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Abstract
Objectives: Little is known about the external validity of the Data-collection on 
Adverse Effects of Anti-HIV Drugs (D:A:D) model for predicting cardiovascular 
disease (CVD) risk among people living with HIV (PLWH). We aimed to evalu-
ate the performance of the updated D:A:D model for 5-year CVD risk in a diverse 
group of PLWH engaged in HIV care.
Methods: We used data from an institutional HIV registry, which includes PLWH 
engaged in care at a safety-net HIV clinic. Eligible individuals had a baseline clin-
ical encounter between 1 January 2013 and 31 December 2014, with follow-up 
through to 31 December 2019. We estimated 5-year predicted risks of CVD as a 
function of the prognostic index and baseline survival of the D:A:D model, which 
were used to assess model discrimination (C-index), calibration and net benefit.
Results: Our evaluable population comprised 1029 PLWH, of whom 30% were 
female, 50% were non-Hispanic black, and median age was 45 years. The C-index 
was 0.70 [95% confidence limits (CL): 0.64–0.75]. The predicted 5-year CVD risk 
was 3.0% and the observed 5-year risk was 8.9% (expected/observed ratio = 0.33, 
95% CL: 0.26–0.54). The model had a greater net benefit than treating all or treat-
ing none at a risk threshold of 10%.
Conclusions: The D:A:D model was miscalibrated for CVD risk among PLWH 
engaged in HIV care at an urban safety-net HIV clinic, which may be related 
to differences in case-mix and baseline CVD risk. Nevertheless, the HIV D:A:D 
model may be useful for decisions about CVD intervention for high-risk patients.
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INTRODUCTION

People living with HIV (PLWH) have an increased risk of 
cardiovascular disease (CVD) compared with the general 
population [1,2], which is attributable to ageing , inflam-
mation, and antiretroviral therapy use [1-6]. HIV infection 
may also be an important risk factor for CVD [7-9]. Despite 
the higher overall risk of CVD among PLWH, individual 
risk of CVD may vary substantially [10]. Knowledge of 
the individual risk of CVD events among PLWH could 
facilitate clinical decision-making related to managing co-
morbidities, prescribing specific medications and recom-
mending other preventive interventions such as lifestyle 
changes [11]. The American Heart Association includes 
the Data-collection on Adverse Effects of Anti-HIV Drugs 
(D:A:D) model as an option for assessing atherosclerotic 
CVD risk among PLWH [12]. The D:A:D model was devel-
oped using data from HIV cohorts across several countries 
and includes routinely collected CVD predictors with ad-
ditional predictors unique to PLWH [13]. The model was 
recently updated for easier implementation [14].

Few studies [11,15] have evaluated the external validity 
of the updated D:A:D model. Limited evidence suggests that 
the D:A:D model performs better than the Framingham 
CVD risk model for PLWH, but the D:A:D model still under-
estimates CVD risk [14]. In addition, questions remain about 
the external validity of the D:A:D model considering that 
non-white PLWH were under-represented [14] and some 
PLWH with different CVD risk profiles were excluded from 
the data used for assessment of model performance in a US 
cohort [11]. Consequently, the validity of the D:A:D model 
is largely unknown in HIV care settings with diverse PLWH 
[11,15]. Inaccurate predictions could result in decisions that 
compromise patient outcomes [16], which emphasizes the 
need for external validation before a model is implemented 
in practice [17,18]. Therefore, we aimed to evaluate the per-
formance of the updated D:A:D model for 5-year CVD risk in 
a diverse group of PLWH engaged in HIV care.

METHODS

Setting

Our study population was derived from people living 
with HIV engaged in care at JPS Health Network (JPS), a 
large, urban safety-net health system in North Texas. JPS 
is the primary source of care for socioeconomically dis-
advantaged individuals. The network comprises a 578-bed 
academic teaching hospital, with over 40 satellite clinics 
including a comprehensive HIV clinic which is partially 
supported by funding from the national Ryan White pro-
gramme [19].

Study population

We identified eligible PLWH from the JPS HIV Care and 
Outcomes Registry (HIVCOR), which is a longitudinal 
registry that includes PLWH aged ≥ 18 years who received 
HIV care at JPS between 2013 and 2019. The registry con-
tains data on patient demographics, clinic visits, medica-
tions, laboratory results, and mortality based on linkage 
with the Centers for Disease Control and Prevention (CDC) 
National Death Index database [20]. Individuals eligible 
for our study had at least one clinical encounter between 1 
January 2013 and 31 December 2014, which allowed for at 
least 5 years of follow-up. For consistency with the D:A:D 
protocol [14], PLWH were included in the study cohort 
at the first time point when information on all required 
predictors was accrued. We excluded data for PLWH who 
had documented evidence of a prior CVD event or PLWH 
without data on one or more diagnostic determinants for 
CVD risk as defined in the reduced D:A:D model [14].

Variables

The outcome of interest was a composite variable of cardio-
vascular disease events consisting of myocardial infarction 
(fatal or nonfatal), stroke, invasive coronary artery proce-
dures (coronary artery bypass or angioplasty) and death 
from coronary heart disease events within 5 years of ini-
tial eligibility. The CVD events were identified in HIVCOR 
using a combination of International Classification of 
Diseases (ICD), Current Procedural Terminology (CPT) 
and Healthcare Common Procedure Coding System 
(HCPCS) codes (Table  S1). As specified in the reduced 
D:A:D model, our model predictors included age at base-
line (years), sex (male vs. female), diabetes status (diabetic 
vs. not diabetic), family history of CVD (yes vs. no), smok-
ing status (current, former and never smoker), total choles-
terol (mmol/L), HDL cholesterol (mmol/L), systolic blood 
pressure (mmHg) and CD4  lymphocyte count (cells/μL) 
[14]. These predictors were measured within the 2-year eli-
gibility period at various clinical encounters from 2013 to 
2014, with baseline defined as the first time point at which 
all required predictors had been accrued. We used natural 
logarithms for all continuous variables and log2 for CD4 
count, consistent with D:A:D protocol [14].

Data analysis

We estimated the predicted 5-year risk of CVD, where 
follow-up started at baseline for each patient and ended at 
the first time of occurrence of any of the following: CVD 
event of interest, last known clinical encounter, death or 
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31 December 2019 (end of study period). We first com-
puted the prognostic index by applying coefficients and 
centred values for the predictors from the original model 
to our population,

where famgp is family history of CVD, currsmk is smoking 
status (current vs. never), exsmk is smoking status (former 
vs. never), ln refers to loge, and ln2 represents log2. We sub-
sequently used the prognostic index as a function of base-
line survival to estimate predicted risks using the following 
formula,

where PI is the prognostic index. Only complete cases 
were included in the analysis (i.e. no missing values for 
predictors).

Our evaluable population excluded individuals with 
missing values for any of the predictors. We did not pur-
sue multiple imputation because of overlapping miss-
ing predictors and limited auxiliary predictors to specify 
multiple imputation models that could reasonably justify 
the missing at random assumption [21]. Nevertheless, 
we explored whether the evaluable population was sys-
tematically different from the non-evaluable population 
based on information from predictors without missing 
values. We described the distribution of demographic 
characteristics and CVD incidence for evaluable and 
non-evaluable populations. The patterns of missing val-
ues precluded describing other predictors.

Discrimination and calibration

We estimated Harrell's concordance index (C-index), which 
is a measure of model discrimination in our population in 
the context of right-censored data [22]. The C-index ranges 
between 0.5 (equivalent to randomness) and 1.0 (perfect 
discrimination) and represents discrimination across the 
full duration of follow-up rather than at a specific time [22]. 
In addition, we estimated slope of the prognostic index, 
which is a measure of the spread of predicted risks. A slope 
< 1.0 implies that discrimination in the validation popula-
tion is lower than in the original population. We assessed 
model calibration based on calibration in the large and 
graphical assessment. Calibration in the large is a measure 
of systematic under- or overestimation of model calibration 

based on comparing the expected 5-year predicted risk for 
the entire population (i.e. average risk over all individu-
als) with the observed 5-year risk based on the Kaplan–
Meier estimate (i.e. 1  –  Kaplan–Meier survival estimate). 
An expected-to-observed ratio of 1.0 is interpreted as per-
fect calibration in the large. Lastly, we plotted calibration 
curves based on expected and observed 5-year risks of CVD, 
where expected and observed risks were grouped according 
to suggested cut-points for the D:A:D model (< 1.0%, 1.0–
5.0%, 5.0–10% and > 10%) [14], and graphically evaluated 
calibration across the range of risks [22].

Net benefit

We assessed net benefit of the D:A:D model using decision 
curve analysis, which graphically represents the clinical 
utility of using a model for decision-making across a range 
of possible decision thresholds compared with treat-none 
or treat-all approaches for CVD prevention [23-25]. The 
net benefit (NB) is the sum of the number of true positives 
(TP; individuals with CVD events for whom preventive 
interventions should be considered) minus a weighted 
number of false-positive (FP) classifications (individuals 
without CVD events for whom preventive interventions 
should not be considered): NB = (TP/n) − (FP/n) × (p/
(1 − p)), where n is the total sample size and p is the rela-
tive weight of the harm of unnecessary intervention vs. 
the benefit of intervention to prevent a CVD event [23-25]. 
The weight p is defined as the threshold probability that 
defines at-risk patients who need intervention to prevent 
CVD. The HIV D:A:D model is recommended for use at a 
decision threshold of 10% (i.e. > 10% suggests high prob-
ability of CVD event within 5  years). Consequently, we 
qualitatively evaluated the net benefit of the HIV D:A:D 
model at 10% compared with preventive interventions for 
all patients or preventive interventions for no patients.

RESULTS

We identified 2359 eligible PLWH, of whom 1330 were 
excluded because of missing values for any of the pre-
dictors. Our evaluable population thus comprised 1029 
PLWH. Table  1  summarizes baseline characteristics of 
our evaluable population by CVD status. The median 
age of our evaluable population was 45 years, 70% were 
male, and 50% were non-Hispanic black. Family history 
of CVD was reported by 31% of the population, 12% were 
diagnosed with diabetes, and 41% were current smokers. 
We observed 78 CVD events during the 5-year follow-up 
including 38 individuals with myocardial infarction, 30 
with stroke, six with invasive coronary procedures and 

Prognostic Index=3.1777× (age) + 0.343856×male

+ 0.7311945×diabetes + 0.329772× famgp

+ 0.8157995×currsmk + 0.2394822×exsmk

+ 1.0925460× ln(chol)−0.5194359× ln(hdl)

+ 1.517874× ln(syst) − 0.1137227× ln2(cd4),

5 year predicted risk = 1 − 0. 9853exp(PI),
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four deaths from CVD. Table S2 summarizes the distribu-
tion of demographic characteristics of evaluable and non-
evaluable PLWH. We observed modest differences in the 
distribution of age, gender and racial/ethnic characteris-
tics, and marked differences in insurance status, between 
evaluable and non-evaluable PLWH. CVD risk at year 5 
was modestly ( ∼2.0%) higher for non-evaluable than for 
evaluable PLWH.

Discrimination and calibration

Table 2 summarizes discrimination and calibration in the 
large. The C-index for the D:A:D model in our popula-
tion was 0.70 [95% confidence limits (CL): 0.64–0.75] for 
5-year risk prediction. The slope of the prognostic index 
was 0.71 (95% CL: 0.47–0.93). The expected 5-year CVD 
risk was 3.0% based on the D:A:D model, whereas the 

observed 5-year CVD risk was 8.9% (expected/observed 
ratio = 0.33, 95% CL: 0.26–0.54). Figure 1 illustrates the 
calibration plot for 5-year predicted and observed risk of 
CVD for our study population. This plot illustrates sys-
tematic underprediction of CVD risk by the D:A:D model 
for the risk groups at pre-specified cut-points of 1%, 5% 
and 10%.

Net benefit

Figure 2 illustrates net benefit of the D:A:D model com-
pared with two possible strategies (treat none or treat all) 
for treatment decisions about CVD prevention. Treatment 
decisions based on the D:A:D model would have mar-
ginally greater benefit than treating everyone or treating 
none if the pre-specified risk threshold for CVD was 10%. 

T A B L E  1   Characteristics of people living with HIV and 
engaged in care at an urban safety-net HIV clinic

Characteristics
No CVD
(n = 951)

Incident CVD
(n = 78)

Age (years) [median (IQR)] 45 (35, 52) 51 (43, 56)

Gender [n (%)]

Male 665 (70) 52 (67)

Female 286 (30) 26 (33)

Race/ethnicity [n (%)]

Non-Hispanic white 317 (33) 23 (30)

Non-Hispanic black 470 (49) 44 (56)

Hispanic 131 (14) 11 (14)

Other 33 (3.5) -

Diabetes [n (%)]

Yes 104 (11) 24 (31)

No 847 (89) 54 (69)

Family history of CVD [n (%)]

Yes 280 (29) 39 (50)

No 671 (71) 39 (50)

Smoking [n (%)]

Current 395 (42) 31 (40)

Former 186 (20) 17 (22)

Never 370 (39) 30 (35)

Systolic blood pressure 
(mmHg) [median (IQR)]

125 (115–137) 131 (119–148)

Total cholesterol (mmol/L) 
[median (IQR)]

4.22 (3.54–4.94) 4.16 (3.55–4.89)

HDL cholesterol (mmol/L) 
[median (IQR)]

1.11 (0.91–1.37) 1.09 (0.85–1.45)

CD4 count (cells/μL) 
[median (IQR)]

482 (292–695) 429 (211–694)

Abbreviations: CVD, cardiovascular disease; IQR, interquartile range.

T A B L E  2   Discrimination and calibration in the large of the 
D:A:D model for predicting 5-year cardiovascular disease risk 
among people living with HIV at an urban safety-net HIV clinic

Performance measures
Estimates (95% 
confidence limits)

Harrell's C-index 0.70 (0.64–0.75)

Expected risk 3.0%

Observed risk 8.9%

Expected/observed ratio 0.33 (0.26–0.54)

Abbreviation: C-index, Harrell's concordance index.

F I G .  1   Calibration plot for 5-year cardiovascular disease (CVD) 
risk groups for people living with HIV based on the Data-collection 
on Adverse Effects of Anti-HIV Drugs (D:A:D) model. 
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Risk thresholds < 8% or > 23% would not have greater net 
benefit than treating all or none.

DISCUSSION

Our results suggest that the reduced D:A:D model is better 
than randomly ranking individuals’ risk of incident CVD 
events among PLWH and engaged in care at an urban 
safety-net HIV clinic. More importantly, the D:A:D model 
severely underpredicts 5-year CVD risk in this population. 
Despite suboptimal discrimination and calibration, treat-
ment decisions for CVD prevention based on the D:A:D 
model may have greater net benefit compared with treat-
ing all or treating no one in the population, if based on the 
suggested 10% threshold.

Similar to a prior evaluation of the D:A:D model [11], 
missing values for several predictors resulted in exclusion 
of a substantial number of otherwise eligible individuals 
from our analysis. We explored whether characteristics 
of excluded individuals differed from characteristics of 
evaluable individuals (Table  S2). The distribution of de-
mographic characteristics was modestly different between 
evaluable and non-evaluable PLWH. In addition, 5-year 
CVD incidence was ~2.0% higher among non-evaluable 
PLWH. Given that high baseline CVD risk among eval-
uable PLWH may be a key explanation for poor perfor-
mance of the model in our population, similarly high 
CVD risk among non-evaluable PLWH suggests that 

model performance would not have improved if all PLWH 
had evaluable data.

We matched our outcome definitions as closely as 
possible to the outcome definitions used in the original 
CVD reporting system for the D:A:D study [26-29], but 
our results may be sensitive to misclassification because 
we used routinely collected data rather than a protocol for 
primary data collection as in the D:A:D study. Specificity 
of CVD classification is high in electronic health records, 
but sensitivity may vary [30]. The consequence would 
be underestimated CVD incidence, which would further 
compromise model performance. In addition, data lim-
itations precluded evaluating the performance of the full 
D:A:D model, which includes antiretroviral regimens as 
predictors. Nevertheless, the full and reduced models had 
similar performance in the original D:A:D cohort [14].

Few studies aimed to validate the original or updated 
D:A:D model for HIV populations [15,31,32], and we 
identified only one prior study in the United States [11]. 
Our findings are consistent with a prior assessment of the 
D:A:D model in the HIV Outpatient Study (HOPS) [11]. 
Thompson-Paul et al. [11] reported a C-index of 0.72 and 
an expected-to-observed ratio of 0.44 for 5-year CVD risk 
using the reduced D:A:D model, but the authors did not 
report an evaluation of net benefit. We observed compa-
rable CVD incidence in our population (8.9% vs. 8.5% in 
HOPS) and our population had similar distributions of 
some characteristics as the HOPS population (e.g. propor-
tion of current smokers), but the median age of our pop-
ulation was ~3 years older than the HOPS population and 
our population included 50% non-Hispanic black PLWH 
compared with 34% in HOPS [11]. More importantly, 
both our population and the HOPS population had nota-
bly different characteristics and CVD incidence than the 
population used to develop the D:A:D model [14], which 
may partially explain suboptimal performance when 
transported outside the original population. Differences 
in case-mix may be particularly pronounced between the 
D:A:D population and our population (Table S3), which 
comprises socioeconomically disadvantaged individuals 
with a high prevalence of CVD risk factors [33,34,35]. For 
example, our population had a higher prevalence of diabe-
tes and family history of CVD at baseline compared with 
the D:A:D population [14].

Despite severe miscalibration of the D:A:D model, 
our net benefit analysis suggests that the model may be 
clinically useful in our population for decisions regarding 
CVD prevention for high-risk PLWH at the suggested 10% 
risk threshold. This finding emphasizes the distinction 
between model performance and clinical utility [23-25]. 
Model performance measures such as discrimination and 
calibration are insufficient to provide insights into the 
value of a prediction model for clinical decisions [23-25]. 

F I G .  2   Net benefit analysis of the Data-collection on Adverse 
Effects of Anti-HIV Drugs (D:A:D) model for predicting 5-year 
risk of cardiovascular disease among people living with HIV and 
engaged in care at an urban safety-net HIV clinic.
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Net benefit analysis using decision curves can facilitate 
interpretation about the benefits and harms of a model 
[23-25]. Nevertheless, real-world implementation of the 
D:A:D model requires further consideration.

The D:A:D model is designed for use at the first time 
point at which information on all predictors has accrued 
[14], but this definition is problematic because predictors 
should be measured at the time of intended use [36]. The 
duration required to accrue information may vary substan-
tially between patients and settings, and time-dependent 
predictor values may change by the time all the infor-
mation is accrued. This issue is particularly important 
in safety-net health systems that provide care for socio-
economically disadvantaged populations [33,37]. These 
populations experience multiple barriers to care such as 
being uninsured or under-insured, which create chal-
lenges for consistent follow-up including laboratory test-
ing [38]. Consequently, intended moments of use of the 
model must be clearly identified. For example, milestones 
in HIV care that may be amenable to using the D:A:D 
model include encounters when laboratory results may be 
available such as initial linkage to care, re-engagement in 
care or routine follow-up visits. These milestones may be 
opportunities for patient–provider discussions about CVD 
prevention approaches such as lifestyle modification (e.g. 
smoking cessation) or medication for individuals classified 
as high risk [12].

In summary, our findings suggest that the reduced 
D:A:D model is miscalibrated for prediction of 5-year 
CVD risk among PLWH engaged in HIV care at an urban 
safety-net HIV clinic, but the model may have more ben-
efit than harm for decisions regarding CVD prevention 
at a risk threshold of 10% compared with treating all or 
none. Future studies should consider direct comparisons 
of CVD risk prediction models to identify the model with 
greatest net benefit rather than comparing with treating 
all or none. Meanwhile, our findings combined with find-
ings from another population in the United States [11] 
may inform deliberations about implementing the D:A:D 
model by comparing population characteristics from these 
studies with the local population of interest. Nevertheless, 
further clarity is needed about the intended moment of 
use of the model to optimize care. A universally accurate 
risk prediction model is improbable considering multiple 
sources of heterogeneity between populations [39-41]. 
Rather than developing new models to address miscal-
ibration of the D:A:D model, the D:A:D model or other 
CVD risk prediction models may need to be updated for 
improved performance in local settings. For example, 
models could be recalibrated for more accurate predic-
tions and possibly greater net benefit in the population 
of interest or extended by adding predictors [42-44]. 
HIV-specific predictors such as CD4/CD8 ratio could be 

candidates for model extension given reported associa-
tions with CVD risk [45,46], but evidence is accumulating 
that post-baseline interventions (e.g. initiation of statin 
therapy or other interventions) may have more profound 
impact on model performance between populations [47-
49]. Consequently, post-baseline interventions require 
further consideration in future studies.
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