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Abstract
Accompanied with the clinical routine examination demand increase sharply, the efficiency and accuracy are the first priority. However, automatic
classification and localization of cells in microscopic images in super depth of Field (SDoF) system remains great challenges. In this paper, we
advance an object detection algorithm for cells in the SDoF micrograph based on Retinanet model. Compared with the current mainstream
algorithm, the mean average precision (mAP) index is significantly improved. In the experiment of leucorrhea samples and fecal samples, mAP
indexes are 83.1% and 88.1%, respectively, with an average increase of 10%. The object detection model proposed in this paper can be applied
to feces and leucorrhea detection equipment, and significantly improve the detection efficiency and accuracy.
Key words: object detection, microscopy, Ritinanet, super-depth-of-field

Introduction
Fecal and leucorrhea microscopy are two routine examina-
tions for pathological analysis in hospital laboratory. The
world population is close to 7.9 billion, and the male-to-
female ratio is about 1.02 [1]. According to the World Health
Organization disease report, the incidence of digestive disease
was 20–40% per year and 24.94% for gynecological diseases
[2]. Apparently, there are abundant demands in routine clin-
ical examinations on feces and leucorrhea. However, several
challenges remain, including variance frommanual operation,
disgusting smell, aseptic operation, and inefficient and tedious
operation [3]. With the extensive development and applica-
tion of the visual detection technology of microscopy, a large
number of detection images are generated during the detec-
tion process. It is inefficient to generate inspection reports by
processing samples manually. Computer vision is the ability
of a computer or machine to acquire human-like under-
standing from digital images or video [4]. Using machine
vision is the latest development trend in medical human secre-
tion detection. Although many models were developed to
solve the problem of microcell object detection, several chal-
lenges, including complex feature extractors and preprocessed
training processes, still remain. For example, the traditional
machine vision method requires the design of complex feature
extractors (such as morphological features and texture fea-
tures), and a large number of images need to be preprocessed
before training [5–8]. Previous studies mainly focused on the

recognition and property retrieval of single-cell types [9,10],
and few studies have focused on automatic recognition and
localization of other common cells, such as epithelial cells (Epi
cells), red blood cells (RBCs), white blood cells (WBCs) and
molds.

Recently, deep learning achieved good application pros-
pects in image classification, object detection and other com-
puter vision tasks [11,12]. Compared with the traditional
machine learning method, the deep learning method can
automatically extract image features and simplify and avoid
unnecessary image preprocessing; all of these merits can sig-
nificantly improve the validity and accuracy of detection
[13–15]. However, the application of convolutional neural
networks (CNNs) for infrastructure inspection is still in its
infancy; namely, it failed for multi-object cell detection.

In vitro diagnostic equipment greatly simplifies the pro-
cess of sample detection. However, the bottleneck of this
technique is mainly focused on the automatic identification
of biological components [16]. The changing of the relative
position between the cell center and the focus plane of micro-
scope leads to variable cell morphological structure in the
two-dimensional image, which is an important reason for
the low accuracy of current deep learning object detection
algorithms. For example, in Fig. 1, the morphological char-
acteristics of cell 1 are obvious, while the morphology of cell
2 is in a fuzzy state in position 1. In contrary, the morphol-
ogy of cell in position 2 is obvious while the cell in position
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Fig. 1. Diagram of cell focusing position in leucorrhea samples. (a) The
schematic diagram of focusing cells at different layers; (b) the image of
leucorrhea sample at position 1 and (c) the image of the same sample
with the same viewing field at position 2.

(a)                          (b)                        (c)                             (d)                           (e)

Fig. 2. ‘Valid’ and ‘Invalid’ examples for white blood cells in feces. (a), (b)
and (c) are ‘Valid’ (d) and (e) are ‘Invalid’.

1 is fuzzy. This is an application defect of the current object
detection algorithm in the field of cell detection.

Cell component detection is mainly based on single image
object detection in the current methods from which the target
location and recognition can be achieved from a neural net-
work. For example, Zhang et al. [17] combined Faster Rich
feature hierarchies Convolutional Neural Network (Faster
R-CNN) with the proposed circle scanning algorithm (CSA),
which can effectively identify cancer cells. Hung et al. [18]
used the Faster R-CNN to detect malaria parasites in bright
field microscopy images of malaria-infected blood. Kang et al.
[19] exploited two state-of-the-art CNN-based object detec-
tionmethods, Faster R-CNN and SSD, as well as their variants
for urine particle recognition. Although the detection in a
single layer can achieve a high accuracy rate, it is still insuffi-
cient for clinical application. To confirm the cells in a field of
view, it is necessary to repeatedly adjust the z-axis position of
the microscope platform and check, given that multiple cells
cannot be clearly displayed in the plane of focus.

The detection of multi-layer images is dominantly in service
with tomography image detection, computed tomography
(CT) and magnetic resonance imaging (MRI) [20,21]. Unfor-
tunately, it is not applicable because of the differences in
micro-image detection applications and clinical significance.
The object distance of the target is different when a field of
vision is imaged in a microscopic imaging system. In the same
field of vision, the targets in different positions of the image
cannot be combined into a three-dimensional (3D) complete
target, which is different fromCT. Therefore, 3D object detec-
tion methods such as 3D Faster R-CNN cannot be used to
realize the object detection in microscopic scene. Here, we
demonstrated an end-to-end deep learning method for micro
multi-object detection in super-depth-of-field (SDoF) micro-
graphs, based on Retinanet [22]. To compare with other
mainstream object detection algorithms, we collected fecal
and leucorrhea sample libraries. The samples were collected
using the viewing field, and each field had multiple clear
images. The training and testing sets were split by the field;
see the experimental part for details.

The major novel aspects of the current research work are
as follows:

(i) An object detection algorithm in the state of SDoF is
proposed, which has better performance than the single
image object detection algorithm.

(ii) We applied our proposed method to the leucorrhea
and fecal datasets we collected and demonstrated a
significant improvement over previous methods.

(iii) The effectiveness of the composition of the network we
proposed is verified by the ablation study.

The remainder of the paper is organized as follows. Mate-
rials and methods Section describes the proposed models
and materials used in this work in detail. Section Result is
dedicated to the experiments and results. The discussion is
provided in the next section, and concluding remarks are
presented in the final section.

Materials and methods
In this section, we first introduce our materials, and the whole
proposed architecture is briefly illustrated in Fig. 3. Details of
the network are described in the following subparagraph.

Materials
All images were collected by a microscopic imaging system.
Briefly, the samples were flow diluted, stirred, placed and
imaged with a microscopic imaging system. The process of
autofocusing was operated in each field of view of samples,
and a group of microscopic image was captured when the z-
axis of microscope platformmoved continuously. The clearest
image was selected from each image group through the image
definition algorithm. The clearest 3 images and 5 images for
feces for leucorrhea were chosen to input the object detection
model. The image definition algorithm named Tenengrad [23]
can be described as follows:

D=
1
C

∑
Sobel[I(x, y)], 19< Sobel[I(x, y)]< 120 (1)

where D is the definition value, I is the gray microscopic
image, which is filtered by Sobel operator andC is the number
of pixels that meet the conditions.

For algorithm training and testing, experienced laboratory
experts annotated the cells of all the images in the develop-
ment dataset as the ground-truth with rectangular boxes of
different colors. We divided the dataset into a training and
test set in the ratio 8:2 randomly based on the viewing field.
Detailed leucorrhea sample information and the dataset split
are summarized in Table 1. The fecal sample information is
shown in Table 2.

The hardware and software platform of the experiment
was a Windows 7 system with Intel Core i7-7820X CPU @
3.6GHz×16, an NVIDIA GeForce RTX 2080 Ti Graphic
Processing Unit (GPU), CUDA 10.0 and cuDNN v7. Motic
B1Digital microscope is used for fecal sample imaging with
a 40× objective lens (numerical aperture: 0.65, material
distance: 0.6mm). The resolution of the microscope is
1600 × 1200. As for the leucorrhea sample, we used an
OLYMPUS CX31 biological microscope with a 40× objective
lens samed as the lens used in Motic for leucorrhea imag-
ing. An EXCCD01400KMA Charge-coupled Device (CCD)
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Fig. 3. The architecture of the proposed model. N images of the same field of view are taken as one input, which is different from Retinanet. The input
dimension is H ×W ×3×N.

Table 1. Leucorrhea sample quantity statistics

Contents Information
Dataset A:
training

Dataset B:
testing

Data acquisition 2018.9-2019.12 NA NA
# views 1552 1241 311
# samples 162 NA NA
RBCs 638 519 119
WBCs 3341 2659 682
Molds 781 544 237
Epi cells 2693 2165 528
Pyos 461 364 97
Tris 17 9 8

Resolution of images are 1920 × 1200; #, numbers; NA, not applicable;
RBCs, red blood cells; WBCs, white blood cells; Epi cells, epithelial cells;
Pyos, pyocytes; Tris, trichomonads.

Table 2. Fecal sample quantity statistics

Contents Information
Dataset A:
training

Dataset B:
testing

Data acquisition 2018.9-2019.12 NA NA
# views 10 670 8536 2134
# samples 1885 NA NA
RBCs 7448 6208 1240
WBCs 1691 1362 329
Molds 6437 5131 1306
Pyos 148 115 33

Resolution of images are 1600 × 1200; #, numbers; NA, not applicable;
RBCs, red blood cells; WBCs, white blood cells; Pyos: pyocytes.

camera with a pixel size of 6.45µm×6.45µm is used for
exposure (resolution 1920 × 1080).

As for the ground truth of data sets, images in the same
field are annotated at the same time, as the position of the
same cell in different images is fixed, and the difference is only
the clarity. The same cell in different images is annotated with

attribute ‘Valid’. If a cell is recognizable by experts in the cur-
rent image, it is annotated as ‘Valid’; otherwise, it is ‘Invalid’.
A cell will have different ‘Valid’ attributes in different images.
If and only if the cell attribute is ‘Valid’ in one image, it is a
positive sample for the whole field, which is regarded as the
ground truth. The ‘Valid’ and ‘Invalid’ examples for WBCs
are shown in Fig. 2.

Architecture overview
The network structure we designed is based on Retinanet [22],
as shown in Fig. 3.

In our detection samples, images are divided by the field,
which is obtained from different object distances. Doctors
judge the category by observing the cells at different distances
between the target and the focusing position, but it is diffi-
cult to distinguish the category only by observing the single
form at a single position, especially when it is in the out–of-
focus state. Fig. 2a–e showmultiple defocusedWBCs. Among
them, the cell morphology of (a)–(b) is clear and identifiable,
which is marked as ‘Valid’, while the cell morphology of (c)–
(d) is ambiguous and marked as ‘Invalid’. It is observed that
the morphological differences of the five images are small.
Thus, there is a certain subjective error in labeling the tan-
gible components with fuzzy morphology when labeling the
‘Valid’/‘Invalid’ attribute of dataset. This error will further
affect the accuracy of convolutional neural network (CNN)
model. Inspired by the doctor’s manual detection method, we
use multiple images to form the depth of field for detection.
The input of the detection network is motivated by multi-
inputs. The input of the traditional object detection algorithm
is a single image with a size of H×W×3. The input of the
model we designed is H×W× 3×N, where N represents the
number of images obtained by field, and 3 is the red green
blue (RGB) channel of each image. N is 3 for feces, while
5 for leucorrhea. Our goal is to fuse the feature information
of different input images as much as possible for leucorrhea
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Fig. 4. Improved Squeeze-and-Excitation for input.

Fig. 5. Global attention down-sample (GAD) block.

and feces object detection, which can be achieved by the sub-
sequence channel fusion. Consequently, we concatenate N
images along the channel direction while inputting.

The closer the relative distance between the objects and the
focus plane, the clearer the shape mapped on the collected
microscopic image and the easier it is to identify. The image
region where it is located has a positive contribution to target
recognition. On the contrary, the shape is fuzzy, the image
in defocus state should be regarded as negative sample when
training CNN model, otherwise it will make a negative con-
tribution to target recognition. Therefore, the weights of each
formed element in different images selected by the definition
algorithm are different. We propose to use the Squeeze-and-
Excitation (SE) [24] to assign weights to images in different
z-positions, which is shown in Section SE block for input
weighting.

The model we proposed is established with a shared Resnet
[25] extractor. The target to be detected is usually small in
microscopic images. After different stages of pooling, the fea-
ture information of the target will be lost. Thus, we need to
fuse the large-scale information with the small-scale feature
information. In each block, we propose an improved version
of the global attention down-sample (GAD) to fuse high-order
features and low-order features, as shown in Section Global
attention down-sample block, which is motivated by a global
attention up-sample [26] model.

Besides, as the deeper layer of Resnet contains more
feature information of the whole image, the representa-
tion ability of small targets is not good enough. We added
Deformable ConvNets (DCN) [27] to the part of the C5
layer connected by the feature pyramid, which is shown in
Section Deformable ConvNets for low-level features.

The remainder of the network we proposed is the same as
the Retinanet. We constructed five pyramid feature maps with
different stride sizes (P3, P4, P5, P6 and P7), and the pyramid

features are used to connect the classification and regression
sub-networks as the object output of the model.

SE block for input weighting
The input of our model is composed of N images with differ-
ent focus positions, and the corresponding channel number is
3×N. Different from the SE model [24], SE performs squeeze
operation on all channels, while our variant se module divides
3×N channels into N groups for squeeze operation. The
variant model is shown in Fig. 4.

In the squeeze stage, an average group pooling is adopted
as the layer-level feature. Specifically, each layer is an image
with RGB channels. When performing average pooling, the
average of all RGB channels of the image is taken to gener-
ate a global feature map. Then, the global feature is operated
by excitation to learn the relationship between each chan-
nel and get the weights of the different channels. Finally, the
weighted input is obtained by multiplying the original input.
The squeeze operation can be described as:

Fsq(fc) =
1

H×W×3

H∑
i=1

W∑
j=1

3∑
k=1

fc(i, j, k), fc ∈ R (2)

where fc is the pixel of the input. The excitation operation is
as follows:

Fex(Fsq,W1,W2) = σ(W2 ·RELU(W1 ·Fsq)) (3)

where σ is the sigmoid function, and W1, W2 are the param-
eters to be trained. RELU is the RELU activate function.

Global attention down-sample block
Many researchers have proved that combining CNNs with a
well-designed network module can obtain excellent perfor-
mance and feature information [26]. We consider that the
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low-level features with abundant details can be used to weight
the high-level features to improve the resolution.

The GAD module we designed is shown in Fig. 5. GAD
takes the global context information as the guidance for high-
level features in the global pooling operation. Specifically,
the global context information generated from low-level fea-
tures goes through 1 × 1 convolution, batch normalization
and nonlinear transformation and then multiplies with high-
level features, which is the same as the SE block. Finally, the
low-level features are convoluted (kernel: 3 × 3; stride: accord-
ing to the block scale) and added to the weighted high-level
features.

Deformable ConvNets for low-level features
As the deeper feature map of Resnet contains more global
information, it is not good enough to represent small targets.
Therefore, we added DCN [27] to the part of the C5 layer
connected by the feature pyramid, as shown in Fig. 6.

Compared with the traditional CNN, DCN can be defor-
mation, which improves the effective range of the receptive
field. Even though the introduction of DCNmay require more
detection time, the precision was improved significantly.

Other tricks
Data augmentation
The data augmentation method was used in the training
process. The optical structure and acquisition system are rela-
tively fixed in the microscopic images compared with other
image acquisition systems. Therefore, the data augmenta-
tion methods adopted random rotation, random flipping and
0.8–1.2 scaling without considering color adjustment and
other strategies.

Transfer learning and fine-tuning
Transfer learning and fine-tuning can significantly accelerate
the speed of model training. In the experiment, we set the ini-
tialization parameters of the model to the parameters trained
on COCO [28], which can be download from the website and
then fine-tune it [29].

Training
In the training process, the network we designed is an end-to-
end object detection model. The training batch was set to 2,
which is limited by the memory size of the Graphic Process-
ing Unit (GPU). The image size of 1200 × 1920 (leucorrhea)
and 1200× 1600 (feces) were compressed as 800 × 1280 (leu-
corrhea) and 800 ×1067 (feces) for inputs by the method of

Fig. 6. Deformable ConvNets.

bilinear interpolation. We used the focal loss function of Reti-
nanet to reduce the influence of the imbalance of positive
and negative samples in the process of solving. Moreover,
the Adam method was used to update the parameters of this
model.

Inference
Similarly, during inference, we compressed the size of
the input group of images to 800 × 1280 (leucorrhea)
and 800 × 1067 (feces). We decoded the box prediction
from a maximum of 1000 top-score predictions per level
after setting the detector confidence threshold to 0.05 to
improve the inference speed. Non-maximum suppression
(NMS) with a threshold of 0.5 was adopted to yield the
predictions.

Table 3. The result for the cell detection algorithm in the datasets

Datasets Items AP F1 mAP mF1 Fps

Leucorrhea RBCs 0.826 60.38
WBCs 0.776 324.01 0.838 141.29 8.16
Molds 0.773 106.72
Epi cells 0.973 314.35
Pyos 0.693 37.94
Tris 0.986 4.34

Fecal RBCs 0.946 622.29 0.881 314.70 10.04
WBCs 0.878 113.14
Molds 0.857 503.65
Pyos 0.843 19.71

AP, average precision; mAP, mean average precision; Pyo, pyocytes;
Epi cells, epithelial cells; RBCs, red blood cells; WBCs, white blood
cells; Tris, trichomonads. Fps represents frames per second. F1: F1
score = 2*Precision*Recall/(Precision+Recall) mF1: mean f1 score.

Fig. 7. Curated examples of this model on our leucorrhea dataset. A
score threshold of 0.4 was used for displaying. Red rectangles represent
red blood cells (RBCs), blue rectangles represent white blood cells
(WBCs), yellow rectangles represent epithelial cells (Epi cells), green
rectangles represent pyocytes (Pyos), purple rectangles represent molds
and cyan rectangles represent suspected trichomonads (Tris). (a), (b) and
(d) The detection images of Epi cells and WBCs; (c) the detection image
of molds; (e) the detection image of Tris, Epi cells and Pyos and (f) the
detection image of RBCs.
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Fig. 8. Curated examples of this model on our fecal dataset. A score threshold of 0.4 was used for displaying. Red rectangles represent red blood cells
(RBCs), blue rectangles represent white blood cells (WBCs), purple rectangles represent molds and green rectangles represent pyocytes (Pyos). (a)
Detection result of RBCs. (b), (d) and (e) the detection images of RBCs and WBCs, (c) the mold image with light color and (f) the detection image of
molds.

Table 4. Performance of ablations in leucorrhea samples

SE GAD DCN APRBC APWBC APMold APEpi APPyo APTri mAP Fps
√

0.807 0.742 0.737 0.975 0.717 0.935 0.819 9.06√
0.815 0.748 0.714 0.972 0.732 0.892 0.813 9.01√
0.778 0.751 0.723 0.975 0.716 0.986 0.822 9.08√ √ √
0.826 0.776 0.773 0.973 0.693 0.986 0.838 8.16

SE, Squeeze-and-Excitation; GAD, global attention down-sample; DCN, Deformable ConvNets; Pyo, pyocytes; Epi, epithelial cell; RBC, red blood cell; WBC,
white blood cell; AP, average precision; mAP, mean average precision; Tri, trichomonad. Fps represents frames per second.

Results
Metrics
N images in each field of vision correspond to a group of
ground truth tags used in our detection task, which is differ-
ent from object detection with single image. Themean average
precision (mAP) was applied to assess the performance of pre-
diction methods for each group of images. In detail, precision
is the ratio of correctly detected objects to all positive objects

detected, and recall is the ratio of correctly detected objects
to all objects with basic authenticity. Whether the detection is
correct depends on the value of the intersection over union
(IOU). The targets detected by the prediction model were
ranked by confidence. Then, different precision and recall
were obtained by sorting IOU from high to low, which is
called the precision–recall (PR) curve. The area under the
recall curve was the average precision (AP). mAP is calculated
by averaging different levels of AP.
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Table 5. Performance of ablations in fecal samples

SE GAD DCN APRBC APWBC APMold APPyo mAP Fps
√

0.940 0.874 0.821 0.852 0.872 10.53√
0.942 0.844 0.833 0.831 0.863 10.33√
0.946 0.855 0.825 0.847 0.868 10.14√ √ √
0.946 0.878 0.857 0.843 0.881 10.04

SE, Squeeze-and-Excitation; GAD, global attention down-sample; DCN, Deformable ConvNets; RBC, red blood cell; WBC, white blood cell; AP, average
precision; Pyo, pyocytes; mAP, mean average precision. Fps represents frames per second.

Table 6. Comparison of detection results of leucorrhea samples

Method Backbone APRBC APWBC APMold APEpi APPyo APTri mAP Fps

FR-CNN ResNet-50 0.382 0.681 0.708 0.860 0.538 0 0.528 5.4
SSD300 VGG-16 0.158 0.191 0.017 0.814 0.123 0.564 0.311 13.7
SSD512 VGG-16 0.567 0.529 0.277 0.811 0.362 0.646 0.532 9.4
YOLOV3 Darknet-53 0.535 0.486 0.335 0.533 0.216 0.495 0.433 7.6
Casc. R-CNN ResNet-50 0.224 0.715 0.711 0.868 0.639 0 0.526 4.0
Retinanet ResNet-50 0.750 0.662 0.639 0.914 0.567 0.661 0.699 5.8
Ours ResNet-50 0.826 0.776 0.773 0.973 0.693 0.986 0.838 8.2

AP, average precision; mAP, mean average precision; RBC, red blood cell; WBC, white blood cell; Epi, epithelial cell; Pyo, pyocytes; Tri, trichomonad. Fps
represents frames per second.

Table 7. Comparison of detection results of fecal samples

Method Backbone APRBC APWBC APMold APPyo mAP Fps

FR-CNN ResNet-50 0.553 0.588 0.731 0.805 0.669 5.2
SSD300 VGG-16 0.475 0.615 0.621 0.821 0.633 12.8
SSD512 VGG-16 0.630 0.752 0.654 0.812 0.743 8.1
YOLO-V3 Darknet-53 0.548 0.628 0.655 0.486 0.579 6.7
Cascade R-CNN ResNet-50 0.551 0.629 0.775 0.815 0.693 3.8
Retinanet ResNet-50 0.750 0.792 0.793 0.882 0.804 5.8
Ours ResNet-50 0.946 0.878 0.857 0.843 0.881 10.0

AP, average precision; RBC, red blood cell; WBC, white blood cell; mAP, mean average precision; Pyo, pyocytes. Fps represents frames per second.

Detection results of the method proposed
According to the different sample types of the two datasets, we
trained and tested them separately. All models were trained
on the corresponding training sets and tested on the test-
ing sets. Within the training process, the mean and other
evaluation information was output in the validation set in
each epoch. The model was tested after the training, and the
performance details are shown in Table 3. Figures 7 and 8 dis-
play the renderings of leucorrhea samples and fecal samples,
respectively.

Ablation study
We extended our experiments to validate the proposed net-
work architecture components. From the base Retinanet
framework, four additional ablations were studied: with
improved SE module, GAD, DCN and proposed model. The
results (Tables 4 and 5) showed that the mAP of improved
SE+GAD+DCN was the best among other ablations.

Comparison with other models
We compared our model with the state-of-the-art detectors in
Tables 6 and 7. To compare the state-of-the-art object detec-
tion methods with our proposed methods, we made some
variants on these methods because the detection objects are
multi-images in a single field, as shown in Fig. 9.

Fig. 9. The architecture of the comparison model.

In the training process, the input of these detectors is a sin-
gle microscopic image, and the ground truth of this image
is composed of the elements with the attribute ‘Valid’. We
trained all the images in the training set on the comparison
models, which is the same as the origin training process. In the
inference process, all images in the test set were detected by
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                     (d)                                      (e)                                       (f)

(a) (b) (c)

Fig. 10. Precision–recall (PR) curves of different kinds of cells in leucorrhea datasets; the red line represents the original Retinanet, and blue represents
our model. (a) Epithelial cell (Epi) PR curves, (b) red blood cell (RBC) PR curves, (c) white blood cell (WBC) PR curves, (d) Mildew cureves (Mid) PR
curves, (e) pyocyte (Pyo) PR curves and (f) trichomonad (Tri) PR curves.

comparisonmodels at first. After that, we combined the detec-
tion results of microscopic images that belong to the same field
of view and then used the NMS method to merge the dupli-
cate detection boxes in each field of view. In this way, a unified
detection result for each field of view was obtained. The train-
ing parameters of the original Retinanet and the model we
proposed are consistent, except for the network structure.
Other model parameters are the same as in the original paper.
For the model evaluation, we evaluate the performance of the
model according to the field of view. Tables 6 and 7 show
the comparison between the AP of different types of cells in
leucorrhoea samples and fecal samples, respectively.

To demonstrate that our model has a better detection per-
formance, we selected the leucorrhea datasets for comparison
and drew the PR curves of the origin Retinanet and improved
Retinanet (Fig. 10). Compared with the PR curves of Epi cells,
RBCs, WBCs, molds and Trichomonas, our proposed model
(blue curve) presented closer to the upper right corner of the
coordinate axis. Consequently, the detection effectiveness of
our proposed method was better. Fig. 11 shows the compar-
ison examples of manual annotation and detection results of
origin Retinanet and our proposed model.

Discussion
The experimental results disclosed that the proposed model
could guarantee the detection frame rate, and the index of
mAP was significantly improved at the same time. The mAP

of four types of targets increased by 9% in fecal datasets and
14% in five types of targets in leucorrhea datasets, which is far
better than other mainstream object detection models. Mean-
while, with the addition of the DCN+GAD module, mAP
can be improved slightly when detecting small targets (e.g.
WBC and RBC), while the detection index of large targets
remains unchanged.

Currently, the mainstream object detection algorithms are
mainly applied to the target location and extraction in a sin-
gle image. To adapt to the situation of multiple images in
SDoF, we input the images of each field of view into the corre-
sponding object detection model one by one and combine the
results of them. The performance of mainstream object detec-
tion algorithms on leucorrhea and fecal datasets is shown in
Tables 6 and 7, respectively.

In the leucorrhea samples, the SSD300 model [13] had the
highest frame rate, but its detection precision was the worst.
The detection precision of the Faster R-CNN [15] model and
Cascade R-CNN [30] model in Trichomonas was poor, while
the detection accuracy of the Retinanet model was higher than
that of other models, which was used as the baseline for our
proposed model. The improved model we proposed achieved
good detection results in different types of cells. At the same
time, the detected frame rate was higher than other models,
which is only next to the SSD300 model.

In the detection results of fecal samples, the frame rate
of SSD300 was better, and the accuracy of detection results
was higher than that of leucorrhoea samples. The detection
precision of the YOLOV3 [14] model was poor in both
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(a) (b) (c)

Fig. 11. Detection comparison on the leucorrhea dataset. (a) Ground truth; (b) detection results of origin Retinanet and (c) results of our proposed model.
The target in the dotted box is the image at different focusing positions in the field.

microscopic image sets, although the YOLOV3 model per-
formed well in object detection in natural scenes. Similarly,
Retinanet [29] also achieved good detection accuracy. Com-
pared with the model we proposed, the detection accuracy
of our model is also greatly improved, and our model also
performs well in terms of the frame rate.

For the manual annotation, the criterion of ‘Valid’/‘Invalid’
of cells, especially for the slightly out-of-focus cells, is sub-
jective according to the experienced laboratory experts, as
shown in Fig. 2. This error will affect the accuracy of the CNN
model for single image detection, which leads to the poor
effect of these methods. The proposed method uses multiple
images to form the depth of field for training and detection,
which can effectively avoid this error. At the same time, con-
sidering that the number of leucorrhea samples is less than
fecal samples, the detection accuracy of the leucorrhea sam-
ple model is lower than fecal samples in the previous object
detection models.

The contrast precision recall curves (PR curves) with Riti-
nanet were drawn (Fig. 9). The PR curve of our model (blue)
achieved a significantly improved effect in different types of
cells; the R value was higher at the same P value. By compar-
ing the PR curves of Epi cells and RBCs, the improvement
of the model was small, and the interval between red and
blue curves was small, while the improvement of WBCs,
pyocytes and Trichomonas was larger. All these phenomena
correspond to the results obtained in Table 4. The detection
improvement of molds was significantly improved when a
higher score threshold was set, indicating that the original
Retinanet has relatively low confidence, while the model we
proposed has higher confidence.

Taken together, the evaluation results further confirm the
advantages of our model. The mAP of the leucorrhea and
fecal datasets was 83.8% and 88.1%, respectively, which was
better than other detection models. It shows that our model
has a better feature expression ability for SDoF micrograph
and is adaptable to different microscopic image application
scenarios.

Conclusions
In this study, we proposed an object detection algorithm
for SDoF micrographs. The detection index is much higher

than the mainstream object detection algorithm based on
testing the leucorrhea and the fecal datasets separately. The
mAP increased by nearly 10%. The detection efficiency was
equivalent to the Retinanet, which can fully meet the needs
of the automated online detection. The proposed algorithm
has reference significance for the application of object detec-
tion in SDoF microscopy system. The code is available
at Github: https://github.com/xiaohuilang/Morphological-
components-detection-for-super-depth-of-field-bio-microgra
ph-based-on-deep-learning.
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