gene Mutation Responsible for
Chemoresistance Normal Function of the Gene

Neuregulin-1 (NRG1)
(Yamano et al., 2010) [41]

A glycoprotein produced in a variety of
isoforms that induce cell growth

and differentiation

Protein kinase D (PKD2)
(Yamano et al., 2010) [41]

Propagates growth factor receptors at the cell
surface

Emmprin (CD147)
(Huang et al., 2013,

and Ma et al., 2017) [42,43]
Extracellular matrix metalloproteinase inducer

Antimetabolites (5-FU) Thymidylate synthase (TS)
(Govindan et al., 2015) [44] Key enzyme in DNA biosynthesis

Taxanes
(docetaxel and paclitaxel)

Caspase-8 (CASP8)
(Stupack et al., 2013) [40] Initiates programmed cell death

Forkhead box protein C2 (FOXC2)
(Zhou et al., 2015) [47]

Role in the development of
mesenchymal tissues

Next to drug resistance, chemotoxicity is another factor limiting the success of
chemotherapy. The results of a preliminary study on genetic variability and chemotoxicity
after the administration of 5-FU and cisplatin found a significant correlation between the
variants of glutathione S-transferase Mu 1 (GSTM1) and cisplatin toxicity (p = 0.043) [48].
No association between 5-FU-toxicity-related genes (DPYD, TYMP, and MTHFR) and
grade 3/4 toxicity was observed, though this might be due to the small number of patients
enrolled in the study (23 HNC patients). For the same reason, no combination of genetic
variants responsible for normal tissue toxicity could be identified within the study, thus
justifying investigations on larger sample sizes.

Research showed that 5-FU toxicity is primarily linked to deficiency in dihydropy-
rimidine dehydrogenase (DPYD), a key metabolic enzyme, which is due to a deleterious
polymorphism in the gene that encodes DPYD. A meta-analysis of individual patient data
encompassing 7365 cancer patients has confirmed the association between a number of
variants of DPYD and severe toxicity (grade 3/4), including hematologic and gastroin-
testinal, in patients treated with fluoropyrimidines either as single agents or in combi-
nation with other drugs and/or radiotherapy [49]. The most relevant clinical predictors
of 5-FU toxicity were identified in the form of two DPYD variants (c.1679T > G and
c.1236G > A/HapB3), and pre-treatment screening for these variants is therefore recom-
mended to find treatment alternatives and to reduce normal tissue toxicity.

In view of the above, a prospective, multicentre, drug safety analysis was conducted on
1103 cancer patients that were planning to commence a fluoropyrimidine-based chemother-
apy regimen [50]. The results showed higher rates of severe toxicity in DPYD variant
carriers than in wild-type patients (p = 0.0013), indicative of dose reduction requirements
for patient safety. Thus, for patients with DPYD*2A and c.1679T > G carriers, a 50% dose
reduction was suggested to limit severe adverse effects. The findings of the study sup-
port the need of genotype-guided personalised drug dosing as a new standard of care in
chemotherapy [50].

The large number of genes and their variants that are being identified to be responsible
for drug resistance and toxicity in head and neck cancer represent a pool of valuable data
for big data analysis. These data require accurate interpretation to find correlations among
the genetic variants and the pursued outcome in order to help identify those patient groups
that are at high risk of developing chemotherapy resistance or severe side effects. Studies
found that differences in sex, ethnicity, and chemotherapy regimen are additional factors
that influence the heterogeneity of genetic variants connected to drug toxicity [51]; therefore,
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the use of machine learning in data processing and analysis could assist in handling large
amounts of data and accelerate the implementation of genotype-guided chemotherapy.

Research into pharmacogenetics has been advancing at a fast pace in the last decade;
however, clinical implementation of research results is lagging behind. A recent Euro-
pean survey of healthcare professionals found that although 84% of respondents have
considered pharmacogenomics relevant to their practice, two-thirds had not ordered a
pharmacogenomic test in the year prior to the survey [52]. Large-scale initiatives exist to
encourage implementation of pharmacogenomics research results in clinical practice, such
as the Clinical Pharmacogenetics Implementation Consortium (CPIC) in the USA and the
Ubiquitous Pharmacogenomics program (U-PGx) in Europe [53].

Advances in this field are dependent on developments in artificial intelligence and the
availability of public genome datasets coupled with large datasets of anonymised electronic
health records.

5. Chemoradiotherapy Response Monitoring Using Delta-Radiomics

As shown in the radiomics section, imaging plays an integral part in treatment re-
sponse monitoring of oncological patients. Post-therapy imaging assessment supplies
information on the success of therapy. Yet, the analysis of images acquired during treat-
ment has the potential to assist with treatment adaptation, thus offering a more personalised
therapy. Recent studies of serial PET/CT images acquired throughout the treatment course
have shown that the evaluation of tumour sub-volume dynamics can facilitate adaptive
treatment approaches [54,55].

In their study on head and neck cancer patients, Lazzeroni et al. investigated the
correlation between the dynamicity of hypoxia throughout radiochemotherapy assessed
via sequential PET/CT imaging and outcome prediction. Hypoxia is associated with
resistance to treatment and recurrence. The use of a hypoxia-specific PET radiotracer
18FMISO (18F-fluoromisonidazole) allowed for the generation of oxygen partial pressure
maps to evaluate the evolution and severity of hypoxic sub-volumes within the target.
Comparative longitudinal analysis of the oxygen partial pressure maps demonstrated cor-
relations between the hypoxia sub-volumes and treatment outcomes, such as locoregional
recurrence. Features derived from the first two weeks of treatment showed potential to
predict outcomes in hypoxic head and neck cancer patients [54].

In a similar study, Sörensen et al. showed that textural features of hypoxia-specific
FMISO-PET/CT images as well as changes in radiomics features during chemoradiother-
apy predict survival in head and neck cancer. The study accrued 29 HNC patients that
underwent FMISO-PET/CT for hypoxia evaluation before and during chemoradiotherapy.
For all scans, the first-order metrics tumour-to-background ratio, coefficient of variation,
total lesion uptake, and integral non-uniformity were calculated, together with three
second-order textural features from grey-level matrices and the differential non-uniformity
to show regional changes within the field of view. Prognostic groups were separated
based on differential non-uniformity before and during chemoradiotherapy (week two)
and non-uniformity from the grey-level run length matrix in week two. The study showed
that textural features on FMISO-PET scans before and during chemoradiotherapy (week
two) were good indicators of patient outcome, as tumours with higher homogeneity of
hypoxia throughout the course of treatment correlated with a better response. The standard
FDG-PET scan before treatment did not serve as an outcome predictor [55].

The principle of delta-radiomics was applied in most studies investigating the corre-
lation between radiomics features at various time points (before, during, and after radio-
therapy/chemoradiotherapy) and the severity of treatment-induced side effects (Table 1).
Most investigations presented in Table 1 under radiomic studies for outcome prediction
in the context of normal tissue toxicity have determined textural feature variations and
volume changes in the parotid gland to assess the role of these variations in predicting
severe xerostomia [9,10,14,26].
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6. Conclusions

Head and neck cancers present an exclusive set of diagnostic and therapeutic chal-
lenges owing to their complex radiobiological behaviour and tumour heterogeneity. De-
spite all efforts to improve treatment delivery techniques and to administer more targeted
therapies to limit normal tissue toxicity, the long-term prognosis in head and neck cancer
patients is still limited.

Current implementations of the omics results are mainly focused on treatment out-
come prediction and risk of recurrence rather than on direct personalisation of individual
patient therapy [56]. It is expected that future developments in the discussed omics fields
will influence the treatment of the individual patient from first contact with the healthcare
system by allowing clinicians to deploy a truly individualised treatment based on radiomic
analysis of diagnostic imaging, on detailed dosiomic analysis to target the tumour volume
with utmost precision, alleviating side effects on healthy tissues, and on pharmacogenetic
tests that enable the choice of the most effective drug family for the individual patient.
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