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Introduction

Estrogen receptors (ERs) play a critical role in the devel-
opment and maintenance of many tissues in the body. 
There are two known members of the estrogen receptor 
family, ERα and ERβ, encoded by distinct genes. ERα and 
ERβ DNA Binding Domain’s (DBD) share 97% amino acid 
homology, while ligand binding domains (LBD) share 
61% amino acid similarity. Both ligand-activated recep-
tors bind to the same estrogen response element (ERE) 
and have comparable affinities for 17β-estradiol (E2). 
ERα and ERβ are steroid nuclear receptors which mediate 
effects of estrogen linked to reproduction, bone remodel-
ing, behavior, immune response and endocrine-related 
diseases (Ariazi et al., 2006, Mueller and Korach, 2001).

The relative functions of ERα and ERβ have been 
investigated through the use of ERα, ERβ, and ERα/ERβ 
knockout mouse models. By this approach, null mutants 
of one or both of the ERs can be correlated to tissue spe-
cific functional changes of the distinct roles of ERα and 

ERβ (Dupont et al., 2000, Mueller and Korach, 2001). From 
these studies, it is apparent that ERα plays a critical role in 
reproductive physiology and bone remodeling while ERβ 
is important for ovarian cell differentiation and function. 
Further, high expression levels of ERβ in the CNS (Mitra 
et al., 2003) and data from knockouts indicate behavioral 
phenotypes (Rocha et al., 2005) suggesting an impor-
tant role for ERβ in CNS function. Both ERα and ERβ 
have been implicated in modulating anti-inflammatory 
response in the periphery and CNS (Brown et al., 2010, 
Harris et al., 2003, Staples et al., 1999, Vegeto et al., 2003). 
While it has been established that knockout mice serve as 
a valuable tool to study the role of ERs in vivo (Couse and 
Korach, 1999), these models are not without shortcom-
ings. For example, minor physiological responses may 
still take place as a result of the minute residual amounts 
of ERα mRNA transcripts in some AERKO mice (Couse 
et al., 1995). ER subtype specific selective ligands have 
also been utilized as tools to complement ER knockout 
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mouse studies (Katzenellenbogen et al., 2000, Stauffer 
et al., 2000, Sun et al., 2002).

In order to confirm novel ERα or ERβ specific small 
molecule ligand activity, ER subtype selective serum 
biomarkers are essential research tools. In this study, a 
biomarker is defined as a protein that can be objectively 
measured by ELISA and used as an indicator of biologic 
response upon ER activation. In the present study, we 
have used liver RNA from mice lacking either ERα or ERβ, 
in microarray experiments to identify novel ERα selective 
serum biomarkers (Krege et al., 1998, Lubahn et al., 1993). 
Results from the gene array experiments were validated 
in vivo using real-time RT-PCR and subsequent ELISAs 
to demonstrate changes in serum biomarkers. We pres-
ent data that LBP is a novel ERα selective biomarker that 
can be measured in serum. It was previously reported 
that estrogen can regulate rat liver LBP mRNA (Ikejima 
et al., 1998) and our current work demonstrate that this 
is an ERα driven event and that changes in LBP mRNA 
in the liver translate to changes in detectable protein in 
serum.

Materials and methods

17-β-Estradiol and propyl-pyrazole-triol treatment of 
mice and rats
All animals were maintained in accordance with institu-
tional Animal Care and Use guidelines. Genotype of the 
knockout mice was confirmed by PCR. Ovariectomized, 15 
week old, c57BL (Taconic), Estrogen Receptor β (BERKO) 
(Krege et al., 1998), and Estrogen Receptor α (AERKO) 
(Lubahn et al., 1993), mice were treated (sc) daily with 
0.2 mg/kg 17-β-estradiol, 0.1, 1.0, and 10.0 mg/kg propyl-
pyrazole-triol (Stauffer et al., 2000) or sesame oil vehicle 
for 4 or 14 days. Animals were euthanized, blood was 
drawn (via cardiac puncture), samples were incubated on 
ice for 15 min, centrifuged at 12,000g for 15 min, and serum 
was collected. The uterus was excised, trimmed of fat and 
connection tissue, and weighed. Additionally, ovariecto-
mized 12 week old Sprague–Dawley CD rats (Charles River 
Laboratories, Wilmington, MA) were treated (sc) daily 
with 0.012, 0.05, and 0.2 mg/kg 17-β-estradiol or sesame 
oil vehicle for 3 days. Rats were euthanized and the uterus 
was collected and weighed as a bioassay for ERα activity. 
All 17-β-estradiol and propyl-pyrazole-triol mouse and 
rat studies are described in Supplementary Table S1.

RNA extraction and cDNA synthesis
Total RNA from livers of mice and rats were isolated accord-
ing to the manufacturer’s instructions using Tri Reagent 
(Molecular Research Center, Cincinnati, OH). The RNA 
samples were treated with DNase I (Ambion, Grand Island, 
NY) and cDNA was synthesized using High-Capacity cDNA 
Archive Kit (Applied Biosystems , Foster City, CA).

Quantitative real-time reverse transcription-PCR
Real-time RT-PCR was repeated three times in triplicate 
performed using the ABI 7900 HT Sequence Detection 

System (Applied Biosystems). The PCR conditions were 
50°C for 2 min, 95°C for 10 min followed by 40 cycles of 
95°C for 15 s and 60°C for 1 min. Primer/probe sets for 
mouse LBP (Mm00493139), rat LBP (Rn00567985_m1), 
and 18S rRNA endogenous control (4308329) were pur-
chased from Applied Biosystems. The housekeeping gene 
18S rRNA was used as the internal quantitative control 
for normalization. Relative gene expression was calcu-
lated with the ΔΔCt method as outlined in the Applied 
Biosystems User Guide.

Statistics for uterine weight, real-time RT-PCR, and 
ELISAs
Error bars represent standard error of the mean (SEM) 
between replicates of a given experiment. Comparisons 
between two groups were made by analysis of variance 
(ANOVA) followed by a student t-test at 0.05 significance 
level with p values indicated.

Gene expression profiling
Fluorescence-labeled cRNA transcribed from total 
RNA isolated from mouse liver (14 day E2 treatment 
experiment) were hybridized to DNA oligonucleotide 
microarrays as described previously (Hughes et al., 
2001). Briefly, 5 µg of total RNA from an individual 
sample were used to synthesize dsDNA by RT. cRNA 
was produced by in vitro transcription and post-tran-
scriptionally labeled with either Cy3 or Cy5. Reference 
and experimental cRNA samples were competitively 
hybridized to the Rosetta/Merck Mouse 25k v1.9 
microarray which represents 22,700 genes (Tu et al., 
2009). To minimize bias created by dye selection, for 
each comparison, two hybridizations were done with 
each cRNA sample pair using a fluorescent dye reversal 
strategy. After hybridization, arrays were scanned and 
fluorescence intensities for each probe were recorded. 
Ratios of transcript abundance in experimental ver-
sus control samples were calculated with normalized 
intensity data. Gene expression data analysis was done 
either with the Rosetta resolver gene expression analy-
sis software (Version 5.1 Rosetta Biosoftware) or Matlab 
(Version 7, The Mathworks, Natick, MA). For each gene 
sequence on the arrays, statistical significance of differ-
ential gene expression was calculated according to the 
following equation: p value = 2 × (1 – Erf (|xdev|)). Where 
Erf is the error function for a Gaussian distribution of 
zero mean and xdev is the adjusted difference in fluo-
rescence intensities between Cy3 and Cy5 intensities as 
calculated by the equation: where r is the Cy5 intensity, 
g is Cy3 intensity, and σ is the error associated with the 
respective channel.

Lipopolysaccharide binding protein expression 
measurement
LBP ELISA Test Kit (Cell Sciences, Norwood, MA) specific 
for mouse LBP was performed according to the manufac-
turer’s protocol. ELISAs were repeated three times utiliz-
ing duplicate serum samples.
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Results

E2 increased uterine weight in c57BL and BERKO but 
not AERKO mice
Prior to performing microarray experiments, ERα 
knockout (AERKO) and ERβ knockout (BERKO) 
mouse models were validated by changes in uterine 
weight, a well-established bioassay of ERα-mediated 
proliferative effects (Owens and Ashby, 2002). C57BL 
(control) and BERKO mice were treated with vehicle 
or E2 for 4 (Figure 1A) or 14 days (Figure 1B). c57BL 
and BERKO mice treated with E2 at both time points 
had significant (p < 0.001) increases in uterine weight. 
At 4 days of treatment, c57BL E2 treated mice showed 
a 3.2-fold increase versus c57BL vehicle treated while 

BERKO E2 treated mice showed a similar increase, 
3.4-fold when compared to BERKO mice treated 
with vehicle. Likewise, at 14 day treatment, c57BL E2 
treated mice led to a 7.3-fold increase versus c57BL 
vehicle-treated mice while BERKO E2 treated mice 
had a 9.5-fold increase when compared to BERKO 
mice treated with vehicle. Additionally, C57BL (con-
trol) and AERKO mice were also treated with vehicle 
or E2 for 14 days (Figure 1C). WT mice treated with E2 
exhibited an 8.7-fold significant (p < 0.001) increase 
versus vehicle treatment while AERKO mice did not 
respond to E2 treatment in uterine weight, as they 
exhibited uterine weights similar to WT mice treated 
with vehicle.

Global gene expression microarray analysis in liver 
of C57BL, AERKO and BERKO mice after14 day E2 
treatment
To differentiate between ERα and ERβ effects in vivo and 
to identify novel ERα selective serum biomarker candi-
dates, we profiled AERKO and BERKO mouse liver RNA 
in microarray experiments. C57BL, BERKO, and AERKO 
mice were treated with 0.2 mg/kg 17-β-estradiol or ses-
ame oil vehicle for 14 days and ERα specific genes were 
identified on the basis of being differentially expressed 
in c57BL (control group) and BERKO but not in AERKO 
mice.

ANOVA analysis was performed to identify unique 
patterns of gene regulation based on ER status: c57BL 
(ERα/ERβ, +/+); AERKO (ERα/ERβ, −/+); BERKO (ERα/
ERβ, +/−) and 14 day E2 treatment. Agglomerative clus-
tering analysis was performed using matlab (Figure 2A). 
Each row represents mouse models, ER status, and ER 
regulated genes. Up-regulated genes are depicted in 
pink, down-regulated genes are aqua, and genes showing 
no change verses control are black. Heat map changes 
demonstrate unique gene signatures illustrating patterns 
of potential ERα target genes in the liver. Examination 
of individual genes of interest (serum proteins) identi-
fied Lipopolysacharide Binding Protein (LBP). c57BL 
and BERKO mice treated with E2 showed significant 
(p < 0.001) increases in LBP mRNA expression (1.5 and 
1.7-fold, respectively) while expression was not regulated 
by E2 in AERKO mice. (Figure 2B). WT mice treated with 
E2 for 14 days, exhibited a significant (p < 0.001) increase 
(6.5-fold) in serum LBP compared to the vehicle treated 
group (Figure 2C).

C57BL mice treated with ERα agonist  
propyl-pyrazole-triol (PPT) exhibit increased LBP 
expression
Upon demonstrating E2 treatment leads to increased 
LBP mRNA and protein expression (Figure 2B and 2C), 
c57BL mice were dosed for 4 days with PPT (propyl-
pyrazole-triol), a highly selective ERα ligand that binds 
to ERα with a 400-fold affinity higher then ERβ (Stauffer 
et al., 2000). Dose dependent significant increases 
in serum LBP protein were demonstrated when mice 

Figure 1. Four and fourteen day E2 dosing regimens lead to 
uterine weight increases in c57BL and BERKO but not AERKO 
mice. Uterine weight of c57BL and BERKO mice treated for (A) 
four days exhibited significant weight increases of 3.2 and 3.4 
fold respectively. (B) Fourteen day treatment resulted in c57BL 
E2 treated mice resulted in a 7.3-fold significant increase while 
BERKO E2 treated mice had a 9.5-fold significant increase. (C) 
c57BL E2 treated mice for 14 days resulted in an 8.7-fold significant 
increase while AERKO E2 exhibited similar weights to AERKO 
vehicle treated mice. Error bars indicate standard error, *p < 0.001. 
Lines indicate pairwise comparisons.
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were treated with PPT. While 0.1 mg/kg PPT treat-
ment did not lead to a difference in LBP serum levels 
(when compared to vehicle), 1.0 mg/kg PPT led to a 
1.9-fold (p = 0.003) and 10 mg/kg PPT led to a 2.6-fold 
(p < 0.001) increase in serum LBP. Additionally, a sig-
nificant (p = 0.002) 1.9-fold increase of serum LBP was 
demonstrated when the mice were treated with 0.2 mg/
kg E2 (Figure 3).

Expression of functional ERα but not ERβ is required 
for up regulation of LBP by E2 or PPT treatment:
In contrast to C57BL6 mice, serum LBP did not change 
with any treatment in AERKO mice (Figure 4A). E2 treat-
ment significantly decreased (~40%, p = 0.01) LBP mRNA 
in AERKO liver while the ERα selective agonist, PPT did 
not impact LBP expression (Figure 4B), thus suggesting 
an ER-β mediated effect on LBP lowering serum LBP was 
increased by both E2 (2.6 fold, p = 0.004) and PPT (3.6 
fold, p < 0.001, Figure 5A) in C57BL6 mice. Interestingly, 

Figure 2. Global gene expression microarray analysis in liver 
of C57BL, AERKO and BERKO mice after 14 day E2 treatment 
identify potential ERα target genes. (A) Heat Map of changes 
in mRNA levels in liver of C57BL, AERKO and BERKO by 
microarray analysis after 14 day E2 treatment. ANOVA analysis 
was performed to identify unique patterns of gene regulation 
based on ER status followed by agglomerative clustering analysis 
(Matlab). Each row represents the different mouse models 
possessing different ER status and gene regulation. Up-regulated 
genes (pink), down-regulated genes (aqua), and genes showing 
no change verses control (black). (B) Fold change of LBP in 
mouse liver mRNA from c57BL and BERKO mice treated with 
E2 showed significant increases in LBP mRNA expression (1.5 
and 1.7-fold respectively) while AERKO E2 did not change. (C) 
Change in serum LBP protein measured by ELISA (see materials 
and methods) when c57BL mice were treated with E2 for 14 
days, a significant (p < 0.001) increase of 6.5-fold in serum LBP 
was demonstrated compared to the vehicle group. Error bars 
indicate standard error, *p < 0.001.

Figure 3. Dose-dependent increase in serum LBP with an ERα 
agonist: propyl-pyrazole-triol (PPT). c57BL mice treated with 
0.1 mg/kg PPT did not result in a significant difference in LBP 
serum levels (when compared to vehicle, measured by ELISA), 
1.0 mg/kg PPT led to a 1.9-fold and 10 mg/kg PPT demonstrated 
a 2.6-fold significant increase in serum LBP. A significant 1.9-fold 
increase of serum LBP was also demonstrated when the mice were 
treated with 0.2 mg/kg E2. Error bars indicate standard error of the 
mean. *, p = 0.002; **, p = 0.003; and ***, p < 0.001.

Figure 4. Four day 17β-estradiol and PPT treatments have no effect 
on serum LBP in AERKO mice while E2 lowers LBP mRNA in AERKO 
mice livers. (A) AERKO mice treated with E2 or PPT for 4 days result 
in no difference in serum LBP levels when compared to vehicle 
(measured by ELISA). B) E2 treatment resulted in a 40% significant 
decrease of LBP mRNA (measured by real-time RT-PCR, see materials 
and methods) in AERKO mice liver while the ERα subtype specific 
agonist, PPT did not demonstrate a significant effect (compared to 
vehicle). Error bars indicate standard error of the mean. *, p = 0.01.
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vehicle-treated BERKO mice exhibited a trend towards 
higher serum LBP levels (~1.6 fold) compared to c57BL 
mice (Figure 5A). While a small, non-significant increase 
in serum LBP was observed in BERKO mice following 
E2 treatment (10.6 ng/mL), BERKO mice treated with 
PPT exhibited a significant (p < 0.001, 2.6-fold) increase 
in LBP (Figure 5A). Furthermore, E2 or PPT induced 
a small increase in liver LBP and mRNA expression 
(1.2-fold, 1.5 fold respectively) in c57BL mice (p < 0.05) 
(Figure 5B). BERKO mice treated with E2 showed a 
trend towards an increase (12%) in LBP mRNA expres-
sion. Similar to the vehicle-treated groups, BERKO mice 
treated with E2 (compared to c57BL mice treated with 
vehicle) yielded a 1.7-fold significant (p < 0.05) increase 
(Figure 5B). BERKO mice treated with PPT when com-
pared to the BERKO mice treated with vehicle expressed 
approximately the same amount of LBP mRNA, but 
when the BERKO mice treated with PPT were compared 
to the c57BL treated vehicle mice, a significant (p < 0.05) 
1.5-fold increase in LBP mRNA expression is exhibited 
(Figure 5B). Taken to together these data represent 
that LBP expression is an ERα driven effect, BERKO 
mice exhibit a higher baseline expression level of LBP, 
and ERβ absence leads to higher LBP expression. E2 or 
PPT treatment increased uterine weight significantly in 
c57BL mice (3.8 and 2.8-fold respectively) (p < 0.001). 
BERKO mice exhibited significant increases (3.5 and 
2.5-fold respectively) (p < 0.001). However, AERKO 
mice did not respond to E2 or PPT treatment on uterine 
weight (Figure 5C), confirming uterine proliferation as 
an ERα driven response.

17β-estradiol increases LBP mRNA expression  
in rat liver
To confirm increase of LBP mRNA expression by E2 was 
not mouse specific, we also studied LBP expression in 
Sprague–Dawley CD rats treated with vehicle, 0.012, 0.05, 
and 0.2 mg/kg E2 for 3 days. mRNA LBP expression mea-
sured in the liver exhibited a dose dependent significant 
(p < 0.05) increase of 1.3, 1.4, and 1.5-fold respectively 
(Figure 6).

Figure 5. BERKO mice treated with PPT for 4 days increase serum 
LBP, liver mRNA LBP expression, and uterine weight. (A) c57BL 
and BERKO mice treated with vehicle, E2, and PPT for 4 days. 
c57BL mice treated with E2 led to a significant increase of 2.6-fold 
in serum LBP (measured by ELISA) when compared to the vehicle 
(oil) group. c57BL mice treated with PPT demonstrated a significant 
increase of 3.6-fold in serum LBP compared to the vehicle (oil) 
group. BERKO mice treated with E2 (10.6 ng/mL) resulted in a 
slight increase of serum LBP when compared to the BERKO’s 
treated with the oil vehicle (9.2 ng/mL). BERKO mice treated with 
PPT showed a significant 2.6-fold increase in comparison to the 
BERKO vehicle (oil). (B) Mouse liver mRNA LBP expression was 
measured (real-time RT-PCR), a 1.2-fold increase was exhibited in 
c57BL mice treated with E2 when compared to the c57BL vehicle 
(oil) while a significant 1.5-fold increase was seen in c57BL mice 
treated with PPT when compared to the c57BL vehicle (oil) mice. 
BERKO mice treated with sesame oil demonstrated a significant 
1.5-fold increase of LBP mRNA expression when compared to the 
c57BL mice treated with vehicle (oil). BERKO mice treated with E2 

led to a 12% increase in LBP mRNA expression when compared to 
BERKO mice treated with vehicle (oil). BERKO mice treated with 
E2 compared to the c57BL mice treated with vehicle (oil) yielded 
a 1.7-fold significant increase. BERKO mice treated with PPT and 
BERKO mice treated with vehicle (oil) express approximately 
the same amount of LBP mRNA. BERKO mice treated with PPT 
express a 1.5-fold significant increase compared to the c57BL 
treated vehicle (oil) mice. (C) c57BL mice treated with E2 resulted 
in a 3.8-fold significant increase in uterine weight while PPT 
treatment resulted in a 2.8-fold significant increase (compared 
to c57BL mice treated with sesame oil vehicle). BERKO mice 
treated with E2 or PPT demonstrated 3.5 and 2.5-fold significant 
increases respectively (compared to BERKO mice treated with oil 
vehicle). AERKO mice treated with vehicle (oil), E2, or PPT led 
to no differences in uterine weight. Error bars indicate standard 
error of the mean. *, p = 0.004; **, p < 0.001; and ***, p < 0.05. Lines 
indicate pairwise comparisons.
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Discussion

The mechanisms via which estrogens mediate their vast 
effects continue to be elucidated. It is well established 
that ERs mediate functional effects of estrogen that are 
associated with reproduction, bone remodeling, behav-
ior, immune response and endocrine-related diseases. As 
medicine becomes more personalized, serum biomark-
ers of therapeutic drug targets (such as ERs), will become 
even more important.

LBP is a glycosylated 60 kDa serum protein that is 
primarily produced in the liver (Ramadori et al., 1990). 
LBP plays a central role in the response to LPS by accel-
erating the binding of lipopolysacharide (LPS) mono-
mers and inducing cytokine production through a 
CD14 dependent pathway (Vollmer et al., 2009, Wright 
et al., 1990, Wurfel et al., 1997). LBP acts as a lipid 
transfer protein by catalyzing the transfer of LPS mono-
mers from aggregates to CD14 (Hailman et al., 1994, 
Tobias et al., 1995). LBP has a high affinity for LPS and 
other membrane proteins (Tobias and Ulevitch, 1993) 
and it is constitutively released into the bloodstream 
upon type 1 acute phase stimulation (Schumann and 
Latz, 2000). LBP co-purifies with HDL particles (Wurfel 
et al., 1994) and packages LPS into complexes of high 
density lipoprotein (HDL) (Wurfel et al., 1995) where 
LPS is neutralized thereby protecting against LPS toxic-
ity (Schumann and Latz, 2000, Skarnes, 1966). LBP has 
been reported to be a biomarker for the diagnosis of 
local bacterial infection (Vollmer et al., 2009) and LBP 
is involved in LPS-induced tight junction disruption 
and increased permeability in bile duct epithelial cells 
(Sheth et al., 2007).

ERs have been reported to alter both adaptive and 
innate immune responses and gender-based differ-
ences in infectious disease susceptibility are thought to 
result in part from robust effects of estrogen on proin-
flammatory and anti-inflammatory cytokine expres-
sion (Cunningham and Gilkeson, 2011). Both ERα and 
ERβ have been reported to suppress proinflammatory 
cytokine expression (Cvoro et al., 2008). Rettew et al 
have shown ovariectomy of mice decreases circulating 

LBP levels (Rettew et al., 2009). In addition, they showed 
alterations in cell surface expression of a key effector 
of immune response to microbial infection (e.g. TLR4) 
in sentinel immune cells. Interestingly, treatment of 
ovariectomized animals with 17-β-estradiol increased 
circulating LBP levels and this corresponded to an 
increase in endotoxin susceptibility. Ikejima et al. in 
1998 reported an increase in liver LBP mRNA as well as 
functionally active LBP in serum when female Sprague–
Dawley rats were treated with 20 mg/kg estriol (Ikejima 
et al., 1998). These studies did not investigate the differ-
ential role of ERα and ERβ in regulating LBP expression 
and our work demonstrates the role of ERα in mediating 
the increase in circulating LBP. In this study, we have 
used molecular profiling of liver gene expression in mice 
with different ER status: c57BL (ERα/ERβ, +/+); AERKO 
(ERα/ERβ, −/+); BERKO (ERα/ERβ, +/−) to identify 
LBP as an ERα specific serum marker. We have verified 
changes in LBP gene expression by utilizing real-time 
RT-PCR and demonstrated changes in protein level by 
performing ELISA’s. Additionally, uterine weight was 
utilized to monitor estrogen-mediated proliferative 
effects on the uterus. Along with LBP, Sex Hormone-
Binding Globulin (SHBG), Monocyte Chemoattractant 
Protein-1 (MCP-1), Insulin-Like Growth Factor-Binding 
Protein-1 (IGFBP-1), Cholesterol 7-α-Hydroxylase 
(CYP7a1), Peroxisome Proliferator-Activated Receptor 
α (PPARα), and Small Heterodimer Partner (SHP) were 
identified from the microarray analysis as potential bio-
markers. Candidates were required to be found in the 
blood and an ELISA needed to be available for study. 
Upon analysis of candidates, LBP was found to be the 
most robust and consistent serum biomarker.

In the liver, LBP mRNA is increased in response to E2 
and this change is detected at both 4 days and 2 weeks 
of treatment. Serum levels of LBP protein are altered in 
the mouse in response to E2 and we detect up to a 6.5-
fold increase in LBP serum protein within 2 weeks. We 
have demonstrated that the response to 17β-estradiol is 
mediated via ERα because LBP is altered in response to 
treatment with PPT, an ERα selective agonist in a dose-
dependent manner. In addition LBP protein levels are 
not changed in AERKO animals in response to either E2 
or the ERα selective agonist. It is likely treatment with 
an ERα selective agonist may result in hypersensitiza-
tion to microbial infection which can be both harmful in 
supporting a robust susceptibility to infection by certain 
bacteria or viruses, however it has also been shown to be 
beneficial in providing strong protection against other 
types of bacterial infection (Rettew et al., 2009).

LBP levels in BERKO animals are altered in response 
to the ERα selective agonist but do not have significant 
responses to E2. This appears to be due to unusually high 
levels of LBP in untreated BERKO mice serum which may 
indicate that ERα is “more” active in the absence of ERβ; 
it is also possible that ERβ has a direct role in maintain-
ing basal circulating levels of LBP. Our data suggests that 
LBP expression is an ERα driven effect. In the future, it 

Figure 6. 17β-estradiol increases LBP mRNA in rat liver. Sprague–
Dawley CD rats were treated vehicle (oil), 0.012, 0.05, and 0.2 mg/
kg E2 for 3 days. mRNA LBP expression measured (by real-time 
RT-PCR) in the liver yielded a dose dependent significant increase 
of 1.3, 1.4, and 1.5-fold (compared to oil vehicle) when dosed with, 
0.012, 0.05, and 0.2 mg/kg E2 respectively. Error bars indicate 
standard error of the mean. *, p < 0.05.
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will be important to study why knocking out ERβ (BERKO 
mice) led to increased LBP levels. Possible mechanisms 
of action include, with ERβ not present, there is more 
ERα present to drive LBP expression or ERβ may have 
repressive effects on ERα that usually keep LBP levels 
lower when ERβ is present. The respective roles of ERα 
and ERβ in mediating effects of estrogen on the innate 
immune system have been studied both with selective 
ligands and in knockout animal models (Cristofaro et al., 
2006, Curran et al., 2001, Cvoro et al., 2008). These studies 
suggest a therapeutic effect of ERβ ligands in the treat-
ment of sepsis. It is possible one advantage of ERβ selec-
tive ligands is they would not increase circulating LBP 
levels and/or may even lower endogenous levels.

Our approach of using an ERα selective agonist serves 
as a valuable complement to the use of ER knockout 
mice to explicate novel ER subtype specific biomarkers. 
We appreciate that there are limitations in utilization 
of the knockout model, in that the mice are genetically 
lacking either ERα or ERβ from early embryonic devel-
opment, and thus, there is the potential for complicated 
developmental compensation networks at play that 
have not been completely elucidated (Carpenter and 
Korach, 2006, Hewitt et al., 2005, Pearce and Jordan, 
2004) or could be comparatively studied in liver specific 
ERα or ERβ knockout models. Removal of only one of 
the ER subtypes abolishes the modulation of responses 
that may take place due to synergistic or antagonistic 
interactions between the two proteins that might also 
modify either an increase or decrease of expression due 
to ERα and ERβ crosstalk. Therefore, the use of an ERα 
subtype specific agonist provides an additional tool to 
aid in identifying subtype specific biomarkers.

In summary, our studies include independent verifica-
tion by real-time RT-PCR and ELISA that our microarray 
results obtained have physiological and functional signifi-
cance. We show that subtle liver LBP mRNA changes can 
lead to greater LBP protein expression changes detectable 
in serum. Lastly, our data suggest that LBP may have utility 
as an ERα selective serum biomarker in the clinic. This is 
very valuable given the importance of ERα and ERβ as ther-
apeutic targets. LBP appears to be an ERα selective serum 
biomarker that can be utilized to study and confirm ER sub-
type specific ligands that elicit unique biological responses 
that could play a valuable role in developing novel endo-
crine therapies targeted to the estrogen receptor.
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