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Abstract: This review is a part of the SI ‘Genome-Scale Modeling of Microorganisms in the Real
World’. The goal of GEM is the accurate prediction of the phenotype from its respective genotype
under specified environmental conditions. This review focuses on the dynamic phenotype; prediction
of the real-life behaviors of microorganisms, such as cell proliferation, dormancy, and mortality;
balanced and unbalanced growth; steady-state and transient processes; primary and secondary
metabolism; stress responses; etc. Constraint-based metabolic reconstructions were successfully
started two decades ago as FBA, followed by more advanced models, but this review starts from
the earlier nongenomic predecessors to show that some GEMs inherited the outdated biokinetic
frameworks compromising their performances. The most essential deficiencies are: (i) an inadequate
account of environmental conditions, such as various degrees of nutrients limitation and other factors
shaping phenotypes; (ii) a failure to simulate the adaptive changes of MMCC (MacroMolecular
Cell Composition) in response to the fluctuating environment; (iii) the misinterpretation of the
SGR (Specific Growth Rate) as either a fixed constant parameter of the model or independent
factor affecting the conditional expression of macromolecules; (iv) neglecting stress resistance as an
important objective function; and (v) inefficient experimental verification of GEM against simple
growth (constant MMCC and SGR) data. Finally, we propose several ways to improve GEMs, such as
replacing the outdated Monod equation with the SCM (Synthetic Chemostat Model) that establishes
the quantitative relationships between primary and secondary metabolism, growth rate and stress
resistance, process kinetics, and cell composition.

Keywords: growth kinetics; survival; death; substrate limitation; starvation; gene expression; condi-
tional expression of macromolecules; protein allocation; batch culture; chemostat; cell cycle; metabolic
network; pool; metabolic intermediates; cell composition; biomass brutto-formulae; kinetic order

1. Introduction

Everything should be made as simple as possible... but not simpler.

Albert Einstein

Presently, the NCBI lists more than 300,000 completed whole-genome projects. With
~7500 sequenced fungal species and more than 31,000 prokaryotic (archaeal and bacterial)
OTUs, we can state that whole-genome sequence data are now available for nearly all
cultivable microorganisms of medical, industrial, or environmental significance. Whole-
genome projects are expected to increase over time [1] to further expand their coverage and
as strain-specific resequencing, metagenomic surveys of communities, etc. Yet, let us face it,
the main bottleneck now is not the number of sequenced genomes but, rather, our limited
capacity to capitalize on the already accumulated genomic information [2]. Consequently,
modern bioscience is confronted with the challenge to translate sequence data into solid
biological knowledge, better industrial and healthcare solutions, and an improved mech-
anistic understanding of bioprocesses. This challenge can be met by system biology [3],
using as research tools genome-scale metabolic reconstructions and genome-scale models
(GEMs). The ambitious goal of GEM is the accurate prediction of the phenotype from the
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respective genotype under specified environmental conditions. This undoubtedly would
be a remarkable scientific breakthrough, bringing formerly descriptive biology to the top
of natural sciences.

The most popular version of GEM, called FBA (Flux Balance Analyses), has been
already established as a powerful tool in metabolic engineering and diverse applica-
tions [1,4–12]. It uses steady-state approximation and other simplifying assumptions that
greatly improve the speed of computations with inevitable sacrifices, one of them being the
static way of presenting metabolic reconstructions that reproduce a screenshot of cellular
metabolism beyond the time axes. More advanced contemporary GEMs, such as dFBA,
ME, and WC models, have been charged with the goal of the dynamic reconstruction
of metabolism based on the simulation of natural regulatory mechanisms. The correct
understanding of these mechanisms should allow the adequate reconstruction of biody-
namic behaviors of microorganisms, from trivial binary division to a real-life microbial
dynamic under specified environmental conditions: the balanced and unbalanced growth,
steady-state and transient processes, survival and recovery from stresses, cell differentia-
tion, biosynthesis of products, including secondary metabolites, etc. Taken together, the
listed processes represent a dynamic phenotype [13] of microorganisms. However, modern
dynamic GEMs are applied nearly exclusively to trivial data, such as exponential growth
with constant SGR. It is well-justified at the initial stages of the methodology development;
there is no doubt that new computational approaches should be tested against as simple of
data as possible.

Today, genomic-scale system biology is mature enough to address the famous A.
Einstein maxim (see epigraph) that gives sagacious advice to carefully balance between
the simple and oversimplified. Too simple of data can hardly inspire generation of strong
hypotheses crucial for development of systems biology, restrain practical GEM applications,
and generally discourage research progress. This review illustrates typical nontrivial
microbial behaviors that are commonly observed in laboratory experiments, industrial
bioreactors, and in nature. The aim of this review is to show that complex biodynamics is
not a confusing mixture of chaotic events but, rather, a highly reproducible phenomena
that can be accurately recorded and interpreted using mechanistic mathematical models.

The review starts by defining the key terms and basic principles of growth theory to
explain the distinction between simple and complex biodynamics of microorganisms. Next,
we review the nongenomic predecessors of the currently available GEMs to show that
some of them are built upon the outdated frameworks compromising their performances.
Luckily, such deficiencies can be fixed in a straightforward way. Finally, we discuss the
prospects for improvements of GEMs for the purpose of dynamic simulations. The technical
details, including mathematical equations, their interpretation, alternative solutions, etc.,
the interested reader can find in the Appendix B.

2. Simple and Complex Growth: The Basic Principles

Here, we are going to justify the following basic principles used throughout the review:

1. The microbial specific growth rate (SGR) depends on environmental conditions and the
macromolecular cell composition (MMCC). MMCC variation is the result of self-regulation,
including differential gene expression in response to a changeable environment.

2. Variable MMCC is the main reason for the higher complexity of microbial growth
kinetics vs. chemical and enzymatic reactions.

3. A nutrient supply is the primary environmental factor controlling microbial behavior;
the effects of other modifying factors (T, pH, osmolarity, etc.) can be understood only
in combination with the nutritional factor.

4. MMCC dependence on SGR is a common misconception; both complex variables
depend on the environmental conditions.

5. A growth is called simple (syn: balanced and steady state) if it proceeds exponentially
under steady environmental conditions with constant SGR and MMCC. Otherwise,
the cell dynamics are complex.
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2.1. MMCC and Growth Kinetics

Microbial growth under various tested conditions is usually recorded as a time series
of cell mass concentration (x), nutrient substrates (s), and products (p). A specific growth
rate (SGR) found by the numeric differentiation of growth curves (corrected for elimination
in open systems, e.g., the dilution rate in a chemostat) is the most inclusive biokinetic
variable. There are well-defined mass–balance relationships between SGR and other growth
characteristics, e.g., the apparent yield, maintenance, respiration, substrate uptake, and
products formation [14,15]. The listed biokinetic terms describe growth in a reductionistic
‘chemical’ way, but there are also remarkable changes in the quality of cells, e.g., size
and shape, activities, stress resistance, productivity, etc., that, in the past, were combined
under the vague term physiological state. Presently, the state of growing cells is surveyed
by using omics molecular inventories on top of conventional chemical analyses of cells
(elemental composition, total proteins, nucleic acids, lipids, etc.). About 10% of the cell
dry mass is accounted for as a pool of small molecules using metabolomic analyses, and
~90% is represented by macromolecules evaluated by proteomic, glycomic, and lipidomic
profiling. This review focuses on the macromolecular cell composition (MMCC) as a
principal effector of growth kinetics; the metabolic pool is touched only from a biokinetic
perspective (Appendix B.2.3).

Historically, the first growth-associated changes in MMCC were established ~60 years
ago for the most abundant cellular constituent, the ribosomes making up to 50% of the
total cell mass in fast-growing cells and dropping down to 5–10% under growth deceler-
ation [16,17]. At the same time, the opposite trend was found for the storage polymers
(glycogen in E. coli), which progressively decreased with the growth acceleration from 23
to 2% [18]. Presently, the changes in MMCC have been mostly followed by transcriptomic
and proteomic techniques being referred to as ‘condition-specific expression’ [19–21]. A
commonly accepted view is that the up- and downregulation of proteins is one of the
most essential and fundamental qualities of life, the result of metabolic regulation and
differential gene expression in response to environmental stimuli. However, this quality
turned out to be difficult to incorporate into mechanistic growth models (see below).

2.2. Limited Applicability of Enzyme Kinetics to Microbial Growth

Enzymes are simpler than cells, and enzyme kinetics has a longer history of successful
developments. It was the main reason for numerous attempts to adapt enzymological
models to microbial growth. The obvious distinction between enzymes and growing
microorganisms is that enzymes do not proliferate over time. However, there is a simple
way to handle this complication by expressing microbially driven reaction rates per g cell
biomass; then, the so-called specific rates (qs and qp) of cellular growth kinetics can be used
as equivalents of the respective enzymatic rates, v [14]. For example, the Michaelis–Menten
equation can be applied to the process of nutrient uptake by cells:

v = −ds
dt

= Vmax
s

Ks + s
; Vmax = kcat[E] (1)

where [E] is the concentration of the transmembrane transporter(s) responsible for uptake.
Dividing both parts of Equation (1) by cell mass x, we get the expression for SUR:

qs = −
1
x

ds
dt

= Qs
s

Ks + s
; Qs =

Vmax

x
(1a)

The mass–balance relationship between the consumed substrate−ds and the produced
biomass dx is set up by the yield, Y:

Y = −dx
ds

= − 1
x

dx
dt

:
1
x

ds
dt

=
µ

qs
∴ qs =

µ

Y
(2)
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The substitution of qs in Equation (1a) for µ produces the well-known Monod equation:

µ = Yqs = µm
s

Ks + s
; µm = YQs (3)

The Michaelis–Menten and Monod equations look similar, but there is a substantial
difference. The enzymatic Equation (1) was deduced using the law of mass action and
assuming the reversible formation of the enzyme–substrate complex as a unique mech-
anistic feature of enzymatic catalysis. It fits most experimental data, and the constants
Vmax, kcat, and Km can be found for individual enzymes from UniProt, BRENDA, or other
reference sources. What about the Monod equation? Unfortunately, the parameters µm, Y
and Ks cannot be found in the NCBI taxonomy browser or any other reference source as
trustworthy reproducible constants. There are many reasons for that but from a kinetic
standpoint, the most essential flaw of the Monod equation is that it tacitly assumes the
constancy of enzyme concentration, the variable [E] in Equation (1). This assumption
is acceptable for a short-term response kinetic data obtained with either pure enzymes
or intact cells but wrong as applied to microbial growth that is usually accompanied by
significant MMCC changes. Figure 1 illustrates the phenomenon: the instant response of
glucose-limited chemostat culture to a series of glucose pulses does fit Equation (1a) at
each dilution rates D (Figure 1, Left). However, two parameters, Qs and Ks were never
remaining the same displaying a general trend to increase with D (Figure 1, Right). In
Appendix B.3.2, we reproduced this pattern by simulating differential expression of low
(L) and high (H) affinity glucose transporters. Every D-shift changes the ambient glucose
concentration inducing the MMCC self-adjustment resulted in the optimized L:H ratio.

Figure 1. Failure of the Monod model to describe growth with variable MMCC. Yeasts Schwanniomyces
vanrijiae were grown in a glucose-limited chemostat. Left: Short-term response of cells to glucose
spike, ∆s. The curves are fit to the modified Michaelis–Menten equation, where s is the steady-state
glucose concentration in the chemostat. The legend shows the D and h−1. Right: The pooled data on
Ks and Qs. Reprinted with permission from [22]. Copyright (1995) Springer Netherlands.

Other equations of enzyme kinetics (reviewed in [15]) are also expected to display a
reasonable agreement with the short-term data on microbial populations but fail badly
over longer periods, when microbial growth is accompanied with MMCC changes. Thus,
it is the MMCC self-regulation that makes cell growth kinetics essentially more complex as
compared with enzyme reactions.

2.3. Growth Conditions, the Hierarchy of Factors

The factors affecting growing cells can be physical (pressure, temperature, viscosity,
stirring intensity, and mass transfer); chemical (impact of various chemical compounds);
and biological (cell-to-cell interactions, differentiation into active and dormant, biofilm
and planktonic forms, etc.). The biological factors are excluded from further discussion
since they are parts of the dynamic phenotype to be the output rather than the input
data in any growth model. The physical and chemical factors can be further split into (1)
external independent variables, such as concentrations of nutrients or drugs, temperature,
stirring rate, preset pH, etc., and (2) internal dependent variables, the environmental
changes produced by growing cells, e.g., autoinhibitory products, metabolic acidification
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or alkalinization, production of ROS or RNS, biogenic heat, etc. An account of the first
group of factors as the instant microbial response is straightforward [14,15,23–25]. The
long-term response simulation requires an explicit account of the variable MMCC (see
below ‘Synthetic chemostat model’ and Appendix B.3.3). Modeling of the growth side
effects is more challenging but still a doable task, for example, metabolic acidification
can be simulated by coupling the ODEs for x and s with the uptake and release of the
major ionized compounds (NH4

+, HCO3
−, and organic acids) affecting SID, the strong ion

difference [26].
Most factors play a modifying role, i.e., they can accelerate or slow growth but

never can start it without one essential primary factor that is the nutrient supply. The
nutritional factor is multidimensional; it includes a spectrum of consumable substrates;
the identity and concentration of the limiting substrate; and the regime of supply: single-
term or continuous; the continuous regime can be steady or periodic (diurnal, sinusoidal,
square wave); or randomly fluctuating. Sometimes, all factors are viewed as equally
important, depending on local circumstances, e.g., the temperature regime is supposed
to be a key factor in cold environments like polar sea and the tundra, water deficiency in
deserts, nutrient supply in oligotrophic lakes, etc. [27]. However, the nutritional factor
stands alone as the only one that plays the role of a consumable resource rather than
the state of the environment (T, pH, red-ox, conductivity, etc.) associated with the other
factors. Another unique quality of the nutrients especially important for system biology
and GEMs is that nutrients participate in growth stoichiometry and are subjected to the
mass conservation law. First, the consumed nutrients are reactants in those primary
metabolic reactions that initiate the entire metabolic network, eventually producing new
cell masses and products. Any quantitative (concentrations) or qualitative changes in
nutrients (medium composition) affect the status of M- and E-matrixes in GEMs. Second,
a consumable resource is always limited (actually or potentially) to be shared between
various competitors: coexisting species in communities; subpopulations in pure culture
(e.g., planktonic vs. attached, mutant vs. WT, prototroph vs. auxotroph, etc.); or alternative
metabolic pathways at network branching points. The most delicate goal of any GEM is to
mimic the natural regulatory mechanisms to recognize the optimal alternative metabolic
pathway. Thus, the nutrient factor is more elaborate and more challenging in mathematical
simulations, eventually giving a precious reward of more insightful models improving
the understanding of dynamic systems. Third, the temperature and other modifying
environmental factors are important; however, their exploration can be meaningful only in
combination with the nutritional factors. The reason is that microbial stress responses to
nonoptimal physicochemical factors such as heat shock, freezing, acidity, etc. include the
expression of chaperones, porins, and other molecular structures minimizing the cellular
damage. As any other biosynthetic reactions, antistress metabolic responses require a
supply of energy and anabolic substrates; therefore, they depend on nutrients. Interestingly,
the maximum of the stress response is found not with a plentiful supply of nutrients but
under substrate limitations [28]; the explanation is presented below (see the section on
SCM (Section 4.2)). The opposite is not true; the effect of nutrients can be fruitfully explored
separately from the other factors, providing they remain constant.

2.4. SGR and MMCC, the Chicken and the Egg Dilemma

A growing number of studies now deal with the MMCC changes associated with
variations of SGR. The results are published under titles like ‘Effect of growth rate on
expression...’ or ‘Growth rate dependent expression...’ [29–35]. Taking it literally, the time
derivative of a cell mass concentration, dx/dt, plays a rather unusual role of a factor like
pH, temperature, drug dose, and other independent variables typically characterizing
external to cell environmental conditions. Let us see where the problem lies using as repre-
sentative example the rRNA, one of the best-studied and the most abundant conditionally
expressed macromolecule.
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The anatomy of experimental approaches. There are two ways of experimental ma-
nipulation SGR: (i) a chemostat culture at a series of dilution rates attaining at a steady
state the required condition, D = µ, and (ii) a batch cultivation using a series of C-sources
supporting different SGR. The first technically more challenging approach has the ad-
vantage of keeping the same medium composition and a wider range of the tested SGR
(typically, 0.05–0.95 µm). The simpler batch method provides just several discrete SGR
levels, e.g., in the range 0.4–1.8 h−1 for E. coli [36]. The essential difference is that mi-
crobial batch growth always remains substrate-sufficient (s� Ks), while the chemostat
reproduces various degrees of substrate limitations. Therefore, cells grown batchwise on
acetate (µ = 0.38 h−1) are not identical to cells maintained in a glucose-limited chemostat at
D = 0.38 h−1. The physiological state of the nutrient limitations is preferential for diverse
ecological and biomedical studies because in situ (soils and aquatic communities) and
human body in vivo (gut microbiome and infection) microbial growths are typically strictly
restricted by nutrients [22,28,37,38].

What are the independent and dependent variables in these two types of SGR manip-
ulations? The independent variable is defined as a factor manipulated by the experimenter.
The batch method implies manipulation with a medium composition, while the SGR com-
puted from the growth curve is the dependent variable. With the chemostat method, the
truly independent factor is also not SGR but the limiting nutrient concentration manipu-
lated by the experimenter by setting up the dilution rate. The desired SGR is established
spontaneously in a microbial culture over a transient period that takes hours and days
until the steady-state condition µ = D is achieved. In other words, the experimenter does
not have the power to directly manipulate the growth rate. The D management, such as
medium flow increase, has an immediate effect on cells through the instant rise of s(t), the
residual substrate concentration, the only environmental signal sensed by microorganisms
that induces their self-adjustment through differential gene expression. Thus, the SGR
is the dependent variable in both methods. Note that condition µ = D is not absolutely
guaranteed even at a steady state because of the easily overlooked effects of wall growth
and cell mortality (µ < D) or long-term spontaneous mutations with selection (µ > D) or
sustained oscillation of variables x and s making SGR fluctuate around D. Sometimes,
at one D, we observe two or more steady states as a memory effect of the prior growth
conditions, a phenomenon called bistability [39].

Causation test based on molecular data. Now, we return to the ‘SGR-dependent
rRNA content’. A typical experimental result is a linear plot of rRNA vs. SGR with a high
correlation coefficient, but correlation does not imply causation. The options are:

1. SGR→ rRNA—the SGR is the causative factor for the variable rRNA content.
2. rRNA→ SGR—reverse causation.
3. s→ rRNA and s→ SGR—both variables are affected by substrate concentration, s.

4. —options 2 and 3 are combined.

To select the best option, let us overview the published data on the rRNA expres-
sion [40–42]. In brief: each of the seven rrn operons in E. coli is transcribed by RNAP,
the expression is inhibited by the alarmone ppGpp in response to uncharged tRNA
(stringent control) and activated by NTP and indirectly by free amino acids (AA) that
keep tRNAs charged. Although metabolomic data are limited and rather controversial
(Appendices B.2.3 and B.3.3), there is evidence that intracellular pools of NTP and AA
(two positive RNAP effectors) positively correlate with s (e.g., glucose), while the negative
effector (p)ppGpp correlates with s negatively. It means that two options, 3 and 4, are
justified, and s can be considered as the common independent factor affecting the SGR
and rRNA expression (the SGR dependence on s was discovered 80 years ago [43] and
is beyond any doubt). Finally, all the studied microorganisms, prokaryotic or eucaryotic,
uniformly follow the so-called ‘ribosomal growth law’, which states that the ribosomal
content in cells is the principal internal bottleneck [16,17,44,45]; the translation process is
recognized as the slowest biosynthetic step; hence, growth acceleration can be achieved
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only through an increase of the ribosomal copy numbers. In other words, the SGR depends
on the rRNA level, not the opposite! Thus, the rRNA expression data are in a full agree-
ment with the previous section: the limiting substrate concentration in the chemostat is the
principal independent factor; it affects the SGR directly (accelerating transport and rising
the M-pool) and indirectly through the upregulation of rRNA. Options 2 and 3 are correct
but incomplete, while option 1 is unconditionally wrong.

The conclusion derived using rRNA as an example is also applicable to other elements
of conditionally expressed MMCC, even if they decline rather than increase with the SGR.
The discussion is given below (Sections 4.2 and 6.5 and Appendix B.3.2).

Why is incorrect causation SGR→ rRNA so persistent? Probably, it became a part
of the commonly accepted lexicon introduced in the middle of 20th century indepen-
dently by several outstanding scientists [46–48]. The cliché ‘growth-dependent gene
expression...’ conveys a clear message. Afterall, we economize on words speaking about
speed-dependent fuel consumption by a car, although it is against the well-known cau-
sation sequence: fuel injection → combustion → . . . → car speed. Today, the words
‘growth-dependent’ are often replaced by ‘growth-associated’, a neutral wording avoiding
any causation issue, and it is enough. The only exception presents mathematical models
that must follow the causation matters as strictly as possible.

The misrepresenting of SGR as an independent variable in mathematical simula-
tions. Various models, from very simple [32] to advanced GEM [49–51], use functional
dependencies like y = F(µ), where y is a conditionally expressed variable like the rRNA
content, and F(µ) is a simple (linear, hyperbolic, or exponential) function of SGR. In fact,
F(µ) represents mathematically the already discredited option 1 above. What is wrong
in using it in GEMs and other mathematical models? The SGR is attributed to the whole
cell, integrating the contributions of numerous subcellular parts, including individual
conditionally expressed RNA and proteins. The whole is a very awkward factor for pre-
dicting its parts because of circular references of the kind: SGR→ y1 → . . . → yn → SGR.
Furthermore, SGR is the internal cellular characteristic that cannot convey any specific
environmental signal affecting the phenotype. It resembles a hopeless Munchausen attempt
to pull himself by the hair out of the swamp:

Newtonian mechanics do not allow such a process, because the rider and horse as a
system at rest need an external force to move up the center of the mass. By the same token,
a growth model using F(µ) functions ignoring the external growth conditions misses the
processes’ driving forces; therefore, it is unable to reproduce microbial biodynamics as a
self-regulated and self-evolving process.

Furthermore, implementing the function y = F(µ) is against the basic principles of the
regulated gene expression, aimed to increase the versatility and adaptability of an organism
to a changeable environment. It allows the cell to express only those gene products (proteins
and RNA) that are required. For example, the lac operon turns on lactose metabolism only
in the presence of lactose and absence of glucose. The function y = F(µ) does not carry any
information about the state of the environment. SGR can be below µm for many reasons
(deficiency of nutrients, toxins, nonoptimal T, pH, etc.), and the model cannot predict based
on the y = F(µ) function the way to optimize the expression profile.

2.5. Drawing the Line between Simple and Complex Biodynamics

At this point, we are ready to formulate a distinction between simple and complex
microbial growths. A simple growth must be exponential with a constant SGR and a fixed
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MMCC that can occur only under steady environmental conditions (constant physico-
chemical and nutritional conditions and lack of self-poisoning). In a continuous culture,
all the listed conditions are met when the system attains a steady state. Growth with
constant MMCC has been already labeled by the term ‘balanced’ [52]. Thus, the epithets
simple, balanced, and steady state can be applied as interchangeable synonyms. Three
conditions (exponential pattern, constancy of SGR and MMCC, and steady environment)
are coupled to each other, and if one of them is violated, then the other conditions also
become invalidated. The linear growth observed in a fed-batch and perfusion culture
seems to be simpler than the exponential, but it is not true, because it implies a progressive
decrease of SGR that should be accompanied by respective MMCC changes; therefore, the
linear growth is complex. Unsteady environmental conditions inevitably induce SGR and
MMCC variations, and, finally, it is impossible to sustain a constant SGR under variable
MMCC and vice versa. The complex biodynamics do not have any restrictions; they are
observed under changeable conditions and accompanied by parallel changes of the growth
rate and the MMCC status, including the expression profile. It is the most natural dynamic
state of microorganisms in laboratory, industrial reactors and outdoor ecosystems. The next
step of increased complexity is the spontaneous differentiation of cells into two or more
subpopulations with the opposite traits, e.g., active–dormant, sessile–motile, attached–
planktonic, etc. Below, we are going to demonstrate that a described dynamic complexity
does not exclude the possibility of control and monitoring the state of the bioprocess as
accurately and reproducibly as it is done with a simple growth.

3. Typical Examples of Simple and Complex Biodynamics
3.1. Batch Culture

The canonical pattern of the batch growth curve as a sequence of the four phases
(Figure 2A) becomes an indispensable illustration reproduced in every microbiology text-
book. We traced the origin of this sketch back to 1918 [53]. Robert Earle Buchanan
(1883–1973) was one of the most influential bacteriologists worldwide, contributing most
significantly to the bacterial taxonomy. In 1918, he was 35 and already eight years in charge
of bacteriology and the newly appointed Dean at Iowa State College, “ . . . hard to think of
him working at a bench” [54]. Accordingly, his lucky paper was not just a routine exper-
imental report; rather, it was a generalized summary of the accumulated knowledge on
bacterial development analogous to the ontogeny of plants and animals. The paper ignores
methodological details and presents growth curves as trends without actual data points. To
feel the gap, we addressed the contemporary relevant publications [55–58] and found that
bacteria were grown that time on broth (mostly brain infusion) in tubes without stirring
or pH control, and cell concentration changes over time were assessed by plating. The
real published data differed from the Buchanan profile by two main points: (i) the absence
of a stationary phase as an extended period when ‘the growth rate is equal to the death
rate’ [53]; instead, all growth curves passed the sharp peaks with the following decline
and (ii) a more extended death phase as compared with the Buchanan pattern. Growth
on proteinous broth is accompanied by the release of NH4

+ and severe alkaline stress (pH
curve added to Figure 2A based on our studies), which is another reason for growth halt in
addition to the nutrient’s depletion. Batch growth under defined conditions (Figure 2B)
further confirms two mentioned inadequacies. The exponential phase is immediately
followed by the starvation death phase with a progressive decline of the mortality rate
over time indicating a self-regulatory stress-response of the starving bacteria.

Batch growth limited by an anabolic (conserved) substrate (Figure 2C) deviates most
significantly from the canonical version; it does not stop after depletion of the limiting
substrate (phosphate), and cells continue division without nutrient consumption. The
entire growth curve is unbalanced and complex. Finally, the fragment of the batch process
associated with the biosynthesis of secondary metabolites, such as antibiotics (Figure 2D),
is completely beyond the exponential phase of the balanced growth, since the biosynthesis
of secondary metabolites is always activated in nearly depleted cultures.
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Figure 2. Examples of complex dynamic patterns observed in a batch culture. (A) A canonical
presentation of batch growth on nutrient broth without a pH control originally deduced by [53].
(B) The growth curve of yeasts Schwanniomyces vanrijiae on the minimal glucose–mineral medium in
a bioreactor [59]. (C) Phosphate-limited batch growth of microalga Selenastrum capricornutum, under
continuous light [59]. (D) Growth and antibiotics production in the homogeneous batch culture of
filamentous fungus Cephalosporium acremonium [60]. The B-D plots fitted to the SCM are reproduced
from [59] with permission, Copyright (2019) Elsevier.

To summarize, the simple balanced growth in a batch culture is either absent or
can be found only as a relatively short fragment of the entire growth dynamics in the
culture limited by C- and energy sources. The stationary phase erroneously shown in
every textbook is not confirmed using controlled cultivation; there could not be a balance
between the growth and the death rates, i.e., a batch culture can never attain a steady
state. However, at the exponential growth phase, the physicochemical conditions remain
relatively stable, and the nutrients are not yet depleted, while the toxic products are not
yet formed. This relatively short fragment of the entire growth curve is characterized by
constant SGR and MMCC and can be qualified as a simple and balanced growth. Formally,
the system does not comply with the steady-state conditions, since variables x and s are not
constant, but another condition is fulfilled, the constancy of specific rates (1/x)(dx/dt) and
−(1/x)(ds/dt). The instrumental pH control provides a longer simple growth with constant
SGR and MMCC. The most intriguing and extended dynamic phenomena over time:
unusual growth patterns on anabolic substrates, lag phase of a metabolic reconfiguration,
starvation survival accompanied by cellular differentiation, and the formation of secondary
metabolites all take place beyond the phase of simple balanced biodynamics.

3.2. Continuous Culture

The transient shift-up process after a stepwise D increase (Figure 3A) demonstrates
the biological inertia of cells manifested as conspicuous overshoots and undershoots
before attaining a new steady state. With successive small-step D-changes (Figure 3B), the
transients are much smoother. The third type of hidden transients (Figure 3C) is associated
with spontaneous beneficial mutation and selection sweeps, the displacement of a parental
line with a mutant acquired a higher affinity to the limiting substrate (lower Ks). The sweep
is manifested as a noticeable decrease of s, as well as the interruption in the linear rise of the
neutral mutations in phage resistance [61] or drug resistance (Figure 3C, open circles). The
interrupted mutant dynamics mark a ‘clock resetting’, all cells are competitively eliminated,
including the WT and resistant variants.
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Figure 3. Unbalanced and non-steady-state growth in a continuous culture. (A) The shift-up exper-
iment in a chemostat culture of Aerobacter aerogenes limited by glycerol; at time zero, the dilution
rate was changed from 0.004 to 0.24 h−1 [62]. (B) Time series of the cell biomass and respiration
(CO2 formation rate) in a chemostat culture of E. coli K-12 after sequential changes of the dilution
rates (Panikov, unpublished). (C) Spontaneous mutation and auto-selection in a chemostat. At
t = 0, one out of ~1011 cells mL−1 underwent a beneficial mutation improving the substrate affinity
(Ks declined), followed by a complete replacement of the parental strain. A genetic sweep was
manifested by a decline of the substrate concentration and resetting of the linear accumulation
of the drug-resistant cells (Panikov, unpublished rifampicin-resistant CFU data for Mycobacterium
smegmatis). (D) Changes in the cell composition of A. aerogenes grown in a NH4+-limited chemostat
culture as dependent on the dilution rate in a chemostat [62]. All curves were calculated using SCM.
Plots A and D are reprinted with permission from [59]. Copyright (2019) Elsevier.

As compared with the batch culture, the chemostat allows improved control over
microbial growth with an extended duration of the simple balanced and truly steady-state
growth under a stable environment. Although we need to watch for a possible selection
sweep and biofilm formation (wall growth), nevertheless, the culture stabilized at constant
D is by far the best representation of simple growth. The transitions between steady
states belong to the category of complex biodynamics. The non-steady-state chemostat has
another remarkable advantage by fixing over time the starting and terminating states of
the transient process, making non-steady-state growth highly reproducible and amenable
to vigorous kinetic analyses. Importantly, the pooled chemostat data from several D no
longer belong to the category of simple growth, even if all the transient data are excluded.

Indeed, at each D, the cells acquire unique MMCC and growth characteristics (sub-
strate affinity, metabolic potential, yield, etc.) that are distinct from other D. These data
can be combined under the umbrella of the complex growth model. Figure 3D illustrates
the amplitude of growth-associated changes in the chemical composition of the cells; the
proteome expression will be discussed below.

Figure 4 illustrates biodynamics in the continuous culture retaining growing cells (syn:
perfusion culture, retentostat, and chemostat with cell recycle) that uses continuous dialysis
or tangential filtration to return growing cells back to the cultivation vessel. Contrary to
the regular chemostat, the retentostat attains a quasi-steady state: the cell mass x increases
(as there is no washout), while ds/dt ~ 0. Over time, the nutrient supply per unit cell mass
dramatically decreases, driving the population to a state of chronic starvation, an extremely
deep substrate limitation but without the decay and self-poisoning typical for a depleted
batch culture. That is why perfusion is especially beneficial for the cultivation of slowly
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growing mammalian cells and fastidious microorganisms. From the 10th day onwards, the
division frequency drops down to as low as one division per month, comparable with the
reproductive pace of natural microbial populations in the most challenging oligotrophic
habitats (lakes, sea pelagic zone, soils, and subsoils) that are otherwise impossible to repro-
duce in the laboratory [28]. The near-zero growth provokes the formation of nonreplicative
VBNC cells and deviates considerably not only from the simple growth discussed above
but also from a more familiar complex biodynamic observed in a regular chemostat.

Figure 4. Near-zero growth of Pseudomonas putida F1 in a continuous dialysis culture [28].
Left: Growth dynamics and the formation of VBNC (green shaded area). Right: The hypotheti-
cal mechanism explaining VBNC formation. Similar dynamic patterns were observed in a continuous
dialysis culture and in a chemostat with cell recycling. Reprinted with permission from [28]. Copy-
right (2015) the Society for Applied Microbiology, London, UK.

4. Pre-Genomic Models of Microbial Growth
4.1. From Malthusian Exponent to the Cybernetic Models

Now, the task is to overview the ability of mathematical models to adequately repro-
duce simple and complex microbial dynamics. We start from the pre-genomic models
as predecessors of much more comprehensive genome-scale models. Table 1 presents
the selected growth models, the milestones of microbial growth kinetics. The exponen-
tial model (4) has a historical significance as the first demographic model, albeit under
a naïve assumption of unlimited growth. The next three models, (5)–(7), are more real-
istic, although still ignore the MMCC changes; they introduce various ways to restrict
unlimited growth: the logistic Equation (5) assumes that growth is negatively affected by
density-dependent biotic interactions, the Monod model (6) explains the growth restriction
by the limited availability of nutrients, and finally, the Monod–Ierusalimsky model (7)
considers the combined restrictive effect of substrate limitation and product inhibition.
The Monod-type models (6) and (7) were already discussed above; they represent cells as
‘proliferating enzymes’ ignoring the possibility of self-regulatory changes of the biokinetic
qualities of cells. Numerous attempts to improve the Monod equation, such as adding a
third parameter or a second variable (e.g., s and x) and using an alternative to hyperbola
expressions, were not successful; see the details in [22].

The rest of the models (8)–(11), allow MMCC variations, although to different degrees.
The cell quota model (8) was developed for phototrophic microorganisms using light as
an unlimited energy source, their growth being controlled by the availability of anabolic
substrates, mostly sources of N, P, and vitamins. The cell quota, σ, is the variable content of
the deficient element in a cell mass, and the respective growth model was the first attempt
to explicitly express the relationship between the SGR and the chemical composition of
the cells. The compartmental and structured models (9) are the closest relative to the
GEMs, exploiting the idea to combine exchange fluxes (uptakes of exogenous substrates)
with internal cellular variables. The simplest models contained just two to three highly
aggregated internal variables (e.g., RNA, DNA, and proteins); the more advanced models
covered up to 50 real metabolites and the lumped variables such as pools of amino acids,
rNTP, dNTP, cell wall precursors, RNAs, DNA, ppGpp, glycogen, and peptidoglycan [63].
They never gained a wide recognition, remaining a caricature of the real metabolic network
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for biochemists, cumbersome ODE sets for mathematicians, and an awkward research
tool for systems biologists. The obvious disadvantages were (i) inevitable subjectivity
in the selection of the most important internal variables, and (ii) an unresolved problem
of experimental verification of the incomplete models against the real biochemical data.
The cybernetic models (10) were initially introduced as simple structured models, the
word ‘cybernetic’ implying that living cells and electronic gadgets share the common
feature of self-regulation. They used special cybernetic variables v and u as empirical
Boolean functions to implement the principle of optimality like FBA models do now. More
recent cybernetic models still use the v and u variables but are scaled up to the genomic
level [64–67]. Their value as a special category of GEM is questionable because of the
artificial nature of the operational cybernetic variables. The negative feature shared by
all three (Equations (8)–(10)) models was that they mostly ignored the growth conditions
and did not systematically follow the relationship between the growth and MMCC. The
only exception was the Synthetic Chemostat Model (SCM; Equation (11)) that is described
below in more detail.

Table 1. Pre-genomic models of microbial growth kinetics.

ODE Equation Comments
dx
dt = µx (4) Exponential growth [68]. SGR is constant

dx
dt = Rx

(
1− x

R
)
, R = µ− a (5) Logistic equation [69]. Growth is restricted by the

negative biotic interactions; K is the upper x limit

dx
dt = µx− Dx; ds

dt = D(sr − s)− µx
Y −mx;

µ = µm
(s−s∗)
Ks+s , s∗ = KsmYmax

µm
, Y = − dx

ds = Ymax D
D + mYmax

(6)

Monod chemostat model [70] with a maintenance
term [14]. SGR is a hyperbolic function of s and is
negative below threshold s*. The yield Y varies
because of the maintenance

dp
dt = Ypµx− Dp; µ = µm

s
Ks+s

Kp
Kp+p (7)

Monod-Ierusalimsky model [22] accounting
self-inhibition by the product, p; x and s are
defined by (6)

dx
dt = µx− Dx; ds

dt = D(sr − s)− µxσ;

µ = µm
σm(σ−σ0)
σ(σm−σ0)

(8)

Droop model [22,71]. The ‘cell quota’ σ is the
content of deficient nutrient element in cells. The
model was specially designed for microbial growth
limited by the conserved nutrient substrates

dCi
dt = r1(s, C1, . . . , Cn)− r2(s, C1, . . . , Cn)− µCi

∑n
i=1 Ci = 1

(9)

Structured models with multiple internal variables
Ci [72]. Model includes two types of processes: (i)
exchange reactions between cells and surrounding
milieu (nutrients uptake, products release, see
Equations (3)–(5)) and (ii) the MMCC changes

dx
dt = x ∑2

i=1 µivi − Dx; vi =
µi

max(µi)
dsi
dt = D(sri − si)− x

(
µivi
Yi

+ mivmi

)
dei
dt = qiui − µei; ui =

µi
µ , µ = ∑2

i=1 µmiei
si

Ksi+si

(10)

Cybernetic models [73] describing the diauxic
growth of bacteria on the mixture of glucose and
lactose taken up by transporters e1 and e2
respectively. The cybernetic variables regulate
transcription (u) and uptake rates (v), e.g.,

v1 =
{

1, if µ2 < µ1
0, if µ2 ≥ µ1

; v2 =
{

0, if µ2 < µ1
1, if µ2 ≥ µ1

ds
dt = D(sr − s)− qsx, qs = rQ s

Ks+s + (1 - r) Q′s
K′s+s

dx
dt = µx− Dx, µ = Yqs − a0r

dr
dt = µ

(
s

Kr+s − r
) (11)

Synthetic Chemostat Model [74]. The r-variable
integrates the MMCC variation and tunes the
kinetic terms earlier assumed to be constants (m, Q,
a, and Ks). The ODE dr/dt explains the observed
biological inertia. See the Section 4.3 for
other details

See the list of common symbols in Appendix B. Red marks the regulatory self-adjustable variables in the cybernetic models and SCM.
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4.2. Synthetic Chemostat Model (SCM)

The SCM has been built upon all the chemostat models listed in Table 1 (that explains
the epithet synthetic). It pragmatically denies the likelihood of the explicit accounting of
thousands of individual MMCC and instead splits them into the P and U clusters with
opposite expression trends (Table 2).

Table 2. Conditionally expressed cell constituents.

P-Components U-Components

Related to the primary metabolism, required
for intensive growth

Related to the secondary metabolism, improve
stress resistance

Upregulated under optimal growth conditions Downregulated under optimal conditions

Ribosomes (rRNA and r-proteins), enzymes
involved in translation, and other key
cellular processes

Protective pigments, C-storage (glycogen and
PHB), antioxidants, high-affinity transporters,
enzymes of drug resistance, and
antibiotics formation

Each component has low (Pi
min and Uj

min) and high limits (Pi
max and Uj

max). Nor-
malized to the total biomass x vectors, P and U are bound by the conservation condition
P + U = 1 (for simplicity, a minor contribution of the small molecules is neglected). Then,
any increase in the sum of the P-components with growth acceleration should be compen-
sated by an equivalent decrease of the U-sum and vice versa. The heart of the SCM is the
assumption that the sum of the two vectors P + U can be represented as the following linear
function of one scalar variable r and three constant vectors:

(12)

The vectors |C0|, |CP|, and |CU| remain constant for a given organism under any
growth conditions. The r-variable depends on s Equation (11), and other factors (T, pH,
and osmolarity) can be added in a multiplicative way. The role of the r-variable is to be
a reporter on the status of the entire MMCC. The higher the r, the higher the expression
degree of the P-components supporting intensive growth, with a penalty for reduced stress
resistance. The r-variable participates in the rate expressions for SUR, SGR, turnover, and
the maintenance term, providing a higher flexibility in response to the growth conditions.
More technical and interpretive details about the SCM are given in Appendix B.3.3.

4.3. Strength and Limitations of SCM

The main strength comes from introducing the link between the growth kinetics
and the state of the MMCC. It explains a long list of the formerly mysterious behaviors
repeatedly observed in the cultivation practice (Table 3). Despite its simplicity (just three
ODEs in the basic model and a few more in specialized versions), the SCM adequately
simulates a wide range of complex microbial behaviors. All the dynamic curves plotted in
Figures 1–5 were calculated by using a SCM demonstrating an adequate agreement with
the observations. The principal model limitation stems also from its simplicity, giving the
disadvantage of low resolution in the interpretation of omics array-style molecular data.
This deficiency can be fixed by integrating the SCM with the appropriate GEM.
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Table 3. Deciphering mechanisms controlling the unbalanced and non-steady-state growth [22].

Phenomena Traditional Interpretation SCM-Based Clarification

Lag-phase (τ) in batch culture Metabolic adjustment (poorly
predictable)

Lag-phase is predicted based on r-state of
inoculum (r0); the higher r0 the shorter
is τ.

The stationary phase in batch culture
limited by the C-source

The balance between true growth and
cell death

There is no steady-state, dx/dt < 0, but
starving cells differentiate into the active
and dormant (VBNC) subpopulations.
The cryptic growth is accompanied by
upregulation of the U-components
improving survivalThe death phase Death rate exceeds growth

Batch growth limited by the anabolic
(conserved) substrates

No explanations to the phenomenon of
growth without uptake of deficient
element from medium

The total amount of deficient element in
the culture remains constant but σP
progressively declines over time being
shared between mother and
daughter cells

Shift-up and shift-down in chemostat
culture (rise or drop of D)

The observed overshoots and
undershoots are vaguely attributed to the
biological inertia. Prediction is
not available

The SCM reproduces inertia by allowing
cells to reconfigure their MMCC
(proteome profile, ribosomes number).
Time delay is automatically generated by
Equation (A24) since the pace of r change
depends on SGR

VBNC formation A hypothetical ontogenetic stage in the
natural life cycle of some bacteria

Ribosome-free cells produced under
chronic starvation because of asymmetric
distribution of rare ribosomes between
mother and daughter cells

Cells response to starvation, the impact of
maintenance

Cells dye when the energy supply is
below the m-level. The maintenance
coefficient is constant

Cells survive under deep energy source
limitation by adaptive reducing
maintenance requirements. Growth
becomes slow but never stops

Inverse relationship between SGR and
stress resistance

Reasons unknown, interpreted as a
descriptive knowledge

Follows immediately from the P- and
U-components definition and
conservation condition P + U = 1

How reasonable is the assumption expressed by Equation (12)? Essentially, it implies
that diverse individual macromolecules vary in response to environmental stimuli in a
coordinated synchronous fashion, e.g., if one P-component starts upregulation, then the
other should follow the same trend, while U-components should be downregulated to
comply with the conservation condition. What is the biological logic behind this synchrony?
We list below four direct and indirect supporting arguments.

First, a commonly accepted empirical fact discovered about 100 years ago [75] states
that stress resistance is minimal under optimal growth conditions. This empirical general-
ization has never been rejected. Second, the synchrony between various P-components is
expected based on molecular stoichiometry. For example, the ribosomes in E. coli contain
55 r-proteins and three rRNAs, which are associated with elongation factor Tu, 21 tRNAs,
and the tRNA synthetases charging tRNAs)—all these ~100 giant macromolecules are
tightly synchronized by several mechanisms to sustain the uninterrupted synthesis of
proteins [41]. Third, transcriptional control of the expression in bacteria is regulated by
sigma factors for an extended set of genes rather than for a single gene. The number of
sigma factors and their functions vary among taxonomic groups of bacteria; in E. coli, the
factors σS activated under one particular stress, say, starvation, initiate a synchronous
expression of up to 100 genes responsible for resistance to various stresses [76]. Similar
patterns of stress response were observed in eukaryotic cells, in S. cerevisiae, a stress re-
sponse affects the expression of ~900 genes [77]. Fourth, the most convincing and direct
evidence comes from the proteomic data obtained for E. coli grown in a glucose-limited
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chemostat [21]. After normalizing and replotted vs. SGR, the original data formed two
clusters of conditionally expressed proteins behaving in remarkable similarity to the main
SCM postulate (Equation (12), Figure 5). Thus, the proteome of E. coli is conditionally
expressed in coordinated synchrony, indicating that SCM correctly conveys the general
trend in gene expression.

Figure 5. The conditional expression of proteins as dependent on the dilution rate in a glucose-limited
chemostat culture of E coli. (A) Proteomic data [21]. Out of 1525 detected proteins, we selected the
most abundant 350 proteins representing 91% of the proteome mass and normalized each protein to
its maximum. Blue and orange curves stand, respectively, for the up- and downregulated proteins.
(B) SCM computing of 40 ad hoc up- and downregulated proteins. (C) Profile simulated by the ME
model [49].

5. Genome-Scale Models

The first organism to have its entire genome sequenced was Haemophilus influenzae
in 1995 [78], followed by E. coli K-12 and several other species in 1996 to 1997 [79]. The
respective genome-scale metabolic reconstructions of these bacteria were completed in
few years [80,81]. From that time on, the number of GEM publications has risen expo-
nentially [1,82,83]. This progress would not be possible without the pre-genomic period
of 1990–1999 when the constraint-based modeling approach was developed and tested
using incomplete genomic data [84–91]. The San Diego team led by Bernhard Palsson
made overwhelming contributions to the process with prolific publications, conference
talks, developed free public software accompanied with user-friendly tutorials [36], and
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easy-to-learn textbooks [12,92,93]; not to be forgotten, numerous alumni have graduated
from his SDSU Center and went into academia and the bioindustry across the world to
form new hotspots of GEM-based research.

5.1. GEMs Cover Only the Part of the Genome

Some published GEMs represent as low as 2% of the bacterial genomes simulating
the core/central metabolism [94]. The most complete metabolic, GEM [95], covers up to
35% of the genome, and it is almost the top. Figure 6 explains why the coverage cannot
be higher. From a modeling perspective [92], there are four distinct parts of the genome:
(i) junk material and sequencing errors need to be removed (blue background); (ii) the
M-matrix (M for metabolism) stands for genes encoding enzymes and catalyzing the entire
intermediary metabolism, which is about one-third in prokaryotes and a smaller fraction
in eukaryotes [10]; (iii) the E-matrix (E for expression) accommodating genes encoding the
enzymes and RNAs responsible for proteins synthesis, transcription, and translation; and
(iv) finally, the O-matrix (O for operon) containing the transcriptional regulatory network,
a part of the global regulatory machinery orchestrating cellular functions via TFs. The
respective GEMs are called M, E, and O models. The reconstruction of metabolic networks
(M models) is now a well-established process (see the below FBA and dFBA models). The
E models have recently been started by using a similar approach and are produced as
combined ME-models. Both models convert genomic data into stoichiometric matrices of
intermediates (M-matrix) and biosynthetic reactions (E-matrix) that are made interactive.
Both models apply common optimality assumptions and constraints, as well as a quasi-
steady state approximation, allowing their easier computational solution. Unfortunately,
there is no way to predict in theory or based on sequence similarity the functionality of
the O-matrix, ‘the brain’ of the metabolic network. Therefore, merging the O module
into ME models has been claimed [10] to be impossible. However, a fully integrated
OEM model was built for the simplest parasitic prokaryote [96], called a whole-cell (WC)
model. Recently, WC models were developed for E. coli and S. cerevisiae, although without
addressing the whole genome.

Figure 6. Simplified view on the bacterial genome structure through the prism of GEM modeling.

5.2. Flux Balance Analysis (FBA)

This technique has been introduced as a special case of the simplified genome-scale
metabolic reconstruction [12,36,92,93,97–100]: (i) it seeks only steady-state solutions for
metabolic fluxes; otherwise, it would be necessary to define the reaction kinetics and
the metabolic pool size for hundreds of intermediates, which is unrealistic; (ii) the con-
straints are used to define a closed solution space for the flux vectors; commonly used
constraints include the feasible ranges of each metabolic flux, and additional constraints
come from reactions thermodynamics, as well as from the metabolomic, transcriptomic,
or proteomic data; (iii) finally, the best solution is found using linear optimization for a
certain objective function.
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There are both advantages and limitations of the FBA. The main advantage is its com-
putational efficiency: the COBRA toolbox in MATLAB [101] or COBRApy in Python [102]
installed on a regular laptop executes full-size M models in seconds. Other advantages
include (i) the uniform structure of FBA that is potentially applicable to any sequenced or-
ganism after the manual curation of genomic data, including the non-model newly isolated
bacteria [103], (ii) the unbiased genome-scale presentation of cellular metabolism making
redundant the selection of the ’most important reactions’ as in the pre-genomic structured
models, and (iii) a good agreement with the available experimental data [36]. The FBA is
not designed for dynamic simulations and cannot present growth as a time series of x, s,
and p to demonstrate the agreement. Instead, it produces the metabolic map with fluxes
for each reaction. It correctly reproduces reconfiguration of the M-matrix after switching
from one C-source to another, from aerobic to anoxic growth conditions; it also accurately
predicts gene essentiality and the impact of gene knockdown on metabolic flows, including
the exometabolic products especially valuable for bioengineering.

The limitations of FBA as admitted by the developers [36] include neglecting the
kinetics of the metabolic reactions and their self-regulation. In Appendices B.1 and B.2.1,
we provided an explicit solution of the FBA equations that show what specific kinetic data
are required for calculation of the steady-state concentrations of metabolic intermediates.
By using the introduced above growth terms, the FBA can deal with only the simple,
balanced, and steady-state growth under constant optimal environmental conditions. The
fixed MMCC assumes a simplified way to present the biomass as the product of a pseudo-
reaction with constant stoichiometric coefficients k1 . . . kn:

intermediates as reactants cell biomass
k1c1 + k2c2 + . . . kncn −→ C38.3H67.9O18.8N9.2Z1.1, n ∼ 100

(13)

Here, the ‘mole’ of biomass is based on the average elemental composition of cells
taken from the mid-exponential growth phase. For E. coli, the left side of the reaction of
Equation (13) contains as reactants 20 amino acids, 4 rNTP, 4 dNTP, 15 inorganic ions,
14 cofactors, and 3 precursors of peptidoglycan and lipids. Using the corrected biomass
formulae for two phases of the diauxic growth of E. coli instead of a fixed one [88,89]
substantially improved the FBA simulation; however, it was an ad hoc solution appropriate
only for this model organism.

The FBA has claimed to predict the SGR based on genomic data. However, it is not
perfectly true, because we must select the low boundary for the substrate uptake −qs. If
it matches exactly the maximum uptake rate, Qs, then the generated SGR corresponds to
the µm. The Qs is to be found in publications or we have to run a simple batch experiment
when recording the C-source substrate s(t) and the cell mass x(t) time series. Then, the
nonlinear (exponential) regression produces three growth constants: µm, Qs, and Y. In
other words, if we enter the experimentally verified −qs or −Qs, we already know SGR
without any genomic simulation! Note also that µm is an easier parameter to measure than
Qs. No doubt, the FBA capacity to reproduce µm based on the specified Qs remains to be a
nontrivial task, as it involves the computing of the huge M-matrix. If we accidentally or
intentionally select qs < Qs, then FBA generates SGR proportionally decreased vs. µm, but
metabolic flux maps preserve the same pattern as in the case of unlimited growth. It means
that the FBA does not reproduce the substrate-limited growth, as claimed by Reference [36],
giving instead just a wrong measure of µm.

5.3. The Dynamic FBA (dFBA)

These models apply a quasi-steady-state approximation. Microbial growth can be
always viewed as a sum of processes with different characteristic times from extremely slow
(microevolution in a chemostat culture, including selection sweep) to slow (cell biomass)
and fast (metabolic pool, respiration, SUR, and limiting substrate concentration). The
metabolic fluxes can also be differentiated into slow and fast categories, as dependent
on the reaction volume [104]. The exchange reactions between the cell and environment
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(nutrients uptake and products release) take place in the space from ml (culture tube)
to 10-L benchtop bioreactor, the volume range 100–104 cm3. The intracellular metabolic
reactions occur in a much smaller volume of a single cell, 10−8–10−9 cm3. A volumetric
difference by 108–1013 times implies that intracellular reactions can be safely assumed to
be at a steady state, and therefore, the flux distribution can be resolved by the FBA. Few
remaining slow exchange variables are to be numerically solved as a set of ODEs.

For the practical implementation of the dFBA [87,105], two approaches were devel-
oped: (i) the Dynamic Optimization Approach (DOA) by using NLP and (ii) the Static
Optimization Approach (SOA) that discretizes the bioprocess time into small time intervals
and uses LP at the beginning of each time interval. The agreement of dynamic simula-
tion with experimental data should be estimated as modest (Figure 7). There were other
numerous applications of dFBA to simulate the biodynamics of industrially important
organisms: S. cerevisiae and E. coli, separately or as mixed culture [106–109], Shewanella
oneidensis [110], Chlorella [111], CHO cells [112], Pichia pastoris [113], Aspergillus niger [114],
and Streptomyces tsukubaensis, producing an immunosuppressive drug [115]. With rare ex-
ceptions, the mismatch between observation and prediction was large. Mostly, the failures
occurred in attempts to go beyond a simple growth. It was expected since the exchange
reactions were represented by the outdated Monod model.

Figure 7. Dynamic FBA simulation of E. coli grown in a simple batch culture (left column) and in con-
tinuous systems (right column). The experimental data [86,87] were fitted to the following dynamic
FBA models: Model 1, the SOA computational approach [87]; Model 2, the DOA approach [105];
and Model 3, the integrated hybrid FBA/ODE simulation with added transcriptional control [94].
Reprinted with permission from [87], copyright (1994) American Society for Microbiology and with
permission from [59], copyright (2019) Elsevier.
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5.4. The Modification of dFBA:rFBA and iFBA

The regulatory FBA models [94] dealt with the simulation of the central part of E. coli
metabolism accounting for 149 genes, encoding 16 regulatory proteins and 73 enzymes,
and 113 reactions, 45 of which were under transcriptional control, using Boolean functions.
The model can predict the growth curves of E. coli on defined media, as well as the
substrate uptake, metabolic byproduct secretion, and gene expression under variable
growth conditions. The rFBAs were also combined with classic kinetic models based on
ODEs [116,117]; the hybrid was called the integrated FBA (iFBA), and it gave a more
accurate prediction of phenotypes. However, iFBA lacked generality and could be applied
only to the well-studied model organisms. None of these FBA modifications has been
applied to the complex biodynamics associated with MMCC variations. It was impossible
by default, because the exchange reactions were presented by the Monod model.

5.5. ME-Models

The first ME model coupling metabolic processes with gene expression were devel-
oped for E. coli with the account of 423 genes [118]; it produced the long-waited result of the
successful simulation of growth-associated MMCC self-regulation, demonstrating excellent
agreement between the observed and simulated numbers of ribosomes. Thereafter, ME
models were applied to the small-genome hyperthermophilic bacteria Thermotoga maritima,
accounting for 651 genes [119], and to E. coli K-12 describing the synthesis and functions
of almost 2000 gene products [49,120]. Then, the model was further developed to account
for the spatial proteins allocation between the cytosol, periplasm, and inner and outer
membranes [121].

The reconstruction was commonly recognized as being both difficult to compute and
challenging to understand conceptually. Two improvements were soon offered: (i) the
software product solveME provided up to 45% acceleration using a quad-precision NLP
solver [122] and (ii) COBRAme [123], which condensed the original ME model around five
times without a loss of resolution and functionality, reducing the computing time from 6 h to
less than 10 min! COBRAme has been unified and reformulated into a software framework
allowing to build and edit the ME models of any sequenced and annotated organism. Soon,
it was applied to other organisms, including anaerobic mixotroph Clostridium ljungdahlii, a
promising biofuel producer [124].

A recent review [1] followed step-by-step the progress in ME model development,
including their growing coverage of genome, key findings, and applications. Below, we list
their distinctive features as compared with FBA and dFBA based on three reconstructions
designed for E. coli [49,123,125]. The model covered 1541 unique ORFs and 109 RNA
genes, accounting for ~90% of the E. coli’s proteome. As compared with prior M models,
the ME models face two major challenges. First, the dimension of the E-matrix is about
30 times bigger, and its elements differ by 15 orders of magnitude, presenting a severe
ill-conditioned matrix problem. Second, contrary to the M models focusing on fluxome and
ignoring reaction kinetics and metabolic pool sizes, the E-models are meaningless without
the amounts (contents and concentrations) of conditionally expressed proteins; therefore,
the kinetic characterizations and attempts to quantify concentrations are unavoidable. In
practice, the ME-models were implemented as follows:

A. The metabolic network was treated similarly to FBA using constraints and objective
functions. The maximizing growth rate was combined with minimizing biosyn-
thetic costs of macromolecules. Substrate concentration was never shown as an
independent variable; nutrient deficiency was accounted for by using the substrate
availability bounds.

B. The mostly unknown kcat values for translational and transcriptional enzymes were
set up as a gross average 65 s−1. Considerable improvement in the simulation was
achieved by combining the ME model with proteomic data as the model’s input [125].
It allowed an estimation of the individual turnover rates keff for E. coli. The range of
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keff varied within eight orders of magnitude, and surprisingly, it was not significantly
impacted by variations of the cultivation conditions (four different C-sources).

C. It can be shown (Appendix B.2.5) that the rate constant keff is dependent on the
concentration of the respective intracellular substrate, M, e.g., in the form of the
Michaelis–Menten equation: keff = kcatM/(Km + M). For unlimited growth, M� Km,
and keff = kcat, while at the nutrient limitation, keff < kcat. However, in vitro kinetic
data for the isolated E. coli enzymes remain incomplete and most probably not
adequately characterize the in vivo metabolic processes (Appendix B.3.5). Instead
of using published data, the authors applied a convoluted two-steps binary search
procedure involving an auxiliary ‘dummy protein’ computing (first step) followed
by the second binary search to find the minimal ratio keff/kcat as a condition making
dummy protein formation to be zero.

D. The rates of transcription and translation have been assumed to follow the empirical
hyperbolic function of SGR, e.g., the translation rate v = Vm µ

K+µ .

E. The biomass reaction, Equation (13), was completely removed, because most of
the components (amino acids, nucleotides, etc.) were already accounted for in the
proteins and RNA biosynthesis reactions. Instead, the reduced pseudo-reaction was
used for the remaining cell constituents: glycogen; DNA; lipids; peptidoglycans; and
several cofactors (NAD, coenzyme A, etc.). The expressed but not incorporated into
the model proteins were called the unmodeled protein biomass. Most likely, these
proteins are responsible for stress resistance (U cluster in SCM). This fraction has
been also added to the modified biomass reaction to comply with the growth–mass
balance but excluded from discussion of their biological role.

F. The only sink for macromolecules was assumed to be their dilution caused by growth,
so any metabolic rate vi and translation rates of the respective enzymes were set up
as follows:

vtranslation,i = vdilution,i = µ[Ei]; vi = ke f f ,i[Ei] ∴ vtranslation,i =
µ

ke f f ,i
vi (14)

The constraining condition providing the vi flux sustainability was [125]:

vi ≤
ke f f ,i

µ
vtranslation,i (15)

Some of the listed assumptions are not justified, specifically, the points B and C
(replacing Michaelis–Menten or Hill enzyme kinetics with constant rates found via a binary
search) and D (using SGR as an independent variable, discussed above in Section 2.4).
Appendix B (Appendices B.1 and B.2) summarizes the published E. coli metabolomic data.
We conclude that 90–95% of metabolic reactions within the M-matrix are not saturated by
the available intracellular substrates (M� Km), validating the first-order rather than zero-
order approximation. The remaining 5–10% of the metabolic reactions follow the mixed
kinetic order, and only a few out of the +5000 reactions approach the state of substrate
saturation (zero order assumed by the point B). The inconsistent assumptions made in
points B–D could be the reason for the failure of ME models to correctly reproduce a
proteomic profile of E. coli in the chemostat culture (Figure 5C).

How successful are ME simulations? Unfortunately, none of the published ME models
demonstrated an adequate dynamic simulation of a microbial growth and expression profile
(transcriptomic or proteomic) under any cultivation scenarios shown above by Figures 1–5.
On the other side, M models were able to simulate the perturbation experiment in the
batch culture of E. coli [125]: bacteria were grown on the minimal glucose–mineral medium
and then the second C-source was added (adenine, glycine, tryptophan, or threonine).
The expression patterns were 56–100% correctly predicted, but it was a single point of the
semi-quantitative simulation, leaving unanswered questions about the dynamic growth
pattern. Another successful application was the model OxidizeME [126] simulating an
E. coli response to oxidative stress, including: (i) ROS-induced auxotrophy for several
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unstable amino acids, (ii) a nutrient-dependent variation of stress resistance, and (iii)
ROS-induced differential gene expression. The only regret is that the OxidizeME has been
customized to accurately reproduce as closely as possible the already known mechanisms
and only those affecting iron–sulfur clusters. There are numerous other targets for ROS,
and there are many other stresses. We want GEM to assist us in finding the common and
specific effects of diverse stress factors, as well as to predict (based on the genome) the
dynamic pattern of the microbial stress response, including the progress of recovery.

What is the impact of ME models on modern system biology? Every publication
brought some novel results of general biological significance: the role of multiple rrn
operons [118], synonymous codon usage bias [120], revised interpretation of the growth
limitations [49], translational pausing regularities, and synchronization of the cellular
synthesis of macromolecules [125].

6. Whole-Cell Genome-Scale Simulations (WC Models)

This type of GEM should be a summum bonum of microbial system biology. Ideally, all
parts (O, E, and M matrices) of the genome must be accounted for in the simulation. How-
ever, it is not realistic now, because the functions of many genes are not yet defined, and
we know too little about the global regulation of cellular machinery, how is it orchestrated
via the O-matrix or otherwise. Three partially resolved WC models are discussed below.

6.1. Mycoplasma genitalium

The first modeling trial was applied to the free-living parasite bacterium Mycoplasma
genitalium with the smallest genome accommodating 525 genes, including 382 essential
genes [96,127,128]. Even the simplest prokaryotic cell was an exceptionally challenging
object for simulation; the problem was solved by using the modularity approach [129]:
cellular machinery was split into 28 modules (transcription, translation, metabolism, repli-
cation, DNA repair, host interactions, etc.), each of which was solved independently at
the integration step 1 s. The modules were represented by ODE and other equations
with discrete and continuous variables, mechanistic and empirical (not fully specified in
the publication). The most advanced computer technique was implemented (a 128-core
Linux cluster), and the simulation took 10 h for a single M. genitalium cell to divide once,
about the same time the actual cell takes. What have we learned from these remarkable
modeling efforts? The authors listed several previously unobserved cellular behaviors,
e.g., the in vivo rates of protein–DNA associations and an inverse relationship between
the duration of DNA replication initiation and replication. Not too much! However, it is
not the final word; presently, the mycoplasma model is available as a research tool for the
further exploration of parasitic prokaryotes.

6.2. Escherichia coli K-12

The same research team led by Markus Covert at Stanford University developed
a second WC model, this time for E. coli MG1655, the best-studied prokaryote with a
~10 times bigger genome [50,130]. The model also had a modular structure and underwent
further improvements.

First, the mathematical structure of the model was unified by merging the assorted
modules into the unified gigantic ODE set, probably the largest set in the history of science:
1500 ODEs for the M-matrix and 9000 ODEs for the E-matrix, and 4500 + 4500 equations
for RNA and proteins, respectively.

Second, the metabolic M-matrix was presented without a relaxing steady-state approx-
imation. Instead, all reactions were supplied with individual kinetic constants (kcat, Km,
Vm, etc.) found from 12,000 publications and presented as a function of the intracellular
concentration of the respective metabolites. To avoid erroneous pool depletion at each step
of numerical integration, the WC model employed the multi-objective function by adding
a homeostatic objective: to minimize the sum ∑i|1− Ci/C0,i|, where Ci is the ith metabolite
concentration, and C0,i is the respective set point.
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Third, the metabolic regulation in the M- and E-matrices was introduced through
22 individual transcription factors (TF) controlling 355 genes in one of three regulatory classes:
(i) zero-component (TF becomes instantly active when expressed), (ii) one-component (TF
are directly activated or inhibited by a small molecule ligand), and (iii) two-component
(TF paired with a membrane protein sensing environment, involving condition-dependent
phosphorylation).

Fourth, by improving file I/O and writing inner loops, the simulation runtime of the
model was decreased from 10 h to 15 min!

The developed model has been introduced as a tool to integrate and cross-evaluate the
extensive molecular data obtained for E. coli by various research groups over decades; the
found inconsistencies (mostly mismatching published kinetic parameters) were suggested
to correct through the sensitivity analyses of the WC model by correcting the suspicious
coefficient to a value minimizing simulation error. Three specific inconsistencies were dis-
cussed: (i) the underestimated transcription probability of RNA polymerase and ribosomal
subunits that failed to reproduce the observed SGR of bacteria, (ii) wrong turnover rates
(half-life time) of ~15% of cellular proteins estimated in the published sources by the ap-
proximate “N-end” rule, and (iii) the most extensive inconsistencies found in the upgraded
M-matrix. The reason for the last inconsistency was explained by the fact that enzyme
kinetics in vitro (published data on parameters of the isolated enzymes) were different
from that in vivo in the overcrowded intracellular space, especially for membrane-bound
enzymes. The problem had to be fixed by adjusting the Michaelis–Menten parameters and
use of the multiple objection functions mentioned above. The final intriguing inconsistency
was a subgenerational transcription: >50% of the transcriptome, including 72 essential
genes of E. coli, were found to be transcribed less than once per cell cycle. The survival of
cells without essential genes remained a mystery for the authors despite being observed
experimentally and reproduced by the model.

In the Appendix B, we discuss the last two extreme cases: (i) a too-low enzyme
content in cells with an enigmatic phenomenon of less than one copy of enzyme per cell
(Appendix B.3.4), and (ii) a too-high protein content, causing macromolecular overcrowding
(Appendix B.3.5). In the first case, we concluded that rare enzymes are likely to be an
artefact of using proteomic surveys of heterogeneous populations of cells. These enzymatic
proteins should not necessarily represent the low number of copies per cell; rather, their
source in proteomic analyses could be the rare cells of spontaneous mutants coexisting
with the WT. The overcrowding has been reproduced by simple kinetic models that can
potentially be applied in GEM to mimic a specific overcrowded environment.

6.3. Saccharomyces cerevisiae BY4741

The third WC model [51] was constructed by using the same modular approach as
two other WC models. Moreover, the acknowledgment informs us that this reconstruction
was done using the WC software developed by the Markus Covert lab for mycoplasma
and E. coli. Sadly, the WC model was not the only part of the publication, being mixed
up with a bulky experimental component on metabolomics and genetic manipulation
studies. Consequently, the overloaded publication left many modeling specifics without
a clear explanation. Hopefully, there will be other reports using this model and disclos-
ing its features. Meanwhile, we assume that WC models for E. coli and S. cerevisiae are
closely related.

6.4. Limitations of the WC Models

Functionally, the largest E. coli WC model covers 1214 genes, 28% from the total
genome and 45% from the annotated genome. It was lower as compared with the pub-
lished ME models [1,49,131], and the only apparent progress of the WC models was the
upgraded dynamic state for the M-matrix; the positive impact of this upgrade on the
model’s performance remains to be proven in future. The skipped genes/processes include:
(i) proteases eliminating redundant proteins, (ii) chaperones refolding damaged proteins,
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(iii) the sigma factors, and a few other factors controlling the transcription. All three groups
of macromolecules are crucially important for the self-regulatory behavior of bacteria under
nonoptimal growth conditions, especially under stresses. Without them, the model repro-
duces a defective phenotype of cells able to grow under optimal conditions but expected
to be super-sensitive to the smallest deviations from the growth optimum. Thus, the first
limitation of the model is the overlooked stress resistance in the reconstructed phenotype.

The indicated deficiency hardly could be revealed in the undertaken study because
of the second limitation, neglecting the environmental factors. Even though the growth
of bacteria was simulated on three media (minimal and complex aerobic and minimal
anoxic), it was not enough to claim that the study ‘explored the effect of growth conditions’.
The model never addressed the issue of nutrient limitations or starvation stress or any
other stresses. Moreover, the SGR (or corresponding doubling time) was a fixed value
throughout the entire simulation.

The third deficiency of the study was the minimal, if any, attempt to verify the model
against experimental data by testing the model’s ability to reproduce distinctive behavioral
patterns, e.g., the shapes of the growth curves, respiration and fermentation dynamics,
proteome profile vs. SGR, etc. Without rigorous experimental verification, the WC model
cannot be trusted for its claimed goal to be a tool for the quality control of molecular data.

The fourth limitation is the overstated attention to the cell cycle events, ignoring the
other important behaviors of cells (see below).

6.5. Cell Cycle as a Part of Growth Kinetics

Cell division cycle is an important part of bacteriology using specialized techniques
(time-lapse live-cell microscopy, microfluidics, cells sizing, fluorescent probes, etc.) and
dedicated mathematical tools operating with discrete and continuous variables, partial
differential equations (PDE), accounting for changes across the time and cell ages [132]
and statistics of the frequency distributions of the cells aimed at the discrimination of
alternative division mechanisms [133]. It would be wrong to think that a single-cell study
is literally limited to one cell; more appropriate is to define it as a bottom-up approach that
starts from single-cell observations followed by their assembling into a holistic picture of a
heterogeneous population. The source of heterogeneity is the combined effect of numerous
factors, including the passing through division cycles and intrinsic stochastic noise.

The opposite top-down approach operates with bulk population measurements over
many cells, followed by inferring the average cell status by using mostly deterministic
mathematical models. It is faster, easier, allowing more comprehensive and accurate molec-
ular assays (for comparison, the single-cell proteomics reveals only a fraction of the global
proteome assessed by the bulk analyses). The top-down mainstream in microbiology has
always been accompanied by bottom-up single-cell studies, which recently have attracted
more attention due to remarkable opportunities provided by microfluidics [134–138]. We
need both types of research and realize the inherent limitations of each one: the bottom-up
single-cell approach focuses on cell division, missing other cellular processes, while the top-
down approach neglects cellular heterogeneity and can overlook important mechanisms
involving the ‘division of labor’ between individual cells. Most GEMs are deterministic
models using ODE and continuous variables (rather than PDE and discrete variables) and,
therefore, are better aligned with the top-down data format. The standard output of such
GEM includes dynamic data on the asynchronous population of cells evenly distributed
across the division cycle, but it can easily be reconfigured into a synchronized format [22]
to simulate cell cycle events controlled by the limited number of genes (DnaA—DnaC,
FtsZ, septation proteins, etc.). The opposite is not true, and reconfiguration of the special-
ized cell cycle GEM into the broad-spectrum style is likely to fail because of its narrow
scope. Based on this explanation, the only focus of the WC model on the cell cycle seems
to be self-restrictive: the whole-cell model should be more inclusive than the single-cell
cycle model.
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7. Conclusions: Strengths, Weaknesses, and Prospects of Specific GEMs

Let us summarize. The undertaken critical review was aimed to reveal the pros and
cons of the existing GEMs to identify the most promising directions to move in. We started
by defining the terms of simple and complex biodynamics and introduced several basic
principles of microbial biokinetics that have not yet been commonly accepted. These
principles were summarized as three required conditions to be met by any GEM intending
to reproduce the complex microbial biodynamics:

(1) to account for the effects of environmental factors on cell dynamics, especially related
to the nutrient supply (limiting substrate, its concentrations, and regime of delivery).

(2) to simulate the adaptive MMCC changes as conditional gene/protein expressions in
response to a changeable environment.

(3) to predict the SGR as a complex function of the MMCC status and environmental
conditions rather than a fixed input parameter.

The basic FBA model meets none of the three conditions, and even a simple growth
is presented ambiguously. However, the FBA is still the most popular GEM that gained
enviable recognition among diverse users. The FBA is really very good in static applications
(e.g., gene knockouts and essentiality prediction), and it is attractive because of the elegant
computational resolution of the entire M-matrix. This quality should be preserved but how
do we improve the dynamic strength of the FBA without making it too cumbersome?

A feasible solution could be to couple the basic FBA with the SCM. The SCM itself
meets all three conditions above, including a coarse-grained nongenomic reproduction of
the MMCC profiles (Figures 3D and 5B). Easy computational steps are required to transform
the MMCC profile into the self-adjustable biomass reaction, replacing the fixed reaction
(Equation (13)). Then, the stoichiometric coefficients kisi on the left side and the biomass
formulae on the right side can be presented as functions of the r-variable (Appendix B.3.3).

The adjustable biomass reaction links the SCM to the steady-state FBA, making two
models interactive. The expected outcome is that every FBA-generated fluxome would
become associated with a specific growth pattern. On the other side, any step in the
complex biodynamics can be supplemented by a corresponding fluxome screenshot. Each
screenshot is static, but their time series produces something like a series of frames in a Walt
Disney animation. The range of accessible conditions is practically unlimited due to the
flexibility of SCM: any cultivation systems (chemostat, perfusion, fed-batch, and the entire
batch process from the lag to death phases); variable media composition; single or multiple
limitations; optimal and suboptimal pH; temperature; and other physicochemical condi-
tions, including physiological stresses. Probably, it would be possible to predict the fluxome
of mutants vs. the WT under optimal and any challenging growth conditions important
for industrial setups. Especially beneficial it would be for the bioprocessing of antibiotics
and other secondary metabolites produced only under suboptimal growth conditions.

The dynamic FBA models containing the Monod-style exchange module and the
fixed biomass reaction do not meet requirements (ii) and (iii). Therefore, they adequately
reproduce only simple growth that is of limited use in bioindustry and biomedical ap-
plications. A feasible solution could be replacing the outdated Monod model with SCM
and upgrading the biomass reaction, as discussed above. The only difference from the
FBA–SCM hybrid is that the SCM must be fully integrated into the dFBA, and the biomass
reactions need to be updated at each integration step using the SCM r-variable as the input.
Then, the dFBA–SCM hybrid will be able to simulate the steady-state and transient bio-
processes under diverse conditions with partial characterization of the expression profiles.
The expected advantage of the dFBA–SCM hybrid over the state-of-the-art ME and WC
models is a relative simplicity and robustness, making it accessible to unexperienced users.

The published ME models comply with all three requirements but incompletely: (i)
the effect of environmental factors has been incorporated in a ‘relaxed’ way, e.g., by setting
constraints on the s-variation rather than explicitly by using kinetic equations (Table A1); (ii)
the adaptive MMCC changes were simulated only for rRNA and proteins, neglecting other
variable cell constituents, e.g., glycogen, polyphosphate, etc.; (iii) the protein expression was
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simulated using LP and multiple objective functions (maximizing the SGR and protein yield
and minimizing the biosynthetic cost) without a clear relationship with the environmental
factors; and (iv) the SGR has been both the final output of reconstruction and the factor
affecting numerous intermediary steps (e.g., the transcription and translation reactions).
Due to the listed omissions, the ME models were not fully successful in a simulation of
the complex biodynamics. We showed (Appendix B.3.2 on the conditional expression
of transporters) that introducing a limiting substrate concentration as the independent
environmental factor would fix the problem. Other prospects are discussed below, jointly
with the WC models.

WC models. None of the three required conditions are met in these models [50,130]
because of the fixed status of the SGR, MMCC, and growth conditions. Most likely, it was
done on purpose to avoid nuisances of a fluctuating environment and stay focused on the
molecular complexity. However, the disadvantage of the narrow model’s scope is that its
experimental verification cannot be performed completely; the explanation is given below.

GEM verification against a simple growth can never be complete. Many modelers
prefer simple growth data, assuming that only these data are accurate and reproducible.
This is not true; looking back (Figures 1–5), we can testify roughly the same experimental
scatter for simple growths and complex biodynamics. All depend on the selected experi-
mental techniques, for instance, a fully controlled bioreactor allows recordings of the most
challenging unbalanced transient growths with higher accuracy and precision than the
simplest exponential growth in shaking flasks. Another misconception comes from a pearl
of wisdom: learn to walk before you run. It assumes a step-by-step evolution from a basic
model handling simple growth to more advanced versions by adding new modules able to
cope with complex biodynamics. However, such a strategy usually badly fails, because the
complex biodynamics cannot be decomposed into the series of simple growth steps. It is
like trying to learn riding a bike starting from a ‘simplified’ one wheel machine and then
step-by-step adding the second wheel, frame, handlebar, and other parts.

WC models are the largest reconstruction in modern microbiology, dealing with a
gigantic set of 10,500 mostly nonlinear ODEs without simplifying the steady-state assump-
tions. This goliath has been applied to the exponential growth between two consecutive
divisions, the simplest possible dynamic process. The most advanced part of the model
is the combined M- and E-matrices representing TF-regulated metabolic reactions. Some
of them are involved in cell division; therefore, the omics data obtained in the synchro-
nized batch culture can be used for experimental verification. However, the rest of the
self-regulatory machinery responds to a changeable environment and, therefore, will be
not observed in a simple growth experiment! Only the complex biodynamic data carry
sufficient information to compare the WC model prediction with observation. It has already
been shown in enzymology: non-steady-state (complex) kinetics is much more informative
than steady-state kinetics (simple) for the elucidation of catalytic mechanisms [24]. Finally,
complex biodynamics is worth studying because of its practical significance; none of the
known industrial, in situ, and in vivo processes follow a simple growth pattern.

Important macromolecules disregarded by ME and WC models. The SCM splits
conditionally expressed macromolecules into P and U clusters (Table 2), supporting the
primary and secondary metabolisms responsible for the growth and stress resistance of
cells, respectively [22]. These two clusters are revealed in a chemostat at a series of D
(Figure 5A) or in specially designed titrated batch cultures [139]. The downregulated at
high SGR proteins were erroneously called ‘unnecessary’ and even self-inhibitory [140]
and then correctly identified as stress response constituents [141,142]. WC and ME models
categorized them as unmodeled proteins to be an inert part of the cell mass [123]. It was an
unfortunate omission, because the conditionally expressed ‘in inverse order’ (upregulated
at a low SGR) macromolecules are crucially important from the system biology and evolu-
tionary perspectives. The microbial growth rate alone is meaningless measure of the fitness
without parallel characterization of stress resistance and self-defense against numerous
hazardous factors.
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Revisiting the optimality principle. The philosophy of life is to keep the balance
between two general trends: (i) to reproduce themselves as fast as possible under favorable
conditions and (ii) to minimize mortality under stress conditions. Cellular resources
are limited; therefore, intensive growth and high stress resistance cannot be expressed
simultaneously. GEMs aimed at the simulation of a wide spectrum of microbial phenotypes
should radically revise the application of the optimality principle. LP in combination
with a single objective function such as SGR maximization is appropriate only for nutrient-
sufficient optimal conditions. Under restrictive conditions (substrate limitation, nonoptimal
temperature, a gradient of inhibitory compounds, etc.), both growth-promoting and stress-
resistance subsets of macromolecules should be expressed in proportions that depend
on the restriction degree. The older strategy-seeking SGR maximizing under nonoptimal
conditions is at risk to produce a degenerative phenotype, a microbial equivalent of
immuno-compromised mammals.
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Appendix A

Appendix A.1. Common Abbreviations

GEM Genome-scale models
ODE Ordinary differential equation
PDE Partial differential equation

MMCC Macro-Molecular Cell Composition
FBA Flux Balance Analysis

COBRA COnstraint-Based Reconstruction and Analysis
LP linear programming

NLP non-linear programming
dFBA Dynamic Flux Balance Analysis
SOA static optimization approaches for solving dFBA
DOA dynamic optimization alternative
rFBA Regulated Flux Balance Analysis

ME-models GEM simulating metabolism and gene expression
WC models whole cell GEM

VBNC Viable but nonculturable cells
NZG near-zero growth under chronic starvation
SCM Synthetic Chemostat Model
SOD superoxide dismutase
TF transcription factor

PHB polyhydroxybutyrate, cellular C-storage
ROS reactive oxygen species
WT wild type distinct from mutants
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t time
V the volume of cell culture, kept constant in chemostat
F the medium feeding rate

D = F/V chemostat dilution rate
x cell mass concentration
s limiting nutrient substrate concentration
sr input substrate concentration in chemostat culture
p product concentration
M concentration of intracellular metabolites
σ mass of element (N, P, S, etc.) per g of total cell mass

σ0 and σm resp. low and upper limits of σ-variation
µ = (1/x)·dx/dt specific growth rate (SGR)

µm the maximum SGR, µ→ µm as s→ ∞
Y = −dx/ds cell yield per unit of consumed substrate

qs = (1/x)·ds/dt specific substrate uptake rate (SUR)
m maintenance term, the catabolic rate qs→m, as µ→0
Qs maximum SUR

qp = (1/x)·dp/dt specific product formation rate (SPR)
Qp maximum SPR
Ks saturation constant, at s = Ks, qs = 0.5 Qs or µ = 0.5 µm
Kp product inhibition constant, at p = Kp, qs = 0.5 Qs
Kr saturation constant for r-variable
r SCM variable [0,1] reporting the status of MMCC

Appendix A.2. Glossary

Affinity to substrate Auto-selection, selection sweep

Substrate binding strength of transmembrane
transporters characterized by the parameter Ks.
The lower Ks the higher affinity

A process observed in long-term continuous
culture, a displacement of the parental
population by a spontaneous mutant having
higher SGR

Balanced growth Steady-state continuous growth

A proportional increase in the content of all cell
constituents (constancy of MMCC) observed in
a steady state chemostat or exponential phase
of batch culture.

A situation in which all state variables (cell
mass, nutrients, and products concentration,
MMCC) remain constant as the opposite
processes (input–output and growth–washout)
match each other

Quasi-steady state growth Transient processes

Only fast variables are stabilized, other not A movement from one steady state to another

Catabolic nutrient substrates Conserved or anabolic nutrient substrates

Sources of energy; undergo irreversible
oxidation to form nonutilizable waste products
(H2O and CO2) coupled to ATP generation

Sources of biogenic elements (N, P, K, Fe, etc.)
that are consumed reversibly (can leak out and
re-consumed) and incorporated into
cellular constituents

Kinetics Metabolic stoichiometry

Scientific discipline studying the development
of biological or physicochemical processes over
time; combines experiments with mechanistic
mathematical models.

A quantitative relationship between reactants
and products in bioprocesses complying with
the mass- and energy conservation conditions
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Maintenance energy Primary and secondary metabolism

Some fraction of available energy used for
other than growth functions: osmoregulation;
motility; and turnover of macromolecules
(proteins, nucleic acids, and cell wall)

The primary metabolism produces new cell
mass (growth) while the secondary metabolism
supports enhanced stress resistance and
other functions

Starvation Chronic starvation

Self-degradation of cells (net SGR ≤ 0) caused
by a complete absence of one or more
essential nutrients

Deep substrate limitation in continuous culture
causing a significant decrease of growth rate,
SGR� µm

Growth limitation and inhibition Single or multiple substrate limitation

Growth condition decreasing SGR (<µm) by
low nutrients concentration (substrate
limitation) or by toxic compounds
(growth inhibition)

Respectively, one or several nutrients
concurrently affect growth, including SGR,
SUR, yield, and MMCC

Appendix B. Derivation and Explanation of Biokinetic Equations

Appendix B.1. Structured Models, the Internal and External State Variables

All GEMs belong to the category of structured growth models containing the internal
variables, the intracellular quantities of metabolites, or cell constituents expressed in grams
or moles per g DW (dry weight of total cell mass). There are also the external extracel-
lular variables, such as concentrations of nutrients in growth media and exometabolites
expressed as grams or moles per unit volume of bioreactor. Figure A1 presents the toy
metabolic network with four internal (M1–M4) and three external variables (S, P1, and P2).

Figure A1. Simplified metabolic network of growing microbial cells. The limiting nutrient substrate
S is transformed via intracellular intermediates M1–M4 into the extracellular products P1 and P2.

According to the FBA modeling style, the biomass formation is not shown explicitly
on the flowchart; instead, it is specified as the following pseudo-reaction:

θ1M1 + θ2M2 + θ3M3 + θ4M4
growth→ CHhOo Nn (A1)

where stoichiometric coefficients θ1–θ4 indicate the contribution of each precursor to the
biomass CHhOoNn.

The extracellular variables only have the option to be expressed as mM or g/L of a
culture volume, while the internal variables have two expression options: (i) g or mmol
per liter of culture (m1, . . . m4) and (ii) g or mmol per g DW (M1, . . . M4). The variables mi
and Mi are interconverted via cell mass concentration (x, g DW/L): mi = xMi.

The starting point in developing the metabolic dynamic model is to write down the
set of mass–balance ODEs for both internal and external variables expressed uniformly as
mass per culture volume (e.g., g/L), the right side of each ODE containing the sum of the
sources (positive terms) and sinks (negative terms):

Extracellular substrate:
ds
dt

= −qs (A2)
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Cell mass:
dx
dt

= Yqsx = µx (A3)

Intracellular metabolite M1:

dm1

dt
= qsx− v1x (A4)

Intracellular metabolite M2:

dm2

dt
= v1x− v2x− v4x (A5)

Intracellular metabolite M3:

dm3

dt
= v2x− v3x (A6)

Intracellular metabolite M4:

dm4

dt
= v4x− v5x (A7)

Secreted product P1:
dp1

dt
= v3x (A8)

Secreted product P2:
dp2

dt
= v5x (A9)

With the first intermediate M1 as an example, we demonstrate the conversion from
derivatives dmi/dt to dMi/dt. First, we make the substitution m1 = xM1 and apply the
product rule of differentiation:

dm1

dt
=

d(xM1)

dt
= x

dM1

dt
+ M1

dx
dt

= qsx− v1x

Then, we divide both parts of the equation by x and rearrange it:

dM1

dt
= qs − v1 −M1

1
x

dx
dt

= qs − v1 − µM1 (A4a)

The rest of the internal variables were derived in the same way:
Intracellular metabolite M2:

dM2

dt
= v1 − v2 − v4 − µM2 (A5a)

Intracellular metabolite M3:

dM3

dt
= v2 − v3 − µM3 (A6a)

Intracellular metabolite M4:

dM4

dt
= v4 − v5 − µM4 (A7a)

The negative term −µMi stands for dilution of the ith component due to cell growth
and should not be confused with the washout term in the chemostat model of Equation (6)
of the main text. The Equations (A4a)–(A7a) containing the normalized per g DW variables
remain the same for any cultivation system.
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Appendix B.2. The Effects of Substrate Concentration

Appendix B.2.1. Steady-State Concentrations of Metabolic Intermediates

The classic FBA has several limitations, one of them being the inability to predict the
concentrations of metabolites but able to resolve the steady-state metabolic fluxes [36]. As
applied to our toy example, the concentrations of four metabolites, M1, . . . M4, approach
their respective steady-state values, M1, . . . , M4. At a steady state, the derivatives are set
to zero, and the concentrations of the metabolites can be expressed through the known
quantities of qs, v1–v5, and µ:

dM1

dt
= 0, ∴ M1 =

qs − v1

µ
(A4b)

dM2

dt
= 0, ∴ M2 =

v1 − v2 − v4

µ
(A5b)

dM3

dt
= 0, ∴ M3 =

v2 − v3

µ
(A6b)

dM4

dt
= 0, ∴ M4 =

v4 − v5

µ
(A7b)

However, these expressions cannot be used for finding the metabolic pool sizes. The
reason is that all the fluxes on the right sides of Equations (A4b)–(A7b) contain M1, . . . , M4
in a hidden form, being dependent on the metabolite concentrations. Using two Equations
(A4a) and (A5a) as an example:

dM1

dt
= qs − v1 − µM1 = Qs −

k1[E1]M1

(Km1 + M1)
− µM1 = 0 (A4c)

dM2
dt = v1 − v2 − v4 − µM2 = A− k2[E2]M2

(Km2+M2)
− k4[E4]M2

(Km4+M2)
− µM2 = 0;

A = k1[E1]M1

(Km1+M1)

(A5c)

Here, we presented the fluxes v1, v2, and v4 in the Michaelis–Menten format, assuming
the uptake flux qs = Qs (unlimited batch growth). The steady-state flux v1 depends on
M1 and, therefore, in the second Equation (A5c) (that does not contain M1), remains
constant at v1 = A. The solutions were found manually or by symbolic computing as the
real non-negative roots of the quadratic (M1) and cubic (M2) equations:

M1 =
Qs − k1[E1]− µKm1 +

√
(Qs − k1[E1]− µKm1)

2 − 4QsµKm1

2µ
(A10)

M2 =

3
√
−2a3+

√
(−2a3+9abµ+27cµ2)

2
+4(3bµ−a2)

3
+9abµ+27cµ2

3 3√2µ
−

− 3√2(3bµ−a2)

3µ
3
√
−2a3+

√
(−2a3+9abµ+27cµ2)

2
+4(3bµ−a2)

3
+9abµ+27cµ2

− a
3µ

a = k2[E2] + k4[E4] + µ(Km2 + Km4)− A; b = k2[E2]Km4 + µKm2Km4 − A(Km2 + Km4); c = AKm2Km4

(A11)

At very low or very high metabolite concentrations, the Michaelis–Menten equation
can be reduced, respectively, to the first- and zero-order (see the Appendix B.2), and the
steady-state solutions become simpler:
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First-order approximation: M1 � Km1, M2 � Km2 Km4

M1 =
Qs

µ + k1[E1]
Km1

; M2 =
A

µ + k2[E2]
Km2

+ k4[E4]
Km4

(A12)

Zero-order approximation: M1 � Km1, M2 � Km2 Km4

M1 =
Qs − k1[E1]

µ
; M2 =

A− k2[E2]− k4[E4]

µ
(A13)

Any solution, complete or simplified, contains kinetic parameters of the enzymes
involved in the transformation process; thus, we confirmed the verdict [36] stating that the
FBA is unable to predict the metabolite concentrations without independently obtained
data on enzyme concentrations, their catalytic constants, and Km. There are also two
additional precautionary notes:

Currently, there is no accurate method for measuring the in vivo kinetic constants.
The published in vitro data are available for only the well-studied model organisms like
E. coli. Even for them, the in vitro enzymological data could be not a perfect representation
of the in vivo kinetics. One complication comes from the possible reversibility of metabolic
reactions. The second interfering factor is the in vivo/in vitro differences in the physico-
chemical conditions, e.g., the molecular crowding effects, high viscosity, pH shift, presence
of activators and inhibitors, etc. [143,144].

Another systematic error stems from the basic nature of FBA that excludes the biomass
formation from metabolic stoichiometry using instead the standalone biomass pseudo-
reaction A1. A hidden withdrawal of metabolites for biosynthesis underestimates their
sink, resulting in an overestimation of the metabolic pools if using the Equations (A4)–(A7).
The ME models resolve the problem but only partially, because the computed E-matrix
covers only the proteins and the RNA (about half of the global cell mass); other constituents
(glycogen, PHB, other storage components, cell wall, etc.) are not included.

Table A1. Basic equations used in chemical and enzyme kinetics.

Kinetic Order Rate vs. Substrate Concentration Reaction Progress
over Time

Zero-order

R
at

e,
m

m
ol

pe
r

m
in

R
es

id
ua

ls
ub

st
ra

te
,l

in
ea

r
sc

al
e

R
es

id
ua

ls
ub

st
ra

te
,l

og
sc

al
e

First-order

Second order

Michaelis-Menten equation

Hill-Langmuir equation

Substrate concentration, mM Time, min



Microorganisms 2021, 9, 2352 32 of 48

Appendix B.2.2. Kinetic Order of Metabolic Reactions

The topic is covered in detail elsewhere [25]. Table A1 presents the five typical cases
of chemical reaction kinetics (the zero, first, and second orders) and enzyme kinetics (the
Michaelis–Menten and Hill–Langmuir equations).

All enzymatic reactions follow the mixed kinetic order. Specifically, the Michalis–
Menten equation is reduced to the first order at low s and to the zero order at high s. The
Hill–Langmuir equation is applied to enzymes containing several interacting subunits:
when a substrate binds to one subunit, other subunits either increase the substrate affin-
ity (positive cooperativity, n > 1) or decrease it (negative cooperativity, n < 1). Such a
regulation is especially important for transcription and translation processes (an unfor-
tunately overlooked feature in most published ME and WC models). The mixed kinetic
order for the Hill–Langmuir equation is implemented as follows: at s� Kh, the reaction
rate is v = (V/Kh)sn; therefore, if n ~ 2, then it is close to the second-order kinetics; at
s� Kh, reaction rate approaches the constant maximum level V faster than predicted by
the Michaelis-Menten kinetics at n > 1 and slower at n < 1.

Before further discussion of the biokinetic issues related to the intracellular reac-
tions, we should clarify what is the real concentration range of metabolic intermediates in
microbial cytosol.

Appendix B.2.3. In Vivo Concentration of Metabolic Intermediates

Experimental metabolomic data are very limited even for model microorganisms.
Below, we present a summary of a recently published E. coli study by using the state-of-
the-art technique (LC-MS/MS) combined with fast metabolism quenching and applying
an extensive set of 13C internal standards [145,146]. Three minimal media were used with
glucose, glycerol, or acetate as the only C-source. The number of detected intracellular
metabolites varied from 68 (acetate) to 103 (glucose) of the overall cytosolic concentration,
129–264 mM, that we split into three clusters (Table A2).

Table A2. Summary of the metabolomic analysis of E. coli grown on glucose, based on Reference [145].

Cluster Pool Size Range
Contribution to Metabolome Representatives, Values in Brackets Are Concentrations

(mM) for the Most Abundant CompoundsMass % Compounds Number

1 10–100 mM 59 4 Glutamate (96), glutathione (17), FDP (15), ATP (10)

2 0.1–10 mM 40 57 NTP, NDP, NAD+, FAD, 13 AA, glycolysis, TCA, and
pentose pathway intermediates

3 0.1–100 µM <1 42 5 AA, dNTP, FMN, NADP, and other metabolites

The full genomic inventory provides a much longer list of metabolic intermedi-
ates, up to 1210 entries for E. coli K-12 MG1655 in the Metabolome Database and up
to 1192 intermediates in the most recent metabolic reconstructions [95]. Therefore, the cited
experimental study deals with no more than a core metabolome. Based on the molar mass
and the cytosol-to-cell mass conversion factor used in the original publication [146], we
estimated the cumulative contribution of the detected metabolites to the total cell mass
as 0.09–0.15 g/g DW. It is already either close to the top or even exceeds the 10% quota
allocated for the sum of monomeric compounds in E. coli cells [147,148]. In other words,
the missed genome-predicted metabolites should form the fourth cluster containing more
than 1000 compounds but at extremely low concentrations. Using the lowest detected
quantity (adenosine, ~100 nM) as the upper boundary for the missed metabolites, the
expected overall contribution of the fourth cluster to the global metabolome mass is neg-
ligible, 0.04–0.08%. To summarize, the global E. coli metabolome consists of 50–60 major
metabolites (clusters 1 and 2) that account for more than 99% of the metabolome mass.
They are mostly common cofactors (NAD, NTP, and FAD); amino acids; and intermediates
of the central carbon metabolism. The most abundant intermediates also serve other physi-
ological functions, e.g., as a counterion to cytosolic K+ and the nitrogen donor (glutamate)
and the antioxidants (glutathione).
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Appendix B.2.4. Substrate Saturation (SS) of Enzymes Catalyzing Polysubstrate Reactions

The experimentally established concentrations of metabolites were compared with
the published Km data for enzymes responsible for their transformations [145]. The degree
of substrate saturation was calculated as the ratio SS = M/(Km + M). Figure A2 (blue curve,
panel A) indicates near-complete saturation (SS range 0.9–1.0) for 54% of the tested enzyme–
metabolite pairs. About 80% of all the enzymes are above the state of half-saturation
(M > Km). The low SS was found mostly for the third cluster of metabolites involved in the
degradation of free nucleotides, nucleosides, and amino acids. Based on the undertaken
survey, the authors conclude that E. coli enzymes ’are reliably saturated’ by intracellular
metabolites, implying that most metabolic reactions in the bacterial cell are not limited by
the availability of metabolites present in the cytosol.

We need to revise this conclusion, because most intracellular reactions involve sev-
eral reactants and, therefore, do not obey the simple Michaelis–Menten equation. Even
without the abundant background reactants, such as the water in hydrolytic reactions or
CO2/HCO3

− in carboxylation reactions, as many as 82% of the listed 395 reactions [145]
involve two and more nontrivial substrates. Often, one out of two or two out of three
reactants are present at saturating concentrations, while one deficient substrate controls
the overall reaction rate playing the bottleneck role. There are three types of polysubstrate
reactions illustrated below for the bisubstrate reactions [24]:

Ordered sequential reactions v = V a
Ka+a ×

b
Kb+b (A14)

Random sequential reactions v = V a
Ka+a ×

b
Kb+b (A14′)

Ping-pong reactions v = Vab
(K| |a+a)(Kb+b)−KaKb

(A14”)

Here, a and b are the molar concentrations of two reactants, Ka and Kb are the respective
Michaelis constants, and V is the maximum reaction rate. The first two mechanisms imply
the identical rate expressions (A14) and (A14′). Equation (A14”) differs by the small
negative term −KaKb in the denominator, predicting a slightly higher rate for the ping-
pong mechanism, the difference being negligible. Therefore, Equation (A14) can be applied
to all the polysubstrate reactions as follows:

v = V
M1

K1 + M1
× M2

K2 + M2
. . .× Mn

Kn + Mn
, 2 ≤ n ≤ 6 (A15)

As many as 21 out of 395 reactions were found to use metabolites missed from the
metabolome analysis. For example, the acetaldehyde dehydrogenase EC 1.2.1.10 recog-
nized [145] as a ‘reliably saturated’ enzyme catalyzes the following trimolecular reaction:

acetaldehyde + CoA + NAD+→ acetyl-CoA + NADH + H+

However, acetaldehyde was not detected. Assuming its maximum possible concentra-
tion of 100 nM with the published Km 10 mM (Brenda), we find from Equation (A15) that,
even at saturating concentrations of CoA and NAD+, the rate of this reaction is extremely
low and cannot exceed v = 10−8 × V.
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Figure A2. Experimental data on metabolite concentrations and implied enzyme active site occupancy
in Escherichia coli. Replotted from the supplemental data of Reference [145]. (a) Frequency distribution
of enzyme substrate saturation before (blue) and after correction (orange) according to Equation (A15).
(b) The plot of substrate saturation vs. log-scale metabolite concentrations.

The described polysubstrate correction dramatically affected the SS frequency distri-
bution (Figure A2, panel a, the orange curve): the distribution peak moved to the lowest SS
range, 0–0.05, the fraction of fully saturated enzymes with SS 0.9–1.0 dropped from 54 to
27%, and the fraction of SS 0.5–1.0 declined from 81 to 51%.

Appendix B.2.5. Simplified Kinetic Order of Metabolic Reactions

The Michaelis–Menten equation can be simplified to avoid cumbersome analytical so-
lutions (compare (A10)–(A11) with (A12)–(A13)). The price paid is the restricted application
scope of the simplified models. By switching from the mixed to the zero or the first kinetic
order, we assume, respectively, the condition of either Mi � Km or Mi � Km to be applied
to a selected reactions subset. If we want to keep the simulation error below 10%, then the
first-order rate equations are applicable to SS < 0.1 and the zero-order equations to SS > 0.9.
Then, as applied to the core metabolome, the first-order approximation can be justified
for 75 out of 234 reactions (32%) and the zero-order approximation for 64 reactions (27%).
The remaining 41% of the reactions are nearly half-saturated (0.1 < SS < 0.9), implying that
neither approximation is appropriate: actual rates are to be overestimated by the first-order
and underestimated by the zero-order equations.

What about the whole M-matrix reconstruction with its +1000 metabolites? Most
genome-predicted metabolic intermediates are present in the cytosol at undetectable con-
centrations below 10−7 M. There is a clear semi-log trend of SS vs. M (Figure 2B), while Km
values do not correlate with M (R2 ~ 0, data not shown). Thus, it would be safe to assume
that undetectable metabolites provide in vivo a very low SS degree compatible with the
first-order kinetics. Then, out of 2719 metabolic reactions accounted for by the iML1515 [95],
high SS > 0.9 can be attributed to no more than 2% of the reactions. The half-saturated
reactions contribute about 3%, and the other 95% of the cellular metabolic reactions should
follow the first-order kinetics. This estimate was done for the nutrient-sufficient growth
conditions, the nutrient-limitation is expected to decrease the concentration of all metabo-
lites (see, as an example, the ATP data [40]). Under deep and even moderate substrate
limitations, nearly 100% of metabolic reactions should obey the first kinetic order. The
only rare exception could be a few reactions involving only the first metabolic cluster
(Table A2) without the participation of other clusters as co-substrates. It would be rea-
sonable to present these relatively rare reactions in GEMs in the mixed kinetic format
without simplification.

Note 1. The predominance of the first-order kinetics is referred to as the number
of reactions, not the fluxes. The rare mixed-order reactions engage the most abundant
metabolite and, hence, are expected to make a disproportionally higher contribution to the
mass and energy flow.

Note 2. Even under deep substrate limitations, the first-order simplification is justified
for only the steady-state regimes. Transiently, a perturbed microbial population can
considerably depart from the first-order kinetics.
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Note 3. Ironically, the published ME models [49,122–124,149] do not use any kinetic
expressions (Table A1) containing the concentration terms s or M. Instead, they rely on a
binary search and constraints, such as defining the top and low limits of s while applying
objective functions. Three disadvantages are obvious: (i) the subjectivity of constraints, (ii)
a longer computation time, and (iii) missing the opportunity to reproduce a fine metabolic
control in growing cells, an instant adjustment of enzymatic activity to the available reactant
concentration in the cytosol. Two important system qualities of the mixed kinetic order
are well-known: (i) stabilizing negative feedback to perturbation (an increase of M boosts
its uptake and vice versa; both mechanisms accelerate the restoration of the steady state)
and (ii) the asymptotic saturation kinetic that never exceeds a maximum. The first-order
kinetics still comply with the first quality, but the zero-order processes are completely
unregulated. By the way, the WC models roughly of the same level of complexity as ME
models employ the mixed-order Michaelis kinetics for all metabolic reactions, and it did
not take a heavy toll on the computing time [50].

Appendix B.3. The Effect of Enzymatic Proteins Concentrations

Extensive proteomic studies made it possible to quantify individual enzymatic pro-
teins and then use these data for the verification of the ME and WC models and testing
alternative hypotheses of system biology. This section covers several technical issues of
incorporating protein concentrations into kinetic equations.

Appendix B.3.1. The Simplest Case of Pure Enzyme

The isolated and purified enzymes in vitro display proportionality between the reac-
tion rate, v, and the molar concentration of the enzyme active sites, [E]:

v = kcat[E]F(s, T, pH, . . .) (A16)

where F(s, T, pH, etc.) is the functional relationship between the enzyme activity and the
variable environmental factors.

The situation is more complicated in vivo. Below, we explore the following effects: (i)
variable status of conditionally expressed proteome, (ii) deficiency of rare proteins presents
an amount less than one copy per cell, and (iii) the opposite extreme of a very high protein
concentration leading to macromolecular crowding.

Appendix B.3.2. Conditional Expression of Proteins with Glucose Transporters as Example

A typical kinetic model in classic enzymology is designed to predict the effect of
various factors on the activity of selected enzymes taken at specified concentrations. The
genome-scale reconstructions are charged with the same task but under much more chal-
lenging conditions; we do not know what enzymes are engaged and what are their con-
centrations. GEMs should predict both unknowns, using as the input (i) the specified
environmental conditions and (ii) the annotated genome of a selected organism with a
long list of potentially expressible gene products. Below, we show several approaches to
solve the problem using, as an example, the process of nutrient uptake. There are many
genes/proteins associated with nutrient consumption (porins, transporters, and binding
proteins), accounting for up to 13–15% of the global genome and proteome of microorgan-
isms [150]. For simplicity, we restrict our scope to the model organisms, E. coli K-12 and
Saccharomyces cerevisiae, and select only one nutrient substrate, glucose.

E. coli. Bacteria express low-affinity uptake system under nutrient excess in batch
culture and a high-affinity system under C-limitation in chemostat or depleted batch
culture [151]; the switch between the two systems is controlled by cAMP/Crp at the
transcriptional level [68]. The low-affinity system contains two components: (i) the porins
OmpF and OmpC providing passive substrate diffusion through the outer membrane and
(ii) the PTS (PEP-carbohydrate phosphotransferase system containing four enzymes: EI,
EIIA, EIIB, and EIIC, and phospho-carrier protein HPr) transferring glucose through the
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inner membrane with simultaneous phosphorylation. The affinity varies (Km 10–1500 µM)
because of the loose specificity of the EII component for structurally related sugars. The
high-affinity system also contains two components: the LamB porin that, contrary to
OmpF/C, has a sugar-binding site and follows Michaelis–Menten kinetics, Km 64 µM, [152]),
and the ABC (ATP-Binding Cassette) transporter Mgl containing the periplasmic binding
protein with a dissociation constant of Kd 0.2 µM [151]. The process of glucose uptake
by E. coli is completed in two steps: (i) glucose passing through the outer membrane to
the periplasm and (ii) crossing the inner membrane. Respectively, there are two transfer
processes, each one including low- and high-affinity systems:

Step 1:

v1 = k1[E1]s + k2[E2]
s

Km2 + s
(A17)

Step 2:

v2 = k3[E3]
S

Km3 + S
+ k4[E4]

S
Km4 + S

(A18)

The variable S (the upper-case symbol in Equation (A18)) is the concentration of
glucose in the periplasm distinct from s (the low-case symbol), the glucose extracellular
concentration. Other symbols are common to previous equations. The Step 1 low-affinity
process follows the first-order diffusion kinetics with the rate constant k1, mM−1 h−1; the
other rates constants have dimension (time)−1.

Saccharomyces cerevisiae. Yeasts have seven conditionally expressed hexose trans-
porters, Hxt1–Hxt7, that cover the Km range from 1 to 110 mM (Figure A3). All seven
transporters follow the same mechanism of facilitated diffusion. Other members of the Hxt
family participate in the regulation of the process as glucose sensors and transcriptional
repressors [153]. The rate of glucose uptake depends on the concentrations [Ei] of all seven
conditionally expressed transporters and their kinetic characteristics:

v =
n

∑
i=1

ki[Ei]
s

Kmi + s 1
, n = 7 (A19)

Figure A3. Conditionally expressed hexose transporters of S. cerevisiae, based on Reference [153].
Encircled clusters are assumed to be the high- (left) and low-affinity transporters (right).

There are several ways to simulate the process of differential gene expressions that de-
termine the concentrations of the enzymatic proteins E1–E4 (E. coli) and E1–E7 (S. cerevisiae).

Approach 1 uses the optimality principle developed for FBA and more elaborated
GEMs [36,131,154]. As applied to the small part of the entire M-matrix, which is just one
exchange reaction of glucose uptake, the most common global objective function of the SGR
maximization is equivalent to the maximization of the glucose uptake as dependent on
its extracellular concentration. The high-affinity system (low Km and low kcat) is beneficial
under substrate deficiency but becomes a burden at a high glucose concentration; therefore,
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at each s-level, there should be a unique combination of the expressed transporters that
provide the global maximum of the glucose uptake. The penalty for the energy (NTP)
expenses, as well as the low and upper bounds, can be added to further refine the optimal
solution, but we skip these options.

Approach 2 has been applied to several rFBA and iFBA models [94,116,117] by using
Boolean algebra in which gene products are either available (ON) or unavailable (OFF) to
the cell. As applied to our reduced uptake model (there are no variables responsible for
regulatory metabolites like ppGpp or cAMP), the conditions can be set up for turning ON or
OFF specific transporters as dependent directly on the extracellular glucose concentration;
then, the Equations (A17) and (A18) should be appended with the following conditions:

[E1] =

{[
Emax

1
]

i f s ≥ s∗[
Emin

1
]

i f s < s∗
, . . . , [E4] =

{[
Emin

4
]

i f S ≥ S∗[
Emax

4
]

i f S < S∗
(A20)

where s* and S* are the threshold glucose concentrations outside the cells and in the
periplasm, respectively, triggering the expression switch from one transporter to another.
The minimal expression [Ei

min] can be set to zero for simplicity.
Approach 3, the SCM-FBA hybrid model (see the main text and Section 4.2 ‘SCM’

and Section 7 ‘Conclusions’). Firstly, the conditionally expressed proteins are attributed
either to the P- or U clusters. In the glucose uptake sub-model, the P-cluster is unequivocally
identified as the low-affinity/high-intensity transporters and the U cluster as the high-
affinity transporters. The whole proteome differentiation into the P and U slices was
more challenging. The complete empirical solution requires the global proteomic analyses
of cells grown in a chemostat at a series of D (Figure 5); the proteins displaying the
positive correlation with SGR (R2 > 0.5) form the P cluster, the negatively correlating
proteins (R2 < −0.5) are assigned to the U cluster, and the rest can be categorized as either
stochastic noise (low abundance proteins) or the constitutively expressed proteins. Such
data are already available for the model organisms. Potentially, the COG classification
system (cluster of orthologues groups [155]) can be updated to perform P/U differentiation
directly from annotated genomes without the obligatory requirement of the chemostat
data. Secondly, the upper and low boundaries for transporters are to be found also from
proteomic data (Figure 5) or other published experimental results obtained at a series of
SGR. For the glucose uptake sub-model, the most essential information is Km, and the
maximum glucose uptake rate, Q = kcat[E], is proportional to the enzyme concentration
(Figure 1). The upper limits of the individual P and U proteins are to be established by
extrapolation to the µm and µ = 0, respectively. The low boundary for the fully inducible
proteins is zero or found by extrapolation to µ = 0 (P-cluster) or µm (U cluster). Thirdly, the
rate Equations (A17) and (A18) are presented in the condensed SCM format as follows:

E. coli, step 1:

v = rQ1s + (1− r)Q2
s

Km2 + s
(A21)

E. coli, step 2:

v = rQ3
S

Km3 + S
+ (1− r)Q4

S
Km4 + S

(A22)

S. cerevisiae:
v = rQ1

s
Km1 + s

+ (1− r)Q2
s

Km2 + s
(A23)

Global r-variable:
dr
dt

= µ

(
s

Kr + s
− r
)

(A24)

Here, Q1–Q4 are the maximum glucose uptake rates via respective transporters. Every
Qi = ki

[
Emax

i
]
, where Emax

i is the maximum attainable content of the ith transporter, then

rQi = ki[Ei], and r = [Ei ]

[Emax
i ]

.
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The S. cerevisiae transporters were assigned as follows: the U cluster was formed by
transporters Hxt6 and Hxt7 as having the lowest Km and being glucose-suppressed [153]; other
transporters form the P cluster. Therefore, rQ1 = k1[E1] + k2[E2] + k3[E3] + k4[E4] + k5[E5]
and (1− r)Q2 = k6[E6] + k7[E7].

The last Equation (A24) is applied not only to the nutrient’s consumption sub-model
but to the entire metabolic reconstruction (not shown). The r-variable is a reporter of the
proteome status; it is defined as a common to all P protein (including the low-affinity
transporters) degrees of expression. The high-affinity transporters and other U proteins are
set to be proportional to the difference 1 − r.

Comparison of the three approaches (Figure A4). For clarity of illustration, we simu-
lated glucose uptake by E. coli as a single step of a substrate transfer through the internal
membrane: v = Q1

s
K1+s + Q2

s
K2+s . Bacterial growth in the glucose-limited chemostat was

reconstructed in the range of s from 10−3 to 103 mg/L, corresponding to the D range from
the near-zero to the washout point. The first approach (uptake maximization) produced a
square profile of the abrupt transition from high- to low-affinity transporters at a residual
glucose concentration s ≥ s∗ = (Q1K2 −Q2K1)/(Q1 −Q2). The second approach brings
the identical result if we select the same threshold, and this is not surprising for such
a narrow solution space. The SCM–FBA hybrid turned out to generate a more realistic
expression profile of 11 individual proteins representing low- and high-affinity systems of
E. coli [156] (Figure A4, panel C).

Figure A4. Simulation of conditionally expressed glucose transporters using three methods. (A) The
optimality and Boolean approaches (results turned out identical). (B) Expression predicted by the
SCM/FBA hybrid model. (C) E. coli proteomic data [156]. Blue and orange curves and symbols are
applied, respectively, to the low and high affinity transporters.

Appendix B.3.3. Technical Details of Using the SCM

Solving direct and inverse problems. In the proposed SCM–FBA hybrid model, the
SCM is solved independently of the FBA. The inverse problem stands for the task of
finding the model’s parameters that reproduce a given set of experimental data, such as
a time series of x, s, and r or the steady-state values of these variables. There are diverse
computational approaches to minimize the simulation errors; the topic has been covered
specifically for the SCM in Reference [22]. The direct (forward) problem has the opposite
purpose, to compute the state variables x, s, and r for a given set of ODEs with specified
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model coefficients and initial conditions. The transient SCM dynamics require numerical
integration, preferentially by using stiff-resistant algorithms (e.g., the ode15s solver in
MATLAB), because the model includes fast (s) and slow variables (x and r), and there is
a potential danger of too-small integration steps over extended time intervals [22]. The
steady-state SCM solution (x, s, p, and r ) for the chemostat cannot be resolved explicitly
for D because of multiple nonlinearities. However, there is a simple implicit solution:

Input s, =⇒ r =
s

Kr + s
=⇒ qs = rQ

s
Ks + s

=⇒ µ = D = Yqs − aor =⇒ x = D
sr − s

qs
(A25)

Selection of experimental data. Experimental verification of the SCM requires chemo-
stat experiments combined with proteomic or transcriptomic analyses at several D; if these
data are not available, then the growth-associated changes in the RNA content (total or
rRNA) would be the best proxy for the r-variable. Another key variable is the limiting sub-
strate concentration. In theory, it plays the most essential regulatory role, but unfortunately,
it is notoriously known as a very problematic category of chemostat data [14,22,157,158]:
below detection limit at low and intermediate D and too-high turnover rate at a standard
cell density of ~1 g/L (OD600~1.0). The accurate recording of the s-variable for microorgan-
isms with high-affinity transporters requires specialized sampling devices (tangential flow
filtration or liquid nitrogen trap) applied to a continuous culture with as low as possible
the input concentration of limiting nutrient, e.g., 50–100-mg glucose/L for E. coli [158]. If
these conditions are not met, then direct analytical data are of limited value and a better
solution could be an indirect estimation of s based on the other accurately recorded vari-
ables functionally dependent on s, e.g., the instrumentally recorded DO uptake rate, CO2
production, pH titration rate, etc. Figure A5 illustrates such an indirect solution based
on the measurement of qs (glycerol uptake rate) and RNA, the missed s data are treated
as unknowns and found together with the model’s parameters by the standard inverse
problem procedure.

Customizable biomass formula and reaction. An adjustable biomass reaction has
been used once [88] for one specific case of E. coli batch growth on glucose (generation
time 70 min) or acetate (140 min). Two respective cell compositions were reproduced
using the linear regression of published chemostat data for the content of the RNA, DNA,
glycogen, and total proteins. The SCM offers an easier and instant customization procedure
implementing the r-variable (Figure A6). Two of the most abundant conditionally expressed
constituents of E. coli are stable RNA (rRNA and tRNA) and glycogen, the C-storage
polymers. According to the SCM, the RNA content is proportional to r, and the content
of the C-storage is proportional to the difference (1−r). The elemental composition of
the RNA (AGCU) and glycogen are, respectively, (C38H45O26N15P3)n and (C6H10O5)n
or CH1.18O0.68N0.39P0.08 and CH1.67O0.83 if expressed per carbon atom. The empirical
biomass formula of E. coli cells at the maximum SGR (r = 1.0, the RNA content 0.2) is
CH1.77O0.49N0.24P0.03. At another extreme, under chronic starvation when s → 0 and
r→ 0, the conditionally expressed RNA is completely substituted with glycerol that attains
its maximum content of 0.2. Based on difference in elemental composition of RNA and
glycogen, the empirical formula of starving cells becomes CH1.866O0.52N0.16P0.008. Between
these two extremes, the elemental composition of cells is linearly related to the r-variable.
At each steady state in a chemostat culture or at every integration step simulating transient
growth, the SCM generates unique r-value that can be instantly recalculated into the
biomass formula to be used by the FBA model for computing the fluxome. The coefficients
of the biomass reaction (Equation (13)) are corrected in a similar way as they display a
linear relationship with r-variable.
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Figure A5. Reconstruction of the missed data on limiting the substrate concentration. Top: Glycerol-
limited chemostat, SUR (qs), and cell RNA (proxy for r-variable) are plotted vs. µ = D. Bottom: Best-fit
reconstruction of the SGR and RNA plots vs. s. The curves were calculated from Equation (A25),
minimizing the residual squares with MS Solver.

Figure A6. Adjustment of the cell biomass formula. (Top) RNA and glycogen, two major changeable
cell components. (Bottom) Empirical biomass formula with H and O subscripts linearly decreasing
with r (left) and the N and P contents increasing with r (right).
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Appendix B.3.4. Extremely Low Proteins Concentration: Down to One Enzyme Molecule
Per Cell

The WC modeling of E. coli [50] predicted that as many as 72 essential genes of E. coli
were transcribed less than once per cell cycle. This result is compatible with proteomic
analyses of these bacteria [156] consistently indicating the presence of extremely rare
proteins, e.g., one or less copy per cell for 294 out of 2359 identified proteins (12.5%) at least
at one tested cultivation condition (complex and minimal media, a series of D in chemostat
culture, and starvation). These rare proteins might be downregulated under the given
growth conditions; however, some of the proteins (2.5%) remained at a low level under
any growth conditions.

How might cells function and grow when some of their essential genetic content is not
transcribed during a typical division cycle? How might a single enzyme molecule perform
their destined function inside a regular bacterial cell? Let us picture a rare enzymatic
protein (assuming its size 50 kDa, the middle distribution for all bacterial proteins) inside
the average E. coli cell of a volume of 0.7 µm3. If we zoom in on both objects proportionally,
then our rare enzyme would be like one human in a 10-million giant city like London or
Paris. The probability of a random colliding into a respective substrate in the cytosol is
not zero, but it is certainly an extremely rare stochastic event with a minor impact on the
whole-cell metabolism.

What is the origin of rare proteins? First, it can be just an analytical error, resulting in
the underestimation of the actual number of enzyme copies. Second, rare proteins could
be expressed in the past under the prior environmental conditions; it takes some time to
degrade and dilute them with the newly synthesized molecules. Third, what we found as
‘rare proteins’ could be expressed only in a small subpopulation of heterogeneous microbial
culture. In other words, rare proteins might belong to some spontaneous mutants having a
distinct proteome profile as compared with the WT and coexisting with the WT.

Appendix B.3.5. Extremely High Proteins Concentration: Macromolecular Crowding

The cytosol is called to be ‘crowded’ rather than ‘concentrated’, because no single
macromolecular species occurs at a high concentration, but taken together, it makes up
300–400 g/L, and the macromolecules occupy, by different estimates, from 20–30% [143,144]
to 34–44% of the total cellular volume [159]. The portion of excluded volume depends on
the growth conditions and steeply increases with the SGR. The total number of protein
molecules is more or less constant over the whole range of the SGR; some reports indicate a
minor decline [21] or increase [156] of the total proteins content with the SGR. However, the
sizes of the conditionally expressed macromolecules are dramatically different in slowly
and rapidly growing cells. Growth acceleration requires a higher number of ribosomes
and enzymes associated with translation that take up much more intracellular space. A
single ribosome of E. coli is about 20 nm in diameter and a volume of 3400 nm3 [160]; cells
(average volume 0.7 µm3) contain 30,000–50,000 ribosomes that alone occupy 15–25% of
the cellular space. In addition, there are other large and abundant proteins supporting
translations, such as elongation factor Tu (EF-Tu) forming a ternary complex with tRNA
and tRNA synthetases; all these tRNA-affiliated protein masses are about two-thirds that
of the ribosomal protein mass in moderate-to-fast growth [161]. The effect of molecular
crowding is the slowing down of all metabolic rates because of increased viscosity and
restricted diffusion, as well as changes in the biochemical equilibria to favor the associa-
tion of macromolecules into aggregates [159,161–164]. The effect of limited diffusion has
been accounted for by using the empirical equations incorporated into the FBA and other
GEMs [159]. The impact of aggregation remains unexplored; to fill in the gap, we outline
below one simple kinetic mechanism.

Let us view the aggregation as a reversible process involving the binding of n indi-
vidual enzyme molecules E to each other with the formation of aggregate En having no



Microorganisms 2021, 9, 2352 42 of 48

enzymatic activity. The dissociation of En into monomeric units restores the activity, e.g.,
via chaperone-assisted refolding:

E + E + . . . + E︸ ︷︷ ︸
n

k1→
←

k2

En (A26)

Combining Aggregation (26) with the Michaelis–Menten process gives the following
reaction scheme:

(A27)

The process is described by four ODEs and one conservation condition:
The initial reaction rate:

dp
dt

=
−dm

dt
= kcatx (A28)

Enzyme–substrate complex:

dx
dt

= k3me− k4x− kcatx (A29)

Inactive aggregates:
dy
dt

= k1e− k2yn (A30)

Free active enzymes:

de
dt

= k4x− k3me + k2yn − k1e + kcatx (A31)

E balance:
e0 = e + x + ny (A32)

Assuming a steady state for the intermediary complexes, x = k3me
k4+kcat

and y = n
√

k1e
k2

,
we exclude the third variable e using the mass–balance (Equation (A32)) and arrive at the
final expression for the steady-state reaction rate. It remains compact for the simplest case
of n = 1:

−dm
dt

= kcatx = kcat
e0m

Kapp
m + m

; Kapp
m = Km(1 + k1/k2); Km =

k4 + kcat

k3
(A33)

As we can see, the molecular crowding decreases the substrate affinity by making the
apparent Km be enlarged by the quotient (1 + k1/k2). Like competitive inhibition, the nega-
tive impact is inversely related to the substrate concentration and is minimal at a high m.
The complete solution for arbitrary n (multiple aggregates) is too cumbersome and should
be explored by using the numeric integration of the entire set (Equations (A28)–(A32)).
However, we can present the approximate solution for any n that allows the evaluation of
the relationship between the total enzymatic proteins in cytosol, e0, and the content of the
nonaggregated enzyme-preserving activity, e:

e0 = e
(

nKeen−1 + 1
)

, Ke =
k1

k2
(A34)

This equation is perfectly valid at a zero concentration of the internal substrate m = 0
and remains a reasonably good approximation at a low m, when x� e, and we can neglect
the defensive effect of the substrate binding that prevents aggregation. The inhibitory



Microorganisms 2021, 9, 2352 43 of 48

effect of molecular crowding (Figure A7) increases with the n. The stronger the aggregation
(higher n and Ke), the higher the loss of enzymatic activity, with an asymptotic trend to a
global maximum of the remaining metabolic activity, as e0 → ∞. The complete numeric
solution of the aggregation mechanism will make sense when more experimental data
becomes available.

Figure A7. The modeling of the molecular crowding effect. The plots show progressive disparity
between the active and total enzymes as the proteins’ concentration increases at two levels of
Ke = k1/k2 and three levels of n, the kinetic order of the aggregation reaction. The dotted line stands
for negative control, no crowding.
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