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1  | BACKGROUND

Multiple recent studies have reported that insect biomass, abun-
dance, and diversity are in decline over recent decades (Bell, Blumgart, 
& Shortall, 2020; Conrad, Warren, Fox, Parsons, & Woiwod, 2006; 
Hallmann et al., 2017, 2019; Harris, Rodenhouse, & Holmes, 2019; 

Lister & Garcia, 2018; Roth, Zoder, Zaman, Thorn, & Schmidl, 2020; 
Salcido, Forister, Garcia Lopez, & Dyer, 2020; Seibold et al., 2019; van 
Strien, van Swaay, van Strien-van Liempt, Poot, & WallisDeVries, 2019; 
Wepprich, Adrion, Ries, Wiedmann, & Haddad, 2019), but with 
substantial spatial, temporal and taxonomic variation in the exis-
tence and strength of such declines (Macgregor, Williams, Bell, & 
Thomas, 2019; Outhwaite, Gregory, Chandler, Collen, & Isaac, 2020; 
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Abstract
1. Trends in insect abundance are well established in some datasets, but far less 

is known about how abundance measures translate into biomass trends. Moths 
(Lepidoptera) provide particularly good opportunities to study trends and driv-
ers of biomass change at large spatial and temporal scales, given the existence of 
long-term abundance datasets. However, data on the body masses of moths are 
required for these analyses, but such data do not currently exist.

2. To address this data gap, we collected empirical data in 2018 on the forewing 
length and dry mass of field-sampled moths, and used these to train and test a 
statistical model that predicts the body mass of moth species from their fore-
wing lengths (with refined parameters for Crambidae, Erebidae, Geometridae and 
Noctuidae).

3. Modeled biomass was positively correlated, with high explanatory power, with 
measured biomass of moth species (R2 = 0.886 ± 0.0006, across 10,000 boot-
strapped replicates) and of mixed-species samples of moths (R2 = 0.873 ± 0.0003), 
showing that it is possible to predict biomass to an informative level of accuracy, 
and prediction error was smaller with larger sample sizes.

4. Our model allows biomass to be estimated for historical moth abundance data-
sets, and so our approach will create opportunities to investigate trends and driv-
ers of insect biomass change over long timescales and broad geographic regions.
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Shortall et al., 2009). The reasons for such variation are not yet known, 
and it is therefore possible that declines in insect biomass are not al-
ways symptomatic of equivalent declines in abundance, or vice versa. 
Biomass could remain stable even in the face of declining abundance 
if communities became increasingly comprised of larger-bodied spe-
cies (Pöyry et al., 2017). Likewise, changes in community-level biomass 
could be attributable to changes in community composition, even in 
the absence of an overall abundance change. This might occur if insect 
communities became more biased towards larger- or smaller-bodied 
species, for example, through size bias in strength of selection for or 
against particular traits (Coulthard, Norrey, Shortall, & Harris, 2019), 
such as faster or slower life histories, degree of habitat specialization 
(Davis, Õunap, Javoiš, Gerhold, & Tammaru, 2013; Mattila, Kaitala, 
Komonen, Päivinen, & Kotiaho, 2011), or strength of attraction to arti-
ficial light at night (van Langevelde, Ettema, Donners, WallisDeVries, & 
Groenendijk, 2011). However, the dynamics of biomass and of biomass 
change, as well as the relationships between biomass, abundance, spe-
cies richness, and community composition, remain poorly understood 
at large spatial and temporal scales because of a lack of suitable data 
on insect biomass (Macgregor, Williams, et al., 2019).

Opportunities to investigate changes over time and space in insect 
communities are provided by several large-scale, long-term abundance 
datasets for moths (Lepidoptera) in the UK, including the Rothamsted 
Insect Survey (RIS; Storkey et al., 2016), the National Moth Recording 
Scheme (NMRS; Fox et al., 2011), and the Garden Moth Scheme (GMS; 
Bates et al., 2014; Wilson et al., 2018), and elsewhere (e.g., Groenendijk 
& Ellis, 2011; Valtonen et al., 2014, 2017). Two-thirds of British spe-
cies of macro-moths show negative abundance trends in the long-
term (Conrad et al., 2006), with similar patterns observed elsewhere 
in Europe (e.g., Groenendijk & Ellis, 2011; Valtonen et al., 2017). The 
potential drivers of these declines are diverse (Fox, 2013), and likely to 
include habitat loss and fragmentation, agricultural intensification and 
associated agrochemical use, increased prevalence of artificial light 
at night and other factors associated with urbanization, and climate 
change (Fox, 2013; Fox et al., 2014; Gilburn et al., 2015; van Langevelde 
et al., 2018; Morecroft et al., 2009; Wickramasinghe, Harris, Jones, 
& Jennings, 2004). Moths contribute to important ecosystem func-
tions, including nocturnal pollination (Macgregor, Kitson, et al., 2019; 
Macgregor, Pocock, Fox, & Evans, 2015) and energy transfer from 
producers to higher-level consumers (e.g., Franklin, Liebhold, Murray, 
& Donahue, 2003; Hooks, Pandey, & Johnson, 2003; Singer, Farkas, 
Skorik, & Mooney, 2012). Thus, moths can be important to the conser-
vation of their predators, such as bats (Threlfall, Law, & Banks, 2012; 
Vaughan, 1997) and some birds (Denerley et al., 2018; Sierro, Arlettaz, 
Naef-Daenzer, Strebel, & Zbinden, 2001). In transferring energy, the 
quantity of vegetation consumed by caterpillars and the biomass of 
insects available to predators may be functionally important deter-
minants of ecosystem processes (Brose, Berlow, & Martinez, 2005). 
Similarly, the body size of individual species can play a substantial 
role in structuring networks of interspecific interactions (Woodward 
et al., 2005). All of these factors make moths a valuable taxon in which 
to study long-term biomass change at the community level, but bio-
mass data are currently lacking for these analyses.

Existing long-term moth population and distribution datasets 
are potentially a very valuable resource for understanding biomass 
changes, but these datasets record abundance, not measurements 
of body mass or size, and in most cases do not retain specimens (pre-
venting biomass information from being obtained retrospectively). 
To address questions of biomass change using these abundance 
datasets requires reliable body mass data for all species, but such 
empirical data are currently available for only a limited set of spe-
cies (García-Barros, 2015). An alternative approach is to use empir-
ical data from a subset of species to model the expected body mass 
of all species, using some other, more readily available, trait. Such 
models have previously been formulated to predict the body mass 
of moths and other invertebrates from their body length (Höfer & 
Ott, 2009; Sabo, Bastow, & Power, 2002; Sage, 1982; Sample, 
Cooper, Greer, & Whitmore, 1993) and variants thereof (García-
Barros, 2015), chosen because it is easily measurable from museum 
specimens (García-Barros, 2015). However, for moths, body length 
data are not widely available and in any case may be influenced to 
a greater degree by contraction in dried specimens than other traits 
(García-Barros, 2015). The only morphological trait for which exist-
ing data on many species are readily available is forewing length: for 
example, an expected range of forewing lengths is included for all 
British species of macro-moths, and most British species of micro-
moths, in standard field guides (Sterling & Parsons, 2012; Waring & 
Townsend, 2017), and it may therefore be possible to predict body 
mass based on forewing length (Miller, 1997). The existence of sub-
stantial interfamilial variation in body plan (e.g., between Saturniidae 
and Sphingidae; Janzen, 1984) may provide opportunities to use tax-
onomy to fine-tune models, but no previous model has included any 
refinement based on taxonomic relationships between moths.

In this study, we develop a statistical model to estimate the 
body mass of individual moths from their forewing length and hence 
quantify the biomass of samples of moths for which species abun-
dances only have been recorded. We have four aims: (a) collection 
of empirical data (during 2018 on the University of York campus, 
UK) to establish the relationship between forewing length and body 
mass in moths; (b) construction of a predictive model for estimating 
body mass from species identity and associated forewing length, (c) 
testing the accuracy of this model's predictions and how accuracy 
changes with increasing moth abundance, and (d) using existing data 
on forewing lengths to predict the body masses of all British mac-
ro-moths, thus providing a resource to users of moth population data 
and to comparative biologists.

2  | MATERIAL S AND METHODS

2.1 | Field sampling, identification, and 
measurement of moths

We sampled moths at three sites (Appendix S1.1–2) on the University 
of York campus (northern England, UK; 53°56′41″N 1°2′2″W), 
between June 11 and July 20, 2018 (Appendix S2.1). Moths were 
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collected using Heath-style moth traps (Heath, 1965), each oper-
ating a 15 W actinic fluorescent tube and powered by a 12 V bat-
tery (Anglian Lepidopterist Supplies). Moths were euthanized and 
returned to the laboratory for identification and measurement. 
Moths were identified to species level where possible using standard 
field guides (Sterling & Parsons, 2012; Waring & Townsend, 2017). 
Where species-level identification would have required dissection 
of the genitalia, identification was made to aggregate level (e.g., 
Common Rustic agg. Mesapamea secalis/didyma). After identifica-
tion, moths were allowed to air-dry at room temperature for a mini-
mum of 1 week, which was sufficient for the dry body mass of even 
the largest individuals to stabilize (Appendix S1.3, Appendix S2.2). 
After drying, we measured the forewing length and dry mass of each 
moth. Forewing length was measured from wing base to wing-tip, 
using calipers and a ruler, to the nearest 1 mm. Dry mass was meas-
ured using an A&D HR-202 balance (A&D Instruments Ltd.), to the 
nearest 0.01 mg. Measurements were precise to within ±6% of the 
true value (Appendix S2.2).

2.2 | Modeling forewing length–body mass 
relationship from empirical data

To investigate the relationship between forewing length (mm) and 
body mass (mg) in moths, we constructed generalized linear mixed-
effects models (GLMMs) using our 2018 field data, with species as a 
random effect, and body mass explained by the interaction between 
forewing length and taxonomic family. We selected between three 
candidate model structures by comparison of Bayesian Information 
Criterion (BIC) scores: (i) linear predictor (i.e., ln(body mass) ~ wing 
length × family); (ii) nonlinear predictor (i.e., ln(body mass) ~ ln(wing 
length) × family); and (iii) segmented predictor (as for model i, but 
permitting the slope of the model to change once as forewing length 
increases). Finally, we tested the significance of independent varia-
bles, including the interaction between wing length and family, using 
Likelihood Ratio Tests.

To reduce the risk of our predictive model overfitting for families 
represented by only a few species in our dataset (and therefore to 
allow accurate predictions of body mass to be made), we refitted 
this model with a simplified family variable, in which seven families 
represented by fewer than five species in our dataset were grouped 
together as “other” (effectively reducing the family variable from 11 
categories to 5). The four retained families (each with ≥5 species 
sampled) were Crambidae, Erebidae, Geometridae, and Noctuidae, 
allowing the predictive model's parameters to be refined for these 
families, while also making overall predictions for all other families. 
We fitted a GLMM to the dataset as above, using this reduced ver-
sion of the family variable, and extracted all fitted parameters from 
the GLMM to form the predictive model. We did not include infor-
mation on whether individuals were male or female, even though 
male and female moths can differ substantially in size in some spe-
cies, because this information is not recorded in historical abundance 
datasets. Our model therefore used overall slope and intercept to 

predict body mass from forewing length for all moths, with a refined 
prediction for moths from the most speciose (and therefore data 
rich) four families in our dataset.

2.3 | Testing model accuracy

To test the accuracy of this general predictive modeling approach 
when making predictions based on forewing length data from field 
guides, we estimated the body mass of each of the 94 moth species 
in our dataset from its expected forewing length (obtained by tak-
ing the midpoint between minimum and maximum forewing lengths 
given by field guides for micromoths (Sterling & Parsons, 2012) and 
macro-moths (Waring & Townsend, 2017); archived at Zenodo, 
https://doi.org/10.5281/zenodo.3786303), and used these esti-
mates to calculate the estimated biomass of each mixed-species 
sample of moths (where one sample = all moths that were captured 
at the same site on the same day, across multiple traps; n = 44 sam-
ples). We compared between these estimates of biomass and the 
empirically measured biomass of the moths in question. We con-
ducted this testing at both species and sample levels, because rare 
species from rare families are likely to have the least accurate pre-
dictions from our model, but may also have the least impact on the 
accuracy of sample-level predictions.

We first compared between measured and estimated biomass 
for the full set of 600 moths. At both species and sample level, we 
tested the relationship between measured and predicted biomass, 
using model II regressions with a Major Axis approach because nei-
ther biomass variable was dependent upon the other (Legendre & 
Legendre, 2012). Significance of relationships from random was 
tested using one-tailed permutation tests (with 100 permutations), 
and relationships were also compared to the desired y = x (i.e., es-
timated = measured) relationship by calculation of 95% confidence 
intervals around the estimated slope. The strength of the relation-
ships between measured and estimated biomass at species and sam-
ple level was determined by model R2 values.

However, because in this case comparisons were not indepen-
dent of the predictive model (i.e., model accuracy was tested with 
the same data that had been used to fit the model), we also used 
a resampling approach to further test the accuracy of our general 
predictive modeling approach. We split our full dataset 10,000 times 
into training and testing subsets. In each replicate, we randomly se-
lected 480 individual moths (80% of the 600 total individuals) with-
out replacement to form a training subset, with the remaining 120 
individuals forming an independent testing subset. We trained a 
model with the same structure as the full predictive model (above) 
on the training dataset, and from its parameters, extracted estimates 
of species- and sample-level biomass as above for the 120 moths 
included in the testing dataset. We tested the relationship between 
measured and predicted biomass for each replicate as above. Across 
the results of all 10,000 replicates (and at both species and sample 
levels), we then calculated the proportion of replicates for which 
measured and estimated biomass were significantly correlated, the 

https://doi.org/10.5281/zenodo.3786303
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mean and standard error of model R2 values, and the proportion of 
replicates for which the modeled relationship was significantly dif-
ferent from y = x.

Finally, we used a resampling approach to assess the influence 
of moth abundance (i.e., sample size) on prediction error. We ran-
domly sampled sets of individuals (with replacement, from the 
full set of 600 measured individuals) at sample sizes between 10 
and 1,000 in steps of 10, taking 1,000 replicates at each sample 
size for a total of 100,000 replicates. For each replicate sample, 
we calculated the measured biomass and the estimated biomass 
(based on the parameters of the final predictive model). We then 
calculated the prediction error for each sample as a proportion of 
the true biomass, normalizing by subtracting the known prediction 
error of 3.40% in the full dataset (i.e., the total predicted biomass 
of all 600 moths was 3.40% lower than their total measured bio-
mass), such that:

Grouping sample sizes into windows of 100, we calculated the 
mean, standard error, and range of prediction errors observed across 
all replicates in each window.

All statistical analyses were conducted in R version 3.6.1 (R Core 
Team, 2019) using the following packages: lme4 to fit and assess lin-
ear mixed-effects models (Bates, Maechler, Bolker, & Walker, 2015); 
lmodel2 to conduct model II regressions (Legendre, 2018); and gg-
plot2 to plot figures (Wickham, 2016). All R scripts and data used in 
the analysis are archived online at Zenodo (https://doi.org/10.5281/
zenodo.3786303).

3  | RESULTS

3.1 | Field sampling, identification, and 
measurement of moths

We sampled 614 individual moths, of which 13 could not be confi-
dently identified beyond family level (2 individuals from Crambidae, 
1 from Pterophoridae, and 10 from Tortricidae). One micromoth 
(Narycia duplicella [Goeze, 1783], Psychidae) could not be detected 
by our balance (and therefore weighed less than 0.005 mg). These 14 
individual moths were excluded from further analyses. The remain-
ing dataset contained exactly 600 individual moths, representing 94 
species from 11 families (6.6% of all species, or 13.7% of macro-moth 
species, ever recorded in the region (i.e., compared with the UK 
Lepidoptera recording area of Vice-county 61 (southeast Yorkshire), 
which includes the University of York); Appendix S1.4). Among these 
moths, forewing lengths ranged from 7 mm (individuals of Eudonia 
pallida (Crambidae) and Agapeta hamana (Tortricidae)) to 40 mm (an 
individual of Laothoe populi (Sphingidae)) and dry body masses ranged 
from 1.1 mg (an individual of Eupithecia tenuiata (Geometridae)) to 
753.2 mg (an individual of Smerinthus ocellata (Sphingidae)).

3.2 | Modeling forewing length–body mass 
relationship from empirical data

From the three candidate model structures described above, we 
selected the nonlinear predictor (model ii) as the best-fitting model 
(BIC: 360.7, compared to 431.1 and 494.3 for models i and iii, respec-
tively). The natural logarithms of body mass and forewing length 
were significantly related to each other at both species and individ-
ual levels (Figure 1), with variation among the 11 families in the slope 
and intercept of this relationship (individual level: χ2 = 35.9, df = 10, 
p < .001; marginal R2 = 0.819) revealing that interfamilial variation 
in body plan significantly influences the scaling of forewing length 
to body mass.

The significance of the model (and almost all of its explained 
variance) was retained when fitting the simplified model (in which 
seven families represented by <5 species were grouped as “other”; 
χ2 = 30.7, df = 4, p < .001; marginal R2 = 0.812), resulting in a set of 
parameters from which body mass could be predicted based on fore-
wing length (Table 1). All four families retained as independent lev-
els (Crambidae, Erebidae, Geometridae, and Noctuidae) had larger 
intercepts and shallower slopes than the overall prediction across 
the other families (Table 1). Thus, we conclude that the nonlinear 
model with simplified family variable has the greatest potential for 
estimating body mass.

3.3 | Testing model accuracy

We then used our best-fitting model to estimate body masses for all 
94 species as described above, and compared between measured 
and estimated biomass for the full sample of 600 individual moths. 
We found that our estimates of biomass significantly correlated with 
measured biomass at both species and sample levels (Figure 2), even 
though body mass varied widely both within and between species 
(within-species SD of body mass = 34.6 mg, between-species SD of 
body mass = 74.7 mg). At sample level, the relationship between es-
timated and measured biomass was not significantly different from a 
1:1 relationship (Table 2), with 91.5% of variation explained. At spe-
cies level, estimated biomass explained 91.1% of variation. The rela-
tionship was less steep than the expected 1:1 relationship (Table 2) 
with all moths included; however, the 1:1 relationship was recovered 
when we excluded the 34 smallest species from models (i.e., only 
included species weighing >15 mg, n = 60 species). These results in-
dicate that our predictive model may slightly overestimate the body 
mass of very small species of moths, but that this does not substan-
tially bias estimates of sample-level biomass.

To test whether this general predictive modeling approach can 
accurately estimate biomass beyond the sampled individuals and 
species, we split our data 10,000 times into random training (480 in-
dividuals in each case) and testing (120 individuals) subsets. We refit-
ted our final model to the training subset in each case and predicted 
the body masses of individuals in each testing subset. We found 
again that our estimates of biomass significantly correlated with the 

prediction error=

(

100×
predicted biomass−measured biomass

measured biomass

)

−3.4

https://doi.org/10.5281/zenodo.3786303
https://doi.org/10.5281/zenodo.3786303
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measured biomass at both species and sample levels in 100% of rep-
licates (Table 3). At sample level, estimated biomass explained on 
average 88.4% (±SE 0.07) of variation in measured biomass, and was 
not significantly different from a 1:1 relationship in 75.6% of cases 
(Table 3), despite predictive models being built on a substantially 
reduced dataset compared to our final model. At species level, esti-
mated biomass explained 87.4% (±SE 0.03) of variation in measured 
biomass, but the relationship was not significantly different from 
the expected 1:1 relationship in 19.5% of cases (being significantly 
less steep than the expected relationship in the remaining 80.5%: 
Table 3). As above, when we excluded the species weighing <15 mg 
from testing subsets, the relationship was not significantly different 

from 1:1 in 81.3% of cases (Table 3). These results indicate that pre-
dictions made using this approach are likely to remain accurate even 
when predicting beyond the training dataset.

Testing the influence of sample size on prediction error, we found 
that prediction error decreased initially as sample size increased, but 
remained relatively stable for samples larger than approximately 
250 moths (Appendix S1.5). For samples of 10–100 moths, the stan-
dard error of prediction error was 0.13 (range −61.79% to 83.42%), 
whereas for samples of 910–1,000 moths, the prediction error was 
much less variable (SE 0.03, range −9.20% to 10.23%). This indicates 
that sample-level estimates of biomass are especially accurate for 
samples containing >250 moths.

F I G U R E  1   Relationship between 
forewing length (mm) and dry mass (mg). 
In panel (a), the mean forewing length 
and dry mass of each species sampled in 
the study are shown on logarithmic axes, 
with error bars showing standard errors 
and family indicated by the combination 
of point color and shape. In panel (b), the 
forewing length and dry mass of every 
individual moth sampled in the study is 
shown on logarithmic axes, with the four 
most speciose families in our sample 
(Crambidae, Erebidae, Geometridae, and 
Noctuidae) indicated as above by point 
color and shape
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TA B L E  1   Parameters of the predictive model, extracted by fitting a GLMM with the fixed-effects structure: ln(body mass) ~ ln(forewing 
length) × family, to data from 600 individual moths

Family adjustment n species (n individuals) χ2, df (p) Slope estimate (SE)
Intercept 
estimate (SE)

Overall model 94 (600); 11 families 30.7, 4 (<.001) - -

“Other families” (no 
adjustment)

15 (67); 7 families - 3.056 (0.180) −5.016 (0.540)

Crambidae 11 (38) - −0.904 (0.311) 1.361 (0.813)

Erebidae 10 (79) - −0.601 (0.360) 1.294 (1.029)

Geometridae 22 (52) - −0.492 (0.322) 0.344 (0.891)

Noctuidae 36 (364) - −1.297 (0.239) 3.788 (0.694)

Note: The number of measured individuals and species on which each parameter estimate was based is given. Overall model parameters are 
given, including the χ2 and p-values of a likelihood ratio test of the model's overall significance. Family-specific slope and intercept values are 
refinements to be added to the parameters for “other families” (rather than taken in isolation). To predict body mass of a moth from its forewing 
length, these parameters should be applied to the following formula: ln(body mass) = (ln(forewing length) × (“other families” slope + family slope 
adjustment)) + (“other families” intercept + family intercept adjustment).

F I G U R E  2   Accuracy of predicted biomass of moth species and samples of moths compared to the true, measured biomass. (a) Predicted 
dry mass of species (mg) is plotted against mean measured dry mass (mg); the 1:1 relationship is plotted as a blue line, and points are colored 
by the number of individual moths from which the measured mean was calculated. (b) The absolute difference between mean measured 
dry mass and predicted dry mass of each moth species is plotted against the number of individuals from which the measured mean was 
calculated; a horizontal line is plotted at y = 0. (c) Predicted dry mass of samples (mg) is plotted against measured dry mass (mg); the 1:1 
relationship is plotted as a blue line, and points are colored by the number of individual moths contained in the sample. (d) The absolute 
difference between measured and predicted dry mass of each sample of moths is plotted against measured dry mass (mg); a horizontal line is 
plotted at y = 0
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4  | DISCUSSION

Findings from our analyses show a strong relationship between 
forewing length and body mass in moths, which enables predic-
tion (to an informative level of accuracy) of the biomass of sam-
ples of moths when such data are not available (e.g., because 
historical specimens have not been kept). Generating biomass 
data using this approach will provide an additional tool to ongoing 
investigation of the nature and consequences of changes in insect 
populations (Didham, Basset, et al., 2020; Hallmann et al., 2017; 
Macgregor, Williams, et al., 2019) using long-term recording data-
sets. It may also permit the inclusion of estimates of moth body 
mass in comparative studies and trait-based analyses, despite the 
general lack of empirical data of this nature (García-Barros, 2015). 
In particular, these data will facilitate studies of the relation-
ships between biomass, abundance, and community composition 
(Appendix S3), including important ecological questions such as 
whether biomass declines indicate a general decline in the abun-
dance of the majority of species, a severe decline in the biomass of 
a few key species (e.g., Shortall et al., 2009), a shift in community 
composition towards smaller-bodied species, all of the above, or 
something else entirely.

4.1 | Evaluation of the predictive model's 
current and future utility

Overall, the estimates of body mass calculated using the predic-
tive model's parameters performed relatively well during testing, 
with ~90% of variation in measured biomass explained by predicted 
biomass at both species and sample levels, and prediction error de-
creasing as sample size increased (Appendix S1.5). Therefore, using 
estimated body masses from the model (archived at Zenodo, https://
doi.org/10.5281/zenodo.3786303) to calculate the combined bio-
mass of large samples of moths should yield accurate results. Our 
field sample (600 moths of 94 species, representing a relatively small 
proportion of the UK moth fauna) was sufficiently data rich to allow 
refined parameter estimates for four families (Crambidae, Erebidae, 
Geometridae and Noctuidae), but this does not span the full range 
of families or of moth body sizes. Even within these four families, we 
rarely sampled individuals from the largest- or smallest-bodied gen-
era, meaning our study was focussed on (and our estimates extrapo-
lated from) the center of the body size parameter space. Therefore, 
further improvement of the model's accuracy could be made by in-
cluding a wider range of species. However, many species are at low 
abundance in moth-trap samples and so are hard to collect. Museum 

Level Data subset n
Model 
R2

Model 
intercept (95% 
CI)

Model slope 
(95% CI) p

Sample Full dataset 44 0.915 0.275 (−0.310 
to 0.810)

0.952 
(0.865–1.047)

.010

Species Full dataset 94 0.911 0.557 (0.382 to 
0.723)

0.874 
(0.819–0.932)

.010

Species weighing 
>15 mg only

60 0.823 0.168 (−0.311 
to 0.595)

0.964 
(0.853–1.090)

.010

Note: Relationships were tested using a model II regression, and significance was determined by a 
one-tailed permutation test with 100 permutations. The R2 of each model is also given, alongside 
the estimated intercept and slope of each model, with associated 95% confidence intervals.

TA B L E  2   Details of statistical models 
testing the relationships between 
measured biomass and estimated biomass 
at species and sample level for the final 
model

TA B L E  3   Details of bootstrap testing (over 10,000 replicates) of statistical models testing the relationships between measured biomass 
and estimated biomass at species and sample level

Level Data subset
Bootstrap 
replicates

% models 
significant

% models slope not 
equal to 1

Mean model R2 
(SE)

Sample Full dataset 10,000 100 24.4 0.8843 (0.0007)

Species Full dataset 10,000 100 80.5 0.8736 (0.0003)

Species weighing >15 mg 
only

10,000 - 19.5 -

Note: Each model was fitted to a training dataset consisting of 480 randomly selected individuals and tested on the remaining 120 individuals. 
Relationships were tested using a model II regression, and significance was determined by a one-tailed permutation test with 100 permutations. The 
R2 of each model was also taken, alongside the 95% confidence intervals for the estimated slope. Here, the number of replicates (/10,000) for which 
measured and estimated biomass were significantly related is given, as well as the number of replicates for which the 95% confidence intervals for 
the estimated slope did not contain 1 (i.e., y ≠ x). The mean model R2 (and standard error) across all 10,000 replicates is also given. For tests of the 
slope's relationship to 1, all models were retested with the species weighing >15 mg excluded from the testing dataset.

https://doi.org/10.5281/zenodo.3786303
https://doi.org/10.5281/zenodo.3786303
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collections provide opportunities for targeted sampling of particular 
species (accounting for the mass of entomological pins when taking 
such measurements; Gilbert, 2011). Including data for a wider range 
of body sizes, and from rarely trapped families (e.g., Sphingidae) or 
those which have few (e.g., Saturniidae) or no (e.g., Hedylidae) spe-
cies extant in Britain, would allow model accuracy to be increased 
by refining parameter estimates for additional families, at subfam-
ily level (to better account for within-family variation in body plan), 
or potentially through a phylogenetic imputation approach (Penone 
et al., 2014). Nevertheless, estimates of British moth biomass made 
using our approach (Macgregor, Williams, et al., 2019) revealed that 
93.3% of total biomass is comprised of the three macro-moth fami-
lies for which we made refined predictions (Erebidae, Geometridae 
and Noctuidae), so improving prediction accuracy for other families 
(which comprise only a small proportion of each sample) may only 
improve sample-level accuracy of the overall model by a correspond-
ingly small amount.

One source of potential error when using published forewing 
lengths to estimate biomass is that 19% of individuals in our 2018 
dataset had a measured forewing length which was outside the ex-
pected range given by field guides. In 92% of such cases, the moth 
was smaller than expected, suggesting a systematic explanation; for 
example, that forewings shrank slightly during the air-drying pro-
cess, or that published size ranges are based on measurements of 
historical specimens but contemporary individuals are now smaller 
(e.g., due to climate change; Gardner, Peters, Kearney, Joseph, & 
Heinsohn, 2011). Nevertheless, there was a strong overall correla-
tion (R2 = 0.942) between the mean forewing length at species level 
derived from our 2018 empirical measurements and the midpoint of 
the range of forewing lengths for each species, taken from the pub-
lished field guides (Appendix S1.6). This suggests sufficient accuracy 
in our approach, particularly considering that our largest measured 
species had a forewing length 571% larger than that of our smallest 
species. Similarly, the approaches we took to measuring forewing 
lengths (i.e., with analogue callipers and a ruler, to the nearest 1 mm) 
and dry body masses (i.e., after 1 week of air-drying) mean that our 
dataset may not be fully comparable to datasets collected under 
other conditions or using other approaches (e.g., using digital calli-
pers with higher resolution to measure forewing length, or measur-
ing dry body mass after oven-drying). However, since all air-drying 
took place, and all measurements were taken, by the same person 
in the same laboratory over the same 6-week period (and air-dry-
ing for 1 week was shown to be sufficient for the mass of even the 
largest moths to stabilize: Appendix S1.2), these measurements are 
adequate to accurately establish the relative relationships between 
species for both forewing length and dry body mass. Therefore, our 
models can also be safely used to estimate relative change in moth 
biomass over time, or in space, assuming only that the average body 
mass of each individual species does not substantially change over 
the same scales.

An additional source of possible error in our models is sexual 
dimorphism in moths. Some moth species, including some sam-
pled in our study (e.g., Drinker Euthrix potatoria; Lasiocampidae), 

exhibit substantial sexual dimorphism in wing length (Waring & 
Townsend, 2017) and in body mass (Allen, Zwaan, & Brakefield, 2011). 
However, we did not quantify or adjust for sexual dimorphism in this 
study because long-term recording schemes rarely include infor-
mation on sex of individual moths, even for dimorphic species, al-
though the majority of such records are likely to be males (Altermatt, 
Baumeyer, & Ebert, 2009). For estimation of sample-level biomass in 
long-term studies, it is therefore most useful to be able to estimate 
the body mass of an individual of a species, irrespective of sex, and 
so we provide a single average estimate of body mass per species, 
regardless of any size dimorphism. However, further study could ex-
amine the degree to which including information on sex of individual 
moths may improve the accuracy of biomass estimation in light-trap 
samples. Nonetheless, our results suggest that predicting the body 
mass of individuals, irrespective of their sex, does generate reliable 
estimates of sample-level biomass.

4.2 | Future research using our predictive model to 
study biomass change

Questions remain regarding temporal, spatial, and taxonomic vari-
ation in observed biomass declines (Didham, Basset, et al., 2020; 
Macgregor, Williams, et al., 2019; Shortall et al., 2009), the potential 
drivers of these declines (Didham, Barbero, et al., 2020; Grubisic, 
van Grunsven, Kyba, Manfrin, & Hölker, 2018; Komonen, Halme, 
& Kotiaho, 2019), and the challenges of extrapolating across data 
types, geographic locations, and temporal and spatial scales (Didham, 
Basset, et al., 2020; Thomas, Jones, & Hartley, 2019; Wagner, 2019). 
Our study illustrates the power of predictive models of body mass to 
tackle these challenges. Applying these estimates in the same way 
to RIS datasets across the UK over longer timescales, or to other 
long-term moth abundance datasets, such as the National Moth 
Recording Scheme or the Garden Moth Scheme (Bates et al., 2014; 
Fox et al., 2011), will facilitate investigation of declines over longer 
time periods and broader geographical scales than has previously 
been feasible. Moreover, the same general approach could be 
used to estimate body mass of moths in other databases, including 
macro-moth recording schemes from other regions (e.g., the Noctua 
database; Groenendijk & Ellis, 2011) and micromoths, which were 
incorporated into the NMRS in 2016. Combining with similar exist-
ing models for other insect families and invertebrate taxa (Höfer 
& Ott, 2009; Sabo et al., 2002; Sage, 1982; Sample et al., 1993) 
could facilitate comparison of biomass losses across multiple data-
sets and taxa at a global scale. However, researchers using this 
approach should be mindful of the possibility that the mean body 
mass of individual moths might vary geographically (Brehm, Zeuss, & 
Colwell, 2019), between generations for multivoltine species (Teder, 
Esperk, Remmel, Sang, & Tammaru, 2010), or change over time (Wu 
et al., 2019), for example, in response to climate warming (Gardner 
et al., 2011).

Our approach may also be of use for conducting trait-based anal-
yses of moths (e.g., van Langevelde et al., 2018), where it is important 
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that trait data have high precision (Middleton-Welling, Wade, Dennis, 
Dapporto, & Shreeve, 2018). Our predictive model offers a means 
to estimate body mass reproducibly, potentially across multiple 
data sources, using a trait (forewing length) that is straightforward 
to measure using basic equipment, and therefore can be robustly 
applied to other datasets. Previous trait-based analyses have used 
forewing length as a proxy for body size, but we have shown that 
there is interfamilial variation in this relationship (Figure 1), which 
can be incorporated by using our approach. However, an appropriate 
level of caution is advised before applying our specific estimates of 
body mass to systems where the moth fauna is markedly different 
in size, or otherwise distinct, from that used to construct our model 
(i.e., chiefly night-flying UK macro-moths). For example, studies in-
corporating records of primarily day-flying families (e.g., Sesiidae), 
micromoths, or large tropical species should consider carefully 
whether it would be more appropriate to generate a new, regionally 
and taxonomically specific predictive model by using this approach.

5  | CONCLUSIONS

We have developed a predictive model to estimate the dry body 
mass of moths based on their forewing length, using it to generate 
body masses for all British species of macro-moth. The predictions 
of sample biomass made by our model correlated strongly with 
measured biomass of the same samples (R2 = 0.915), indicating that 
this approach provides a robust way to estimate the biomass of sam-
ples of moths identified to species level. Our approach unlocks new 
opportunities to study trends in moth biomass over time and over 
large geographic regions.
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