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Abstract: Neurodegenerative disease refers to any pathological condition in which there is a progressive
decline in neuronal function resulting from brain atrophy. Despite the immense efforts invested
over recent decades in developing treatments for neurodegenerative diseases, effective therapy for
these conditions is still an unmet need. One of the promising options for promoting brain recovery
and regeneration is mesenchymal stem cell (MSC) transplantation. The therapeutic effect of MSCs
is thought to be mediated by their secretome, and specifically, by their exosomes. Research shows
that MSC-derived exosomes retain some of the characteristics of their parent MSCs, such as immune
system modulation, regulation of neurite outgrowth, promotion of angiogenesis, and the ability to
repair damaged tissue. Here, we summarize the functional outcomes observed in animal models of
neurodegenerative diseases following MSC-derived exosome treatment. We will examine the proposed
mechanisms of action through which MSC-derived exosomes mediate their therapeutic effects and
review advanced studies that attempt to enhance the improvement achieved using MSC-derived
exosome treatment, with a view towards future clinical use.
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1. Introduction

Mesenchymal stem cells or mesenchymal stromal cells (MSCs) are self-renewing populations
of adult multipotent progenitor cells with the potential to differentiate into several mesodermal cell
lineages including bone, cartilage, and adipose tissue [1]. This feature underlies attempts to use MSCs
as a therapeutic tool.

The therapeutic potential of MSCs has been tested over the years, in both preclinical and clinical
trials for a wide variety of diseases including myocardial infarction, acute renal failure, osteoporosis,
type I diabetes mellitus, and pulmonary fibrosis [2,3]. MSC transplantation in neurodegenerative
disease models has led to improvement in various parameters, including improved survival, decreased
pathology, and rescue of deteriorated cognition [4–6]. This is thought to be achieved by the secretion
of neurotrophic factors and immunomodulation and within the brain, also by neurogenesis and
prevention of misfolded protein aggregation [4].

Despite the positive results obtained with MSCs in therapy, introducing foreign living cells into
the human body is always a cause for concern. Exogenously administered MSCs may elicit adverse
effects, e.g., immune reactions [7–9], embolic phenomena [10], graft versus host disease [11], secondary
infection [12], and the risk of malignancy [13,14]. In this context, only a small portion of transplanted
MSCs apparently localize to the site of damage and the surrounding area, while most MSCs accumulate
in the liver, spleen, and lungs [15]. While MSCs are rapidly cleared from the body following systemic
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transplantation, their therapeutic benefits typically persist [16]. This has been interpreted to imply that
the therapeutic effect is mediated by the MSC-secretome, and specifically by exosomes [17,18].

In this review, we will present advances in MSC-derived exosome-based therapies in models of
neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis (MS), and acute models of
stroke. We will examine the clinical outcomes achieved in various neurodegenerative disease models
as a result of MSC-derived exosome treatment and describe the proposed mechanisms by which these
results are achieved. We will also discuss the limitations of treatment with exosomes and the possibility
of improving treatment efficiency in order to transition to clinical trials.

2. MSC-Derived Exosomes as a Therapeutic Tool

Extracellular vesicles (EVs) is a general term for a heterogeneous population of 20–1000 nm
membranous components that are secreted from both prokaryotic and eukaryotic cells [19,20]. Exosomes
comprise a subpopulation of 30–150 nm vesicles containing proteins, mRNA, miRNA, lipids, and DNA
that play an important role in intercellular communication via transfer of their content. Exosomes
are known to retain the characteristics of the cells from which they are derived [21]. For example,
exosomes derived from MSCs, are known for their ability to modulate the immune system, stimulate
cell proliferation, promote angiogenesis, prevent apoptosis, and suppress oxidative stress [20].

These traits have been demonstrated in numerous animal studies as having therapeutic potential
in a wide range of diseases. Treatment with MSC-derived EVs decreased renal oxidative stress,
increased renal cell proliferation, attenuated apoptosis and fibrosis, and normalized renal function
in acute kidney injury (AKI) [22]. Administering MSC-derived exosomes improved osteoporosis by
promoting the proliferation of osteoblasts via the MAPK pathway [23], while prophylactic treatment
with MSC-derived exosomes improved oxidative stress injury and suppressing inflammatory response
in traumatic acute lung injury [24]. Furthermore, MSC-derived exosomes are protected against
myocardial infarction by promoting autophagy and suppressing apoptosis [25]. Notably, MSCs and
MSC-derived exosomes were comparable to one other in reducing inflammation, oxidative stress,
and functional deterioration [26,27].

3. Clinical Outcomes following MSC-Derived Exosome Treatment in Neurodegenerative
Animal Models

Given the success of treatment with exosomes in a variety of diseases, it is not surprising that the
possibility of treating neurodegenerative diseases has also been examined. The therapeutic potential
of MSC-derived exosomes has been examined in a number of models of neurodegenerative diseases,
including Alzheimer’s disease (AD), multiple sclerosis (MS), stroke, neuroinflammation, traumatic
brain injury (TBI), spinal cord injury (SCI), and status epilepticus (SE). Exosomes have been shown
therapeutic promise in all of these diseases, as reflected by changes in various parameters.

Improvement in functional outcome was observed in stroke, MS, and SCI [28–39]. For example,
cell death, a common manifestation of neurodegenerative diseases, was reduced by exosome treatment
in models of stroke, TBI, perinatal brain injury, and SCI [32,38,40–43]. In addition, exosome therapy
was shown to contribute to neuronal preservation and to have neuroprotective and regenerative
effects on neurons, synapses, and myelin sheaths, as demonstrated in models of neuroinflammation,
Alzheimer’s, stroke, and SCI [37,39,42,44–48]. The ability of exosomes to prevent scar tissue formation
also contributed to regeneration in SCI [39].

In addition to the general therapeutic effects reported after treatment with MSC-derived exosomes,
benefits specific to neurodegenerative diseases were also observed. For example, exosomes could
restore cognition impairment and rescue CA1 synaptic transmission and long-term potentiation
(LTP) in mouse models for AD where memory loss is a major symptom [46,49–51]. Moreover,
MSC-derived exosomes ameliorated the destructive structural changes in the taste buds and their
innervations, which is also a manifestation of AD [52]. In stroke, treatment with MSC-derived exosomes
enhanced recovery of fine motor function, improved spatial learning and memory ability, reduced
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the neurological severity score, and reduced infarct size [33,34,36,40,47,53–55]. In perinatal brain
injury, exosome therapy also improved long-term neurodevelopmental outcome cognitive functions,
and reduced the total number and duration of seizures, characterizing the disorder [43,56–58].
Further benefits that have been attributed to MSC-derived exosome treatment include cognitive and
sensorimotor improvement, reduced spatial learning impairments, and reduced cortical lesion volume
in TBI [41,59–61]; stimulation of locomotor functional recovery and improved mechanical sensitivity in
SCI [42,48,62,63]; and ameliorated learning, cognitive and memory impairments in SE [64,65].

Studies on the therapeutic potential of MSC-derived exosomes have used both rodent and
human-derived exosomes (as listed in Tables 1 and 2, respectively), since both sources appear to yield
promising results. Although the most popular route of administration is intravenous (IV) injection, it was
demonstrated, using an in vivo neuroimaging, that MSC-derived exosomes can cross the blood–brain
barrier (BBB) after intranasal administration more efficiently compares to IV injection [66]. This was
further supported in near-infrared (NIR) imaging also showed that the intranasal administration
delivered DiR-labeled MSC-derived exosomes into the brain, whereas tail vein injection primarily
resulted in liver and kidney [67]. Nevertheless, no comparative study was performed to analyze all
route of administration in the same model in order to examine functional efficiency.

Exosomes from a variety of different tissues demonstrated promising results as a therapy for
neurodegenerative diseases in animal models. However, only a few comparisons of the different
sources of MSC-derived exosomes were performed in general, and in the context of neurodegeneration
in particular. Tracy et al. showed that both amniotic fluid MSCs (afMSCs) and bone marrow (BM)
MSCs can provide exosomes with similar morphology, size distributions, and expression of tetraspanin
markers [68]. Nevertheless, afMSCs seem to produce more exosomes per cell under the same culture
conditions. When compared exosome fractions of human menstrual (MenSCs), BM, umbilical cord,
and chorion MSC, MenSC exosomes showed superior effects on the growth of the longest neurite in
cortical neurons and had a comparable effect to BM-MSC exosomes on neurite outgrowth in dorsal
root ganglia neurons [69]. It appears that no proper comparison between exosomes from different
MSC sources was conducted in terms of functional outcome in neurodegenerative animal models,
and therefore it is not possible to predict whether the efficacy of exosomes from different sources is
comparable. Further research is, therefore, needed to determine whether differences between them
exist. Further research is also needed in Parkinson’s disease, which is noticeable by its absence from
the list of neurodegenerative diseases investigated in the context of MSC-derived exosome therapy.
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Table 1. Naïve human MSC-derived exosomes in animal models of neurodegeneration.

Disease/Disorder Reference Animal Model Cell Source Dose Root of
Administration

Biological/Medical
Improvement

Suggested Mechanism of
Action

Alzheimer’s [50] Aβ-inoculated mouse
Human,

purchased from
ATCC

10 µg Intrahippocampal Enhance neurogenesis and
restore cognitive function Not mentioned

Alzheimer’s [51] APP/PS1 mouse Human umbilical
cord 30 µg IV Repair cognitive

disfunctions

Help to clear Aβ deposition; and
modulate the activation of

microglia in the brain

MS [29] EAE mouse Human BM 150 µg IV Reduced disease severity

Reduced demyelination;
decreased neuroinflammation;

and upregulated the number of
regulatory T cells

Stroke [55] MCAo rat Human umbilical
cord blood 150 µg IV

Attenuated infarct size;
exacerbated the

somatosensory and motor
dysfunction

Not mentioned

Stroke [37] MCAo mouse Human BM Released by
2 × 106 MSCs IV

Improved neurological
impairment and long-term

neuroprotection

Promoted neurogenesis and
angiogenesis; prevented

post-ischemic
immunosuppression

Perinatal brain
injury [56]

A combination of a
hypoxic-ischemic and

an inflammatory
insult in rat

Human Wharton’s
jelly 50 mg/kg Intranasal (IN)

Improved long-term
neurodevelopmental

outcome

Prevented gray and white matter
alterations

Perinatal brain
injury [43] Rice-Vannucci mouse Human BM 1.25 × 109

particles/dose
IN

Improved short-term
behavioral outcomes;

reduced tissue volume loss
and cell death

Reduced microglial activation

Perinatal brain
injury [57] LPS-induced rat Human BM

1 × 108 cell
equivalents/kg

bodyweight

Intraperitoneal
(IP)

Improved long-lasting
cognitive functions

Ameliorated
inflammation-induced neuronal
cellular degeneration; reduced

microgliosis; prevented reactive
astrogliosis; and restored

short-term myelination deficits
and long-term microstructural

abnormalities of the white matter
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Table 1. Cont.

Disease/Disorder Reference Animal Model Cell Source Dose Root of
Administration

Biological/Medical
Improvement

Suggested Mechanism of
Action

Perinatal brain
injury [58]

Transient umbilical
cord occlusion in

preterm ovine fetus
Human BM

Two boluses of
2.0 × 107 cell
equivalents

IV

Reduced total number and
duration of seizures; and
preserved baroreceptor

reflex sensitivity

Hypomyelination prevention

TBI [61]
A combination of CCI

and hemorrhagic
shock swine

Human BM 1 × 1013

particles
IV

Reduced the severity of
neurological injury and

improved neurocognitive
recovery

Not mentioned

TBI [60] CCI mouse Human BM 30 µg IV
Rescued pattern separation

and spatial learning
impairments

Immunomodulation

SCI [62] Mouse contusive SCI Human umbilical
cord 20/200 µg IV Promoted locomotor

functional recovery
Attenuated inflammation of the

injury region

SCI [63] Spinal cord contusion
rat Human BM 1 × 109

particles
IV

Improved locomotor
recovery score; improved

mechanical sensitivity

Diminished inflammatory
response

SE [64] Pilocarpine mouse Human umbilical
cord 30 µg Intraventricular Ameliorated learning and

memory impairments

Reduced inflammatory responses
associated with hippocampal

astrocyte activation via
Nrf2-NF-κB signaling pathway

SE [65] Pilocarpine mouse Human BM 30 µg IN

Long-term preservation of
normal hippocampal

neurogenesis and cognitive
and memory function

Diminished loss of glutamatergic
and GABAergic neurons; and
reduced inflammation in the

hippocampus
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Table 2. Naïve non-human MSC-derived exosomes in animal models of neurodegeneration.

Disease/Disorder Reference Animal Model Cell Source Dose Route of
Administration

Biological/Medical
Improvement

Suggested Mechanism of
Action

Alzheimer’s [52] Ovariectomized
albino-rat Rat BM 100 µg Intravenous (IV)

Improved in destructive
structural changes in the

taste buds and their
innervations

Improved
synaptophysin-immunoreactivity

Alzheimer’s [45] APP/PS1 mouse Mouse BM 22.4 µg Intracerebral
Reduced amount of

dystrophic neurites in both
the cortex and hippocampus

Aβ plaque reduction

Alzheimer’s [49] Streptozotocin-induced
mouse Mouse BM 0.5 µg/day for

5 days Intraventricular Recovered cognition
impairment Not mentioned

Alzheimer’s [46] APP/PS1 mouse Mouse BM 100 µg Intracerebroventricular

Improved cognitive
behavior, rescued

impairment of CA1 synaptic
transmission, and long-term

potentiation

Suppression of Aβ induced iNOS
expression

MS [28] EAE rat Rat BM 100/400 µg IV Decreased neural
behavioral scores

Reduced demyelination and
neuroinflammation

Stroke [32] Subcortical infarction
rat Rat adipose 50/100/200 µg IV

Improved functional
outcomes associated with

decreased cell death

Restored fiber tract connectivity,
increased oligodendrocyte

markers, and re-myelination

Stroke [33] MCAo rat Rat BM 120.68 µg IV

Reduced neurological
severity score; improved

spatial learning and
memory ability

Inhibited the expression of
CysLT2R and NMLTC4 treated

microglia; modulated the balance
between M1 and M2 microglia;

decreased pro-inflammatory
cytokines secretion; increased

anti-inflammatory and
neurotrophic factors production

Stroke [53] Cortical injured
monkey Monkey BM 4 × 1011

particles/kg
IV Enhanced recovery of fine

motor function Not mentioned

Stroke [40] MCAo rat
Adipose (cell

source not
mentioned)

3 treatments of
2.0× 106

particles
IV Reduced infarct volume;

suppressed apoptosis

Improved BBB condition;
suppressed inflammation;

reduced abnormal high level of
miR-21-3p
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Table 2. Cont.

Disease/Disorder Reference Animal Model Cell Source Dose Route of
Administration

Biological/Medical
Improvement

Suggested Mechanism of
Action

Stroke [54]
Intracerebral

hemorrhage injection
rat

Rat BM 100 µg IV
Improved spatial learning,

motor function, and sensory
memory

Promoting endogenous
angiogenesis and neurogenesis;

increased white matter
remodeling

Stroke [70] tMCAo rat Rat BM 30 µg IV Improved Neurological
function

Promoted neurogenesis and
angiogenesis via miR-184 and

miR-210, respectively

Stroke [34] Intracerebral
hemorrhage rat Rat adipose 100 µg IV

Improved functional
recovery; reduced infarct

size

Increased fiber tract and axonal
sprouting; enhanced

oligodendrocyte formation and
remyelination

Stroke [47]
Transient global

cerebral ischemia
mouse

Mouse BM 200 µg Intracerebroventricular

Restored impaired basal
synaptic transmission and

synaptic plasticity, and
improved spatial learning

and memory

Inhibited pathogenic expression
of COX-2 in the hippocampus

Stroke [35] Subcortical infarct rat Rat adipose 100 µg IV Improved functional
recovery

Increased axonal sprouting and
growth, oligodendrocyte

formation, tract connectivity and
remyelination

Stroke [36] MCAo rat Mini-pig adipose 100 µg IV
Reduced brain infarct zone;

improved neurological
function

Suppressed inflammation;
reduced ROS and oxidative stress

generation; promoted
angiogenesis

Stroke [69] MCAo rat Rat BM 100 µg IV Improved neurologic
outcome

Enhanced neurite remodeling,
neurogenesis, and angiogenesis

Neuroinflammation [44] LPS-induced rat Rat BM 200 µg IV Enhanced neuronal survival Reduced oxidative stress;
reduced inflammatory response

TBI [41] Controlled cortical
impact (CCI) mouse Rat BM 30 µg Retro-orbital

Improved functional
recovery; reduced cortical
lesion volume; attenuated

cellular apoptosis

Inhibited early
neuroinflammation through

modulation of
microglia/macrophages

polarization

TBI [59] CCI rat Rat BM 100 µg IV Cognitive and sensorimotor
improvement.

Promotion of endogenous
angiogenesis and neurogenesis;

and inflammation reduction.
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Table 2. Cont.

Disease/Disorder Reference Animal Model Cell Source Dose Route of
Administration

Biological/Medical
Improvement

Suggested Mechanism of
Action

SCI [38] Spinal cord
hemisection rat Rat BM 100 µg IV

Improved functional
recovery and attenuated
lesion size and apoptosis

Targeted inhibition of the FasL
gene by miR-21-5p

SCI [42] Rat contusive SCI Rat BM 1 × 106 cells
equivalents

IV

Reduced neuronal cell
apoptosis, enhanced

neuronal survival and
regeneration, and improved

motor function

Suppression of pericytes
migration; and improved
blood-spinal cord barrier

integrity via NF-κB p65 signaling

SCI [39] Rat contusive SCI Rat BM 100 µg IV

Suppressed glial scar
formation; attenuated lesion

size; promoted axonal
regeneration; and improved

functional behavioral
recovery

Promoted blood vessel formation;
reduced neuronal cells apoptosis;

suppressed inflammation; and
suppressed activation of A1

neurotoxic reactive astrocytes

SCI [30]
Spinal cord

hemisection injured
rat

Rat BM 100 µg IV Reduced disease severity

Inhibited complement mRNA
synthesis and release; inhibited
activation of NF-κB signaling by

binding to microglia cells.

SCI [48] Rat contusive SCI Rat BM 1 × 106 cells
equivalents

IV

Improved locomotor
function; and the

neuroprotective effect on
residual neurons, synapses,

and myelin sheath.

Reduced A1 astrocyte proportion
by inhibiting NFκB activation;
reductions in proinflammatory

cytokine levels

SCI [31] Rat contusive SCI Rat BM 100 µg IV
Attenuated lesion size and

improved functional
recovery

Attenuated cellular apoptosis and
inflammation; promoted

angiogenesis
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4. Mechanism of Action

The efficacy of treatment with MSC-derived exosomes, has been explained by their ability to remove,
or inhibit pathological processes on one hand, and by promotion of regenerative mechanisms on the other
(Figure 1). Such activities include reduction of amyloid beta (Aβ) aggregates in AD [45,46,51], reduction of
demyelination in MS [28,29], and inhibition of apoptosis, as observed in stroke, TBI, and SCI [31,32,38–42].
Immunomodulation, including inhibition of secretion of pro-inflammatory cytokines, together with an
induction of anti-inflammatory factors, was observed in all neurodegenerative diseases.
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Figure 1. Schematic diagram depicting the major pathological processes in neurodegenerative diseases,
and the key mechanisms through which mesenchymal stem cell-derived exosomes operate in order to
mitigate these pathologies and induce regeneration.

In the context of regeneration, there are four major mechanisms through which MSC-derived
exosomes achieve the improved outcomes described above, are neuroprotection, neurogenesis,
neuromodulation, and angiogenesis. Neuroprotection is a broad term referring to the prevention of
cell death and the restoration of neuronal numbers, as well as the functional restoration of damaged
neurons [71]. MSC-derived exosomes were observed to exert neuroprotection in models of AD by
the reduction of dystrophic neurites [45], in stroke by increasing the connectivity and remodeling of
neurites [32,37,70], in SCI by rehabilitation of axons and synapses [39,42,48], and in SE by reducing
glutamatergic and GABAergic neuronal loss [65]. Neurogenesis following MSC-derived exosome
treatment was reported in Alzheimer’s, stroke, and TBI [37,50,54,59,70,72]. Immunomodulatory
processes including modulation of microglial activity, stimulation of regulatory T cells, modulation of
the polarization state of microglia/macrophages, and inhibition of reactive astrocytes, were manifested
in AD, MS, stroke, perinatal brain injury, and TBI [28,29,33,36,37,40,41,43,51,52,57,59]. Generation of
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new blood vessels has mainly been reported in neurodegenerative diseases involving the vascular
system, namely, stroke, TBI, and SCI [31,36,37,54,59,70,72].

Besides these four major mechanisms, MSC-derived exosome treatment may also provide
protection from insults by reducing oxidative stress [36,44] and restoring the integrity of the BBB [40].
Since the etiology of neurodegenerative diseases is complex, the mechanisms by which recovery can
occur are complex and intertwined. The ability of MSC-derived exosomes mechanisms to promote
regeneration is not unexpected since the exosomes reflect the cells from which they are derived,
and therefore have similar properties, including the mechanisms of action [4].

The exact molecular mechanism of action through which MSC-derived exosomes operate is not
fully understood due to the wide variety of molecules comprising the exosomal cargo. ExoCarta,
an exosome database contains 41,860 protein, 1116 lipid molecule, 3408 mRNA, 2838 miRNA entries,
derived from studies of exosomes in several species [73]. Thereby, a variety of functions and multiple
molecules can be excreted from exosomal cargo [74]. Among other functions, exosomal proteins can
act as signaling molecules, receptors, cell adhesion molecules. For example, the expression of proteins
such as nestin, neuro-D, growth-associated protein 43, synaptophysins, VEGF, FGF promote events
such as neural development, synaptogenesis, and angiogenesis [75]. Moreover, it was indicated that
MSC-derived exosomes from adipose tissue contain neprilysin, an enzyme capable of degrading Aβ,
and in co-culture with cells designed for Aβ exacerbated production, these exosomes significantly
reduced levels of Aβ1–40 and 1–42 [76]. Furthermore, MSC-Exo contain several immunomodulatory
factors including transforming growth factor-β (TGF-β), hepatic growth factor (HGF), indolamine
2,3-dioxygenase-1 (IDO-1), interleukin (IL)-10, IL-1 receptor antagonist (IL-1Ra), and prostaglandin E2
(PGE2) [26].

miRNA can also control functions related to neural remodeling as well as angiogenic and neurogenic
processes [74]. It has been reported that exosomes also contain miR-98, miR-155, and miR-125a,
which have antiapoptotic activity [77,78]. miR-143 and miR-21, which play an important role in immune
response modulation and in neuronal death associated with an environment of chronic inflammation
were also found to be present in MSCs-derived exosomes [79]. Similarly, a miRNA cluster formed by
miR-17, miR-18a, miR-19a/b, miR-20a, and miR-90a, was also found to be present in MSCs-derived
exosomes, and described as important modulators of neurite remodeling and neurogenesis, as well as
stimulators of axonal growth and CNS recovery [80]. Overall, there are multiple potential pathways
through which MSC-derived exosomes may operate. Nevertheless, as mentioned above, there are
several suggested pathways that has been implicated in the exosomal mechanism of action.

5. Limitations of Current Knowledge

Despite the great beneficial effect of exosomes in preclinical trials, there remain a number of
unresolved issues that need to be addressed before their use in clinical therapy. Despite the short-term
survival of infused MSCs, their beneficial effects have been demonstrated to persist over time in variety
of disease models, even when there is no evidence of their continued presence [8,9,15,16].

The half-life of exosomes in vivo is estimated to be minutes, and most exosomes have been shown
to evacuate within a few hours [81–83]. Exosomes circulate in the blood, and transport their cargo into
the target cell via fusion, receptor-mediated endocytosis, micropinocytosis, or phagocytosis [19,84].
That is, exosomes in their original form are rapidly cleared from the body. There is the possibility
that the contents of the exosomes mediate activation of a cascade whose effect is maintained over
time. Nevertheless, this possibility cannot be simply assumed, and the question of whether exosome
treatment is likely to have a long-lasting effect requires further investigation.

Exosome treatment holds great therapeutic promise, even if repeated treatments prove to be
needed. In that case, it will be necessary to scale up exosome production in a repeatable manner, which in
itself may pose a difficulty. There are three important issues that are prevalent in good manufacturing
practice (GMP) for exosomes: upstream of cell cultivation process, downstream of the purification
process, and exosome quality control [85]. Because exosomes are secreted by cells, a production system
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could be established using a large-scale cell cultivation system. A hollow fiber-based bioreactor for
cell culture is an attractive strategy for exosome production because of the advantage that decreased
volume of condition medium can be harvest from the filtrated fiber. The downstream purification
system should preferably conform to the procedures of vaccine production because of the similarity in
particle size and features of secretory vesicles of the host cells. Exosomes purified by ultrafiltration
for avoiding bioactive protein release from vesicles of exosomes were shown to have a higher benefit
than those of ultracentrifugation. The challenge in GMP of exosomes is quality control. Although
markers of exosomes have been defined by previous studies, the type of cells producing exosomes is
diverse. The determination of biofunctions, such as biomarker of exosomes and properties derived
from parental cells, are the two major issues for characterization of exosomes before application in
clinical trials. In addition, to scale up production, it will also be necessary to ensure that repeated
treatments do not elicit an undesirable immune response.

It is also important to note that despite the remarkable functional outcomes and improvements
achieved in the animal models, recovery is usually incomplete. Therefore, there is a great value in
research designed to further improve MSC-derived exosome treatment.

6. Toward MSC-Derived Exosome-Based Therapies

Apart from their therapeutic capability, MSC-derived exosomes have also been shown to have
the ability to migrate to lesion sites. This feature is extremely important, especially when treating
neurodegenerative diseases, as the ability to reach the brain is extremely limited. Using an in vivo
exosome neuroimaging technique, intranasally-administered MSC-derived exosomes were shown
to specifically target sites of brain lesions generated in various pathological murine models [86,87].
Exosomes accumulated in lesions up to 96 h post-treatment, although they showed a diffuse migration
pattern and clearance by 24 h post-delivery in healthy controls. The importance of this feature lies in
the possibility of using exosomes not only as an independent therapy, but also as a delivery system
that can transport drugs directly to the lesion site.

Studies designed to exploit this approach have introduced potentially therapeutic molecular
agents into MSC-derived exosomes (Table 3). The most common type of molecular agent used for this
purpose is miRNA, which can be used to supplement a deficiency that exists in a particular pathology.
The miRNAs miR-29b-3p, miR-126, and miR-30d-5p, which were all found to be downregulated after
ischemic injury, were therefore inserted into MSC-derived exosomes for the treatment of stroke [88–90].
The results indicated an attenuation of brain injury, that was greater than when naïve exosomes
were used.

The use of miRNA is also designed to exploit inherent properties that may contribute to mitigating
damage caused by central nervous system (CNS) disorders. For example, miR-124, is known to regulate
the function of microglia under physiological conditions [91]. When internalized in MSC-derived
exosomes, miR-124 improved neurological function recovery in rat models of TBI [91]. Similarly, miR-210,
miR-17-92, and miR-133b were loaded into MSC-derived exosomes as stroke treatments [92–94] based
on the observations that miRNA-210 promotes angiogenesis [94]; miR-17-92 increases cell proliferation,
inhibits cell death and contributes to axonal outgrowth [93]; while miR-133b regulates the production
of tyrosine hydroxylase and dopamine receptors and promotes the outgrowth of neurites [92,95].
The results indicated an enhanced survival rate [94], improved neurological outcome [93], and a
reduction in apoptotic and neurodegenerative neurons [92], respectively.
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Table 3. Enriched mesenchymal stem cell (MSC)-derived exosomes in animal models of neurodegeneration.

Disease/Disorder Reference Animal Model Cell Source The Addition Dose Route of
Administration

Biological/Medical
Improvement

Suggested Mechanism of
Action

Alzheimer’s [92] APP/PS1 mouse Mouse BM Rabies viral
glycoprotein (RVG)

4 boluses of
5× 1011 particles IV Improved learning and

memory function

Decreased plaque deposition
and Aβ levels; reduced

astrocytes activation;
reduced pro-inflammatory

mediators and raised
anti-inflammatory factors

MS [87] EAE mouse Mouse BM LJM-3064 aptamer 200 µg IV Reduced disease
severity

Suppressed of inflammatory
response; lowered

demyelination lesion region

Stroke [77] MCAo rat Rat BM miR-29b-3p 100 µg/kg/day
for 3 days Intracerebroventricular Reduced infarct volume

Suppressed neuronal
apoptosis and promoted
angiogenesis through the

downregulation of PTEN and
activation of Akt signaling

pathway

Stroke [93] MCAo rat Human BM
Iron oxide

nanoparticles
(IONP)

200 µg IV
Decreased infarction

volume and improved
motor function

Promoted the
anti-inflammatory response,

angiogenesis, and
anti-apoptosis

Stroke [78] MCAo rat Rat adipose miR-126 Not mentioned IV Enhanced functional
recovery

Inhibited microglial
activation and inflammatory

response; promoted
neurogenesis and

vasculogenesis

Stroke [88] Transient MCAo
rat Rat BM Transferrin and

enkephalin

One or two
boluses of

5 × 104
IV

Improved brain neuron
density and

neurological score

Decreased levels of LDH,
p53, caspase-3, and NO

Stroke [82] MCAo rat Mouse BM c(RGDyK) peptide
and miR-210 100 µg IV Enhanced survival rate

Promoted angiogenesis;
up-regulation of integrin β3

and CD34 expression

Stroke [90] MCAo mice Mouse BM c(RGDyK) peptide
and curcumin 100 µg IV

Reduced cellular
apoptosis in the legion

region

Suppressed inflammatory
response
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Table 3. Cont.

Disease/Disorder Reference Animal Model Cell Source The Addition Dose Route of
Administration

Biological/Medical
Improvement

Suggested Mechanism of
Action

Stroke [15] Intracerebral
hemorrhage rat Rat BM miR-133b 100 µg IV

Reduced apoptotic and
neurodegenerative

neurons

Inhibited RhoA and
activation of ERK1/2/CREB

pathway

Stroke [89] MCAo rat Rat adipose
Pigment

epithelium-derived
factor (PEDF)

100 µg/kg/day
for 3 days

Lateral cerebral
ventricle

Reduced infarct
volume; suppressed
neuronal apoptosis

Activated autophagy

Stroke [79] Modified MCAo
rat Rat adipose miR-30d-5p 80 µg IV Decreased cerebral

injury area of infarction

Suppressed autophagy and
promoted M2

microglia/macrophage
polarization

Stroke [81] MCAo rat Rat BM miR-17-92 100 µg IV Improved neurological
outcome

Increased neural remodeling
including neurogenesis,
oligodendrogenesis and

neurite plasticity; inhibited
PTEN, and subsequently

increased the
phosphorylation of PTEN
downstream proteins, Akt,

mTOR and GSK-3β

TBI [91]
Electric cortical

contusion
impactor rat

Rat BM BDNF 100 µg IV Inhibit apoptosis

Inhibited inflammation and
promoted neuronal

regeneration; increased
miR-216a-5p

TBI [80] Controlled
cortex injury rat Rat BM miR-124 100 µg IV Improved neurological

function recovery

Reduced production of
pro-inflammatory cytokines;
promoted M2 polarization of

microglia; increased
production of

anti-inflammatory cytokines;
enhanced neurogenesis in

hippocampus

SCI [86]
Complete spinal
cord transection

rat
Human BM

Phosphatase and
tensin homolog
(PTEN) siRNA

5 boluses of
1.62 × 108

particles
IN

Elicited functional
recovery; improved

structural and
electrophysiological

function

Enhanced axonal growth and
neovascularization; reduced
microgliosis and astrogliosis
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Table 3. Cont.

Disease/Disorder Reference Animal Model Cell Source The Addition Dose Route of
Administration

Biological/Medical
Improvement

Suggested Mechanism of
Action

SCI [84] Spinal cord
ischemia rat Rat BM miR-25 20 µg Intrathecal

Improved MDI (motor
deficit index); enhanced

neuroprotection

Reduced pro-inflammatory
cytokines; reduced oxidative

stress markers

SCI [85] Rat contusive
SCI Rat BM miR-29b 100 µg IV Increased BBB score

Decreased contractile nerve
cell numbers and GFAP

positive neurons

SCI [83] Compression
SCI rat Rat BM miR-133b 100 µg IV

Improved recovery of
hindlimb locomotor

function

Preserved neurons;
promoted regeneration of
axons; activated ERK1/2,

STAT3, and CREB; inhibited
RhoA expression
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In addition, miR-133b exosomes were shown to improve recovery of hindlimb locomotor function
in an SCI rat model [95]. miR-25 and miR-29b also enhanced exosomal function in rodent models
of SCI [96,97]. miR-25, which is known to promote neural stem cell proliferation, inhibit cell
apoptosis, and regulate oxidative stress, was shown to improve motor deficit index (MDI) and
enhance neuroprotection when introduced inside MSC-derived exosomes [96]. Furthermore, miR-29b,
which was shown to be involved in the repair of liver damage, myocardial ischemia-reperfusion
injury, skeletal muscle injury, as well as human podocyte injury, was able to increase BBB score in
SCI, when contained in MSC-derived exosomes [97]. Another agent used is the phosphatase and
tensin homolog (PTEN) siRNA [98]. PTEN is expressed in neurons and regenerating axons and plays
a vital role in controlling the regeneration of corticospinal neurons. For this reason, PTEN siRNA,
which, like miRNA, is a small RNA that regulates gene expression, has been inserted into MSC-derived
exosomes and used in a rat model of spinal cord injury, where it elicited functional recovery and
improved structural and electrophysiological function [98].

miRNAs are suitable for insertion into exosomes because of their small size, and their ability to
generate a cascade of events. Nevertheless, miRNAs are not the only molecular agents that can be inserted
into MSC-derived exosomes. LJM-3064 aptamer combined with MSC-derived exosomes were shown
to reduce the areas of demyelination and ameliorate disease severity in an experimental autoimmune
encephalomyelitis (EAE) mouse model of MS [99]. Both enkephalin and pigment epithelium-derived
factor (PEDF) were loaded into exosomes and introduced into an MCAo rat model of focal stroke,
resulting in improved brain neuron density and neurological score [100]; and a reduction in infarct
volume and neuronal apoptosis [101], respectively. Similarly, MSC-derived exosome loaded with
curcumin suppressed cellular apoptosis in the lesion region in a mouse model of stroke [102]. Moreover,
MSC-derived exosomes enriched with BDNF were found to inhibit apoptosis and promote neuronal
regeneration in a TBI rat model [103].

Functionality in vivo can be enhanced by loading exosomes with molecular agents that improve the
migratory capacity and thus increase the number that reach the site of damage. In this context, the rabies
viral glycoprotein (RVG) peptide was shown to interact specifically with the acetylcholine receptor,
making it specific to the CNS [104]. Modifying exosomes to include RVG, enhanced the engraftment of
exosomes in the cortex and hippocampus of AD brains. Thus, they significantly improved learning and
memory function [104]. In an analogous fashion, magnetic nanovesicles (MNV) derived from MSCs that
had internalized iron oxide nanoparticles (IONP) were shown to have dramatically improved targeting
to the ischemic-lesion and superior the therapeutic outcomes [105]. Due to the high expression of the
transferrin receptor after stroke, transferrin has also been used as a target agent in order to transfer
exosomes to ischemic brains [100]. The migration ability of the transferrin loaded exosomes (tar-exo)
was higher than that of naïve exosomes leading to improvements in neurological recovery [100].
Furthermore, exosomes can be modified with the cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide [c(RGDyK)]
using bio-orthogonal copper-free azide alkyne cyclo-addition (click chemistry) [94,102]. This peptide
exhibits a high affinity to integrinαvβ3. Following conjugation to the surface of MSC-derived exosomes,
they specifically targeted reactive cerebral vascular endothelial cells, following ischemia. This was
demonstrated when engineered exosomes targeted the lesion region of ischemic brains following IV
administration [94,102].

Insertion of molecular agents into exosomes can be accomplished by a variety of methods,
either directly into the exosomes, or into the cells from which the exosomes are derived. Direct methods
include chemical reactions [94,99,102,104], electroporation [100], cholesterol-conjugation (hydrophobic
reaction) [94,98], and incubation [102]. Indirect methods targeting the cells include transfection
(via lipofectamine or virus infection) [89,91,92,95–97,101], electroporation [106], or addition as a media
supplement [103,105]. The efficiency of these methods has not yet been compared and, therefore,
no information is available regarding the optimal loading method. However, there is evidence from
literature reports that the efficiency of naïve MSC-derived exosome therapy can be further enhanced
by loading a variety of molecular agents, and using the exosomes as a delivery system. Such regimens
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may enable the use of lower doses of medications, and minimize adverse effects resulting from
systemic treatment.

7. MSC-Derived Exosomes in Clinical Trials

Over 200 clinical trials of exosomes or extracellular vesicles treatments are listed on the
clinicaltrials.gov website. Nine of these studies use MSC-derived exosomes. Of the clinical studies that
use MSC-derived exosomes, only one study is relevant to this review—Allogenic Mesenchymal Stem
Cell-Derived Exosome in Patients with Acute Ischemic Stroke (NCT03384433).

This study was conducted by Prof. Alireza Zali from the Shahid Beheshti University of Medical
Sciences and examines the safety and efficacy of MSC-derived exosomes enriched with miR-124,
in acute ischemic stroke patients. The study was based on a preclinical study that demonstrated the
ability of miR-124 loaded MSC-derived exosomes to relieve brain injury by promoting neurogenesis [91].
As part of the clinical study, stereotaxis was used to deliver MSC-derived exosomes loaded with
miR-124 (200 mg protein), to the ischemic stroke area of five stroke patients, one month after the stroke.
The primary outcome measure of the study was safety, i.e., documenting adverse incidents, including
deteriorating stroke, stroke recurrences, brain edema, seizures, and hemorrhagic transformation during
the 12 months following treatment. The secondary outcome measure was efficacy, i.e., measuring the
degree of disability of the patients using the modified Rankin scale during the first year after treatment.
The study was completed in December 2019, but the clinical findings have not yet been published.

Despite impressive preclinical results in both clinical and biochemical parameters, the use of
MSC-derived exosomes in clinical trials is still limited. This is mainly due to the necessity to transition
to robust large-scale production. We predict that once this obstacle is overcome, and if positive results
are obtained in existing clinical trials, further studies will be carried out on patients with various
diseases, and in particular in neurodegenerative diseases.

8. Summary

Upon administration, MSC-derived exosomes can specifically target and accumulate in brain
lesion sites in various murine models of diseases, where they improve the behavioral phenotype as well
as reducing the inflammatory response. This improvement is not inferior to that obtained following
the transplantation of the parent cells and has the advantage of avoiding adverse events associated
with whole cell transplants. The exosomes orchestrate a series of events that enable recovery and
regeneration in neurodegenerative diseases. Advanced studies have attempted to exploit and improve
the homing feature of MSC-derived exosomes in order to deliver molecular agents to brain lesions
and enhance recovery. Combining the intrinsic properties of exosomes with a targeted medication
is suggested as a novel therapeutic approach that might have a dramatic impact on the future of
neurodegenerative disease therapy.
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