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ABSTRACT: The mass production of hierarchically porous metal−organic frameworks
(HP-MOFs) with adjustable morphology and size as well as retained crystallinity is highly
desirable yet challenging. Herein, we have developed a versatile post-synthetic ligand
substitution (PSLS) strategy to convert typical microporous MOFs and even their
composites to HP-MOFs and their composites at a 10 g level and beyond in a simple
reflux system. The resulting HP-MOFs feature intrinsic micropores and abundant
defective mesopores, which greatly facilitate the transport and activation of large
substrates for stable and efficient heterogeneous catalysis. Furthermore, the presence of
defective mesopores in the HP-MOF composites improves activity and selectivity for
large molecule-involved one-pot tandem catalysis. This strategy opens a new door to fast,
facile, general, and scale-up production of HP-MOFs and related composites for
expanding applications of conventional microporous MOF-based materials.

■ INTRODUCTION

Metal−organic frameworks (MOFs) as a relatively new class of
crystalline porous solids have been widely accepted as a
promising materials platform in many fields, benefiting from
their high porosity and well-defined and tailored porous
structures.1−12 Their intrinsic micropores endow the particular
capability of size-sieving and small molecule access, which are
of importance in diverse applications. Nevertheless, in many
cases, the small pores limit their applications involving large
molecules.13−17 A straightforward solution to the above issues
is the extension of the bridging ligand length to afford
mesoporous MOFs.18−22 Unfortunately, the targeted products
with high porosity are mostly thermodynamically instable and
framework interpenetration is hardly avoidable.18−22 More-
over, the long and complex organic linkers are usually insoluble
and commercially unavailable, posing synthetic challenges.
Alternatively, it is possible to introduce larger pores into parent
microporous MOFs, producing hierarchically porous MOFs
(HP-MOFs).23 The intrinsic micropores conduce to high
surface area and abundant active sites, while the introduced
mesopores or macropores across the microporous matrix
would facilitate the diffusion and transport of substrates and/or
products, which significantly extend their application potentials
and enhance their performance. To achieve this target, some in
situ synthetic methods have been developed to fabricate HP-
MOFs, on the basis of soft/hard template, nontemplate, ligand
fragment, modulator-assisted strategies, etc.24−38 The key
point of these methods is to explore special templating
reagents (hard template, soft surfactant, defective ligand, or
special modulator), which not only possess special interaction

with the MOF skeleton to create the large pores but also can
be removed subsequently without disrupting the overall MOF
structure. Accordingly, the increased process complexity and/
or high cost are usually unavoidable, making it difficult for
large-scale synthesis toward real-world applications.39

In this context, the introduction of meso/macropores into
intrinsically microporous MOFs by a post-treatment process
would be a promising strategy that meets the practical
demands. Although several related studies, such as heat
treatment, acid/alkali etching, etc., have been reported;40−47

unfortunately, the harsh chemical/thermal treatments often
damage their pristine MOF structures and even introduce
some impurities, such as metal oxides.40,41 Moreover, the
etching/destruction of the parent MOF structures is hard to
control, which places high demand on particular etching
reagents and MOF stability. Therefore, a simple, fast, general,
and scalable synthetic approach to the conversion of
microporous MOFs into hierarchically porous structures
remains imperative.
The post-synthetic ligand exchange (PSE, named by Kim et

al.48) has been widely used to introduce functionalized ligands
into MOFs under mild conditions, where a new bridging ligand
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is generally used to replace the pre-existing ligand of MOFs
while preserving the bulk crystallinity.11,48−52 Inspired by this
mild conversion process, we describe a facile post-synthetic
ligand substitution (PSLS) strategy by substituting the
bridging ligand in microporous MOFs with a terminal ligand
to create additional defective spaces, which is a mild process
without an obvious disruption of the morphology and size of
the parent MOF particles. The mesopores and even macro-
pores can be generated and tailored to afford HP-MOFs by
simply controlling the ratio/amount of terminal ligand (Figure
1). The HP-MOFs with different structural topologies,

including UiO-66 with different sizes and morphologies,53

UiO-67,53 MOF-808,54 and MIL-53,55 can be produced
(Figure S1), demonstrating the good generality of this strategy.
This reflux-assisted process is very easy to operate and scale up
to at least 10 g in one pot.56 The resultant HP-MOFs not only
feature intrinsic micropores enriching small-size substrates and
meso-/macro-pores entrapping large functional species but
also possess abundant defective sites, which are able to interact
and activate substrates. The CO2 cycloaddition of epoxides and
one-pot cascade hydrogenation/condensation reactions have
been conducted, as a proof-of-concept, highlighting the
collaborative strengths of ordered micropores and defective
mesopores toward efficient and selective catalysis.

■ RESULTS AND DISCUSSION
Given its high chemical and thermal stability, the well-known
microporous MOF, UiO-66, was first selected as a
representative model for the PSLS study. Typically, the UiO-
66 powder was introduced into an aqueous solution of sodium
acetate, followed by a reflux treatment at 100 °C to promote
the ligand substitution process (Figure 1, Supporting
Information, Section S2.2). Upon activation in N,N-dimethyl-
formamide (DMF) solution with hydrochloric acid to remove
the residual ligands in MOF pores, hierarchically porous UiO-
66 (denoted HP-UiO-66) was obtained. It is worth noting
that, in contrast to the conventional solvothermal synthesis in
an autoclave, this PSLS process by refluxing treatment in a
flask is very simple and promising for conversion in a large
scale. Mass production can be achieved by simply using a large-
volume flask. As a laboratory demonstration, we have
successfully completed the conversion of 10 g of MOFs
(HP-MOF yield: 8.44 g) in a 1 L flask (Figure 2a−c).
Nitrogen sorption measurements indicate that the pristine

UiO-66 possesses a high microporosity with a pore volume of
0.52 cm3/g. After the post-synthesis conversion, the resulting
HP-MOF exhibits an increased total pore volume (0.68 cm3/
g) with the introduction of mesopores, while only a slightly
decreased specific BET surface area (SBET) compared with that
of their pristine MOFs (SBET: 802 vs 995 m

2g−1). The pore size

distribution data show that the intrinsic micropores (<2 nm) in
MOFs are basically maintained, while mesoporous features
(2−20 nm) clearly appear after the PSLS process (Figure 2d
and Figure S2). Powder X-ray diffraction (XRD) patterns show
that no noticeable decrease in the crystallinity occurred after
this mild PSLS process (Figure 2e). Scanning electron
microscopy (SEM) images show that the morphology and
size of UiO-66 particles are mostly maintained (Figure 2f and
Figure S3). From both SEM and transmission electron
microscopy (TEM) images, the additional mesopores are
observable in HP-UiO-66 (Figure 2g). The above results
unambiguously demonstrate that this strategy is able to create
additional mesopores while keeping UiO-66 structure, micro-
porosity, particle size, and morphology, which is highly desired
for various practical applications.
A series of control experiments have been attempted to

figure out the real role of sodium acetate in the mesopore
generation of HP-UiO-66. In view of the fact that the
hydrolysis of sodium acetate would produce hydroxide ion
(OH−), whether the mesopore formation related to the OH−

etching should be checked. However, this concern is ruled out
by employing a neutral strong electrolyte, ammonium acetate,
by which a similar hierarchically porous structure can be
obtained (Figure S4). This point is further evidenced by using
NaOH solution to etch UiO-66; no additional pore can be
generated even under the same pH as the aqueous solution of
sodium acetate (Figure S5). Similarly, when post-treating with
the same molar amount of aqueous acetic acid, no additional
pore can be produced (Figure S6). This result is probably
attributed to the weak electrolyte feature of acetic acid (higher
pKa than terephthalic acid), which, dissociation in only a slight
degree, is not able to provide sufficient acetate ions to drive the
PSLS process. As expected, when the weak carboxylic acid is
replaced by corresponding carboxylates, such as sodium

Figure 1. Schematic showing the conversion of microporous MOFs
into corresponding hierarchically porous structures on the basis of the
PSLS strategy.

Figure 2. (a−c) Experimental photos of reflux setup (1 L) showing
the scale-up conversion of UiO-66 into HP-UiO-66 in one pot. (d)
N2 sorption isotherms at 77 K and (e) powder XRD patterns of UiO-
66 and HP-UiO-66. (f) SEM and (g) TEM images of HP-UiO-66.
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formate, sodium propionate, sodium benzoate, etc., the
conversion to HP-UiO-66 can be successfully achieved after
this PSLS process (Figures S7−S9). To unveil the mechanism,
some carboxylates with a long chain are deliberately used; the
steric resistance stemmed from the MOF micropores
suppresses the entrance of these bulky carboxylates. As a
result, only the marginal layer of the MOF particles can be
etched, while no noticeable mesopores and structural change
can be found in the MOF interior (Figures S10 and S11).
However, if sodium acetate was directly added in the synthetic
system of conventional UiO-66, no crystalline UiO-66 can be
obtained (Figure S12), ruling out the possibility of in situ
defective mesopore formation accompanied by the MOF
assembly.
To elucidate the influence of the terminal ligand amount on

the substitution process, 0, 2, 4, 6, 8, or 10 mmol of sodium
acetate was used in the synthesis of HP-UiO-66. As indicated
in N2 sorption curves (Figure S13), a small amount of terminal
ligand does not cause the change in the pore feature of UiO-
66. The mesoporous characteristics, i.e., hysteresis loop in N2
sorption curves, start to appear by increasing the sodium
acetate amount to 4 mmol. A further increased concentration
of sodium acetate results in the gradual increase of
mesoporosity. Accordingly, the mesoporous behavior can be
tuned by changing the amount of the terminal ligand.
However, most of the UiO-66 skeleton is etched away when
the concentration of sodium acetate is too high, resulting in
structural collapse. All these results jointly suggest that both
concentration and size of carboxylate play key roles in this
PSLS process. In addition, it is noteworthy that the
introduction of polyvinylpyrrolidone (PVP) in the sodium
acetate aqueous solution is necessary to promote the formation
of mesopores while maintaining a high pristine microporosity
(Figure S14a). Moreover, the difference between the TEM
images (Figure 2g and Figure 14b) and the similar high yields
(88.5%−92.9%) of HP-UiO-66 obtained with different
amounts of PVP indicate that the PVP might mainly influence
the distribution of the acetate to etch the MOF,51 not the
etching rate/reaction equilibrium. Therefore, we propose that
the PVP might behave as the protective coating to prevent the
destruction of the MOF particle surface during the diffusion of
etchant (acetate) into the MOF interior, thereby promoting
the production of homogeneous mesopores in the entire MOF
particles (Figure 2g).
The UiO-66 before and after PSLS process have been

characterized by 1H NMR. Results show that the treated
MOFs present some characteristic peaks assignable to the
acetate, and these peaks disappear after activation treatment
(Figure 3a). The ratio of acetate/1,4-benzenedicarboxylate
(BDC) calculated by integral area of 1H NMR peaks in HP-
UiO-66 before HCl activation is obviously higher than those in
conventional UiO-66, indicating a higher degree of defect in
the former (0.33 vs 0.10; Figure S15). Furthermore, the FT-IR
peak at 2975 cm−1 assignable to the saturated alkane appears
after the PSLS treatment and disappears after activation,
indicating the successful substitution of acetate into the MOF
skeleton and subsequent removal in the activation process
(Figure S16). To gain visual evidence on the mesopore
generation, the resulting HP-UiO-66 was soaked into dye
solutions with different charges. While the anionic dyes
(methyl orange, MO) can be absorbed, the cationic dyes
(methylene blue, MB) are hardly captured (Figure 3b,c),
indicating the cationic framework due to the missing of linkers.

When soaking HP-UiO-66 in a DMF solution of Coomassie
Brilliant Blue R250 (R250), the solution gradually fades and the
white HP-UiO-66 accordingly turns to brilliant blue (Figure
3d). In stark contrast, due to the larger size of R250 than the
micropore opening, the pristine UiO-66 is not able to uptake
R250 and thus its color remains unchanged even after longer
soaking time. This clear comparison again manifests the
presence of defective mesopores in HP-UiO-66. Altogether,
the above information unambiguously supports that the acetate
coordinates to the Zr-oxo clusters, creating the structural
defects, and subsequently, it can be removed to release the
mesoporous space after activation.
Systematic characterizations have been conducted to figure

out the function of the (DMF + aqueous HCl) treatment in
the activation process. To evaluate if there are Cl− ions in the
activated HP-UiO-66, the content of Cl− ions in the
suspension of HP-UiO-66 dissolved by NaOH aqueous
solution has been detected by ion chromatography, which
indicates a Cl− ion content of 17 μg/mgHP‑UiO‑66. Moreover,
the obvious Cl 2p signal peak at 198.2 eV in the X-ray
photoelectron spectroscopy (XPS) spectrum can be identified
in the activated HP-UiO-66, suggesting the charge balance role
of Cl− ion in the defective MOF structure (Figure S17).57 In
addition, the TGA curves of HP-UiO-66 before and after the
(DMF + aqueous HCl) treatment pose an obvious deviation
on the mass drop below 150 °C (Figure S18). The increased
mass drop in the activated HP-UiO-66 can be attributed to
physiosorbed/coordinated H2O proven by the OH stretch
peaks (∼3400 cm−1) in the FTIR spectrum (Figure S16).
Therefore, we propose that the coordinated acetate was
removed by the (DMF + aqueous HCl) activation, which
causes a chlorine containing MOF (Figure S19).58−60

In addition, the Zr content in the above two solutions was
detected by inductively coupled plasma atomic emission
spectrometer (ICP-AES), which indicates that the Zr
concentrations are 1.44 and 0.01 mg/mL, respectively, in the
sodium acetate reflux solution and the (DMF + aqueous HCl)
activation solution. The high concentration of Zr in the former
indicates that UiO-66 is etched by acetate and thus the

Figure 3. (a) 1H NMR spectra for CH3COONa and HP-UiO-66
before and after activation. UV/vis absorption spectra recording the
adsorption of (b) small-sized anionic dye (MO), (c) small-sized
cationic dye (MB), and (d) large-sized anionic dye (R250) by UiO-66
and HP-UiO-66. Insets in b and c: photos of dye solution (left) before
and (right) after adding HP-UiO-66. Insets in d: photos of dye
solution after adding (left) UiO-66 and (right) HP-UiO-66.
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formation of mesopores. To evaluate if the (DMF + aqueous
HCl) treatment would further etch the MOF structure and
introduce additional mesopores, the same treatment was
performed on the pristine UiO-66 powder. All character-
izations demonstrate that no mesoporous feature can be
identified (Figure S20). In addition, both UiO-66 and HP-
UiO-66 are stable even in concentrated HCl (Figure S21). The
above results indicate that the low concentration of Zr in the
(DMF + aqueous HCl) solution is not caused from the further
etching of the HP-UiO-66 skeleton by HCl. It might come
from the Zr residual in the MOF pores formed in the acetate
reflux process.
With the above results, we hypothesize that the PSLS might

be a reversible process in the generation of HP-UiO-66, on the
basis of the equilibrium of dissociation and reassembly (Figure
4a).48−52 Upon soaking MOF crystals into the terminal ligand

solution with high concentration, the equilibrium state of the
pristine MOF would be broken. As a result, some linkers in the
MOFs will be substituted by the terminal ligands after reaching
a kinetic equilibrium state and thus producing small defective
pores (Figure 4b,c). If the terminal ligand concentration in the
solution is further increased, the above equilibrium state would
be broken and pushed to another new kinetic equilibrium state.
Along with an increased amount of terminal ligand, the
bridging ligands around the metal cluster are gradually
substituted, and even the metal cluster will be simultaneously
released from the MOF matrix, resulting in a larger pore space
(Figure 4c,d). On the basis of this mechanism, the etching
extent of MOF skeleton can be controlled to generate different
ranges of pores by using carboxylate as the terminal ligand.
The terminal ligands coordinated to the metal-oxo clusters can
be removed to afford the coordinatively unsaturated metal
centers, behaving Lewis acid sites as discussed below, in the
HP-MOFs after the activation process.
On the basis of the above mechanism, the generality of this

conversion strategy has been investigated. Taking UiO-66 as a
representative, HP-UiO-66 with different sizes (typical
examples, 800 nm, 2 μm) and morphologies (in octahedral,
dodecahedral, or cubic shape) can be obtained, depending on
the original geometry of their parent MOFs (Figures S22−
S29). Other types of MOFs, such as UiO-67, MIL-53, and
MOF-808, featuring even completely different structures and
compositions, have also been attempted. Encouragingly, they

all can be converted into their corresponding hierarchically
porous structures (denoted HP-UiO-67, HP-MIL-53, and HP-
MOF-808, respectively) (Figures S30−S32). In view of the
operation simplicity of this refluxing process followed by
activation process, both of which are realized by stirring the
sample in a flask, it is expected to achieve a large volume of
HP-MOFs in one pot. To demonstrate this scale-up potential
in the laboratory, when a 10-g-scale conversion (100 times of
magnification vs typical experiment) was attempted in a 1 L
flask, 8.44 g of HP-MOFs was harvested (Figure 2a−c). The
obtained HP-UiO-66 is uniform in its size and microstructure
(Figures S33 and S34), similar to those in common-scale
synthesis (Figure S3). In addition, the same PSLS process has
been applied for preparing MOF-based composites. Taking
UiO-66 encapsulating platinum nanoparticles (denoted Pt@
UiO-66) as an example, to our delight, which can be
successfully converted into the corresponding composite
featuring hierarchical pores (denoted Pt@HP-UiO-66, Figures
S35−S38). It is believed that this is a highly general approach,
and predictably, a variety of MOF-based composites featuring
hierarchical pores can be achieved in mass production on the
basis of this conversion strategy, which is definitely promising
for broad and practical applications.
Given the unique hierarchical structures, these micropores

and mesopores would synergistically promote catalytic
reactions, where micropores expose active sites and enrich
substrates while the defective mesopores benefit the rapid
transport of substrates and provide a large number of open Zr
sites as the Lewis acid sites (Figures S39−S42). As a proof of
example, UiO-66 and HP-UiO-66 have been employed for the
catalytic CO2 cycloaddition of epoxides, upgrading CO2 to
high-value products (Figure 5a,b).61−63 The better mass
transfer capability together with a higher concentration of
defect sites in HP-UiO-66 are responsible for its significantly
higher activity than the parent UiO-66. The conversion of
various epoxides with different sizes illustrates the advantage
and high activity of HP-UiO-66, particularly in large-size

Figure 4. (a) Typical growth mechanism of common MOF crystals.
(b−d) Proposed mechanism for the typical conversion of a
microporous MOF into hierarchically porous structure with different
levels of structural defect on the basis of the PSLS strategy.

Figure 5. (a) Catalytic cycloaddition reactions between CO2 and
epoxides with different sizes on the basis of UiO-66 and HP-UiO-66
catalysts. (b) Recycling test of the CO2 cycloaddition with
epibromohydrin over HP-UiO-66. (c) One-pot cascade synthesis of
secondary arylamines through the hydrogenation of nitrobenzene and
the reductive amination of benzaldehyde reactions over Pt@UiO-66
and Pt@HP-UiO-66.
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molecule involved mass transfer, far superior to microporous
UiO-66 (Figure 5a).
Not limited to the enhanced activity of straightforward

reactions, HP-MOFs are even able to promote complex
reactions with both improved activity and selectivity. Taking
Pt@HP-UiO-66 as an example, it exhibits particular strengths
in one-pot multistep cascade reactions (Figure S43). The
hierarchically porous composites can convert nitrobenzene (A)
into N-(naphthalen-1-ylmethyl)aniline (D) in one-pot cascade
reaction, with the selectivities of <1%, ∼ 3%, and ∼97% to
aniline (B), N-phenylnaphthalene-1-(methanimine) (C), and
D, respectively. In sharp contrast, their microporous composite
mainly converted A into intermediate C with a selectivity
∼71%, and only a 20% selectivity to the D in the same reaction
time length, due to the restrict effect of micropores on
intermediate products (Figure 5c and Figure S44). All above
clearly highlight the synergistic strengths of the ordered
micropores and generated defective mesopores toward
catalytic applications involving large-size substrates and
products.

■ CONCLUSIONS
In summary, we have developed a simple yet highly effective
and general strategy to the conversion of common micro-
porous MOFs and their composites into their corresponding
hierarchically porous structures. This conversion can be easily
scaled up to 10 g and even higher amounts, during which the
pristine MOF structure (and related micropores) can be
maintained, while some structural domains are disassembled to
create additional defective mesopores in resulting HP-MOFs.
The incorporation of guest species inside MOF particles does
not disturb this conversion and the synthetic strategy can be
applicable to diverse MOF-based composites. With the
cooperation of coexisted micropores and defective mesopores,
the HP-MOFs and related composites greatly boost catalytic
reactions and even multistep cascade reactions in one pot,
exhibiting improved activity and selectivity in reference to the
parent microporous MOF-based materials. This work opens a
novel and general avenue to MOFs with hierarchical pores into
mass production and pushes one-step forward for MOF-based
materials toward broad and practical applications.
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