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Abstract: Despite their comparable performance to commercial solar systems, lead-based perovskite
(Pb-perovskite) solar cells exhibit limitations including Pb toxicity and instability for industrial
applications. To address these issues, two types of Pb-free materials have been proposed as alternatives
to Pb-perovskite: perovskite-based and non-perovskite-based materials. In this review, we summarize
the recent progress on solar cells based on antimony/bismuth (Sb/Bi) chalcohalides, representing Sb/Bi
non-perovskite semiconductors containing chalcogenides and halides. Two types of ternary and
quaternary chalcohalides are described, with their classification predicated on the fabrication method.
We also highlight their utility as interfacial layers for improving other solar cells. This review provides
clues for improving the performances of devices and design of multifunctional solar systems.
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1. Introduction

Since the Snaith group reported the 10.9% milestone power conversion efficiency (PCE)
required for industrial applications for lead-based perovskite (Pb-perovskite) solar cells in 2012 [1],
many types of Pb-perovskite solar cells have been fabricated, with performance significantly improving
over the past few years [2–7]. At present, the certified PCE exceeds 25% [8], approaching the
theoretical maximum efficiency for multi-junction Pb-perovskite solar cells [9]. This efficiency is also
comparable to those of commercial solar systems based on Si, CdTe, and Cu(In,Ga)Se2. Moreover,
high-performance Pb-perovskite solar cells can be manufactured through solution processing at a
low temperature of <150 ◦C, which can reduce costs. Therefore, these characteristics make them
the most promising alternative to current photovoltaic systems. However, Pb-perovskite solar cells
exhibit limitations for commercialization, with potential health problems and stability being the two
main barriers [6,7,10–15]. In particular, Pb can be easily released from the Pb-perovskite because of
its instability, which can cause major health problems [10–15]. Although techniques of material and
interface engineering, surface passivation, and encapsulation can significantly improve the stability
of Pb-perovskite [7,15–17], thereby minimizing the Pb loss, the persistent toxicity problem requires
attention to enhance commercialization.

To address these issues, many researchers have focused on finding Pb-free and stable materials
with comparable optoelectronic properties. The Pb-free photovoltaic materials proposed as alternatives
to date are presented in Table 1. Replacing Pb by tin (Sn) or germanium (Ge), with similar ionic
radius and belonging to the same group of the periodic table, in Pb-perovskites is a simple method
for fabricating Pb-free materials while maintaining the perovskite structure. These materials are
known as Pb-free perovskites. In particular, Sn-based perovskites ASnX3 (A = Cs+, organic cations;
X = Cl, I, and Br) exhibit properties comparable to those of Pb-perovskites such as optimal band gaps
(Egs) of 1.1–1.4 eV, high carrier mobilities, long carrier lifetimes, and long diffusion lengths [10,11].
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Thus, many researchers have devoted attention to developing Sn-based perovskite solar cells [10,11].
Consequently, a record PCE of 11.4% was achieved through the FASnI3 (FA = CH5N2

+) solar cell by
introducing a phenylhydrazine hydrochloride [18]. However, Sn-perovskites still involve the serious
disadvantage of rapid decomposition because Sn is readily oxidized from the +2 to +4 state on exposure
to air [10,11]. Another approach for fabricating Pb-free perovskites involves replacing two Pb2+ ions
with ions of two metals with oxidation states of +1 and +3 to form double perovskites represented as
A2MIMIIIX6 [12,19], with the Cs2AgBiBr6 as a typical example. Alternatively, the two Pb2+ ions are
replaced by a tetravalent metal ion, such as Sn4+ or Ti4+, forming compounds with the general formula
A2MIVX6 [12,20]. Such compounds are termed vacancy-ordered double perovskites, with the Cs2SnI6 as
a prime example. In addition, two-dimensional (2D) perovskites A3MIII

2 X9 are produced by replacing
the Pb2+ ions with trivalent metal ions such as Sb3+ or Bi3+ [15,21]. Although these Pb-free double
and 2D perovskites display significant stability improvement over Pb- and Sn-perovskites, efficiency
remains a limitation.

Table 1. Types of Pb-free photovoltaic materials and their best photovoltaic performance data.

Metal (M) Ions Chemical Compound Record Device Performance

PCE Material Ref.

Perovskites

Sn2+, Ge2+ Perovskite/AMX3 11.4% FASnI3 [18]

Ag+, Bi3+ Double
perovskite/A2MIMIIIX6

2.84% Cs2AgBiBr6 [19]

Sn4+ Vacancy-ordered double
perovskite/A2MIVX6

3.28% Cs2TiBr6 [20]

Sb3+, Bi3+ 2D perovskite/A3MIII
2 X9 3.34% MA3Sb2I9−xClx [21]

Sb/Bi-based
non-perovskites

Sb3+ Sb chalcogenides/M2Ch3,
CuMCh2

10.5% Sb2(S,Se)3 [22]

Sb3+, Bi3+
Ternary

chalcohalides/MChX,
M13Ch18X2

4.07% Sb0.67Bi0.33SI [23]

Sn2+, Pb2+,
Sb3+, Bi3+

Quaternary
chalcohalides/MII

2 MIIICh2X3
4.04% Sn2SbS2I3 [24]

PCE—power conversion efficiency.

Apart from these Pb-free perovskites, antimony/bismuth (Sb/Bi)-based non-perovskites are another
alternative to Pb-perovskites. Unlike perovskites, most of these non-perovskites crystallize in a layered
structure, with the layers linked by weak van der Waals forces. This anisotropic crystal structure
provides unique and interesting properties that can significantly affect photovoltaic performance [25–27].
To date, many Sb/Bi non-perovskites for solar cells have been reported, and these comprise two types,
according to elemental composition. The first type is the Sb chalcogenides involving an orthorhombic
structure, such as the Sb2Ch3 and CuSbCh2 (Ch = S, Se). In fact, studies on these as photovoltaic
materials predates those of Pb-perovskites because of their promising properties, such as the tunable Eg
values of 1.0–1.8 eV, high visible light absorption coefficient, stability, low toxicity, and earth-abundant
constituents [25,26]. Although varied engineering methods and device architectures have been
employed to achieve high-efficiency for Sb chalcogenide solar cells, the performances of these cells
remained below the 10% milestone until 2018 [26–35]. However, recently, a PCE of 9.2% was obtained
from the [001]-oriented Sb2Se3 nanorod solar cells [36], and finally, a PCE of 10.5% was reported by
Chen’s group from the hydrothermally deposited Sb2(S,Se)3 thin film solar cells [22,37].

Sb/Bi chalcohalides represent the other type of Sb/Bi non-perovskites, comprising Sb/Bi-based
semiconductors containing halides and chalcogenides. Following the initial application of Sb sulfoiodide
(SbSI) in solar cells by the Seok group in 2018 [38], multiple Sb/Bi chalcohalide solar cells have been
proposed. Thus far, the materials investigated for use in solar cells include ternary (MChX and
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M13Ch18X2, where M = Sb, Bi) [23,38–53] and quaternary chalcohalides (MII
2 MIIICh2X3, where MII = Sn,

Pb; MIII = Sb, Bi) [24,54]. These chalcohalides commonly exhibit advantageous properties that can be
adjusted for use in solar cells. In particular, the electronic structure of the most studied MChX family
is similar to that of Pb-perovskites, with beneficial properties for solar cells such as high dielectric
constant, low effective mass, and tunable Eg [39,42–44,55]. Therefore, high-performance MChX solar cells
comparable to Pb-perovskite cells are expected due to these properties. Recently, the Seok group reported
a PCE of 4.07% for Sb0.67Bi0.33SI solar cells, highlighting the high-efficiency potential for the MChX
family [23]. In addition, the MChX family is suitable for other applications including the fabrication
of room-temperature radiation detectors and p-type transparent conductors [39]. This wide-ranging
applicability facilitates designing multifunctional devices. In addition to the MChX family, PCEs of
0.85% and 4.04% have been reported for solar cells based on M13Ch18X2 and MII

2 MIIICh2X3, respectively.
However, the highest PCE achieved for Sb/Bi chalcohalide solar cells remains at around 4%, although
the performance has significantly improved over the past few years.

Here, we focus on Sb/Bi-based chalcohalides, including emerging solar material such as MChX
compounds, since this type of non-perovskites lack a comprehensive review. Therefore, an up-to-date
review summarizing the rapid development of Sb/Bi chalcohalide solar cells and highlighting future
research directions is necessary. In this review, we aim to summarize the advances in Sb/Bi chalcohalide
solar cells research. To this end, we briefly introduce the crystal and energy band structures of
Sb/Bi chalcohalides. Then, we classify these materials based on the fabrication method and discuss
their photovoltaic performances. Furthermore, we highlight their usage as interfacial layers for
enhancing solar cells. This review presents a step toward the production of high-performance Pb-free
non-perovskite chalcohalide solar cells. Note that we have excluded perovskite-based chalcohalide
such as (CH3NH3)SbSI2 [56] from this review.

2. Crystal and Energy Band Structures of Sb/Bi Chalcohalides

In this section, the crystal and energy band structures of Sb/Bi chalcohalides used to date for solar
cells are briefly presented. Depending on the number of elements and composition, Sb/Bi chalcohalides
with different structures can be created, as shown in Table 2. The ternary chalcohalides employed for
solar cells are the MChX and M13Ch18X2 types. The MChX type, such as SbSI and BiSI, involves the
orthorhombic structure with the Pnma space group, crystallizing into an [(MChX)2]n double-chained
structure, with the adjacent chains joined by van der Waals forces [57,58]. Conversely, the M13Ch18X2

type such as the Bi3S18I2 possesses a hexagonal structure with a ribbon-shaped (M4Ch6)∞ subunit.
The M4Ch6 subunits form six spokes around the central hexagonal channel at the corners of the
unit cell, with iodine in between [53,58]. For the quaternary chalcohalides (MII

2 MIIICh2X3), such as
Pb2SbS2I3 and Sn2SbS2I3, crystallization produces the orthorhombic structure with the Cmcm space
group [24,54,59].

Table 2. Summarized data for the structural properties of Sb/Bi chalcohalides used for solar cells.

Chemical Formula Structure/Space Group Typical Materials Ref.

Ternary
chalcohalides

MChX Orthorhombic/Pnma SbSI, BiSI [23,38–47,49,58]

M13Ch18X2 Hexagonal/P63 Bi13S18I2 [53,58]

Quaternary
chalcohalide MII

2 MIIICh2X3 Orthorhombic/Cmcm Pb2SbS2I3,
Sn2SbS2I3

[24,54,59]

To employ Sb/Bi chalcohalides in solar cells, the energy band structure deserves priority because
of its importance in light harvesting and conversion. Specifically, the Eg should be checked because
it determines the maximum PCE achievable for each material according to the Shockley–Queisser
limit [60,61]. Thus, materials with an Eg value between 1.10 and 1.55 eV are preferred for solar cells.
Figure 1 displays the energy band diagram of typical Sb/Bi chalcohalides reported to date. The positions
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of the conduction band minimum and valence band maximum as well as the Eg value vary depending
on the elemental composition and number of elements. Along with the chalcohalides shown in Figure 1,
Sb/Bi chalcohalides exhibit Eg values varying from 0.75 eV for Bi13S18I2 [53] to 2.31 eV for SbSBr [42].
These results indicate that their band structures can be tuned via chemical substitution, and that the
electron transporting layer (ETL) and hole transporting layer (HTL) applications necessitate selectivity
for each solar cell depending on the chalcohalide used. In addition to the band structures, other factors
such as the optical absorption strength, charge effective mass, dielectric constant, and defects require
consideration [44,61]. However, research on these remains insufficient, and this highlights the need for
further studies.
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Figure 1. Energy band diagram of typical Sb/Bi chalcohalides. The SbSI, Sb0.67Bi0.33SI, BiSI, Pb2SbS2I3,
and Sn2SbS2I3 energy levels were obtained from [23,38,47,54] and [24], respectively. For comparison,
the energy levels for typical conducting oxides (F-doped SnO2 (FTO) and In-doped SnO2 (ITO)), the electron
transporting layer (ETL), and hole transporting layer (HTL) are included. P3HT, PCPDTBT, and F8
denote poly(3-hexylthiophene), poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-
alt-4,7-(2,1,3-benzothiadiazole)], and poly(9,9-di-n-octylfluorenyl-2,7-diyl), respectively.

3. Theoretical Insights on Sb/Bi Chalcohalides as Solar Absorbers

Theoretical calculations, such as first-principle methods, provide further insight into the potential
of specific materials (e.g., as solar absorbers) and clues for designing device structures. However,
the research on such theoretical investigations is very limited because Sb/Bi chalcohalide solar cells are
still in their early stages of development compared to the Pb-perovskite cells. Thus, in this section,
theoretical insights into only the most studied MChX family are briefly introduced.

Based on the first-principle calculations, Brandt et al. identified the MChX family as promising
solar absorbers due to its low effective masses, large dielectric constants, and strong absorption,
as shown in Table 3 [62]. They further found that BiSI and BiSeI are most suitable for achieving
high-performance solar cells because of their much stronger spin-orbit coupling. The suitability of
these Bi compounds for solar cells was also confirmed by other groups [39,43,44,63]. Ganose et al.
suggested that the conducting oxide and HTL should be selected for efficient charge transfers by
considering the electron affinity (EA = 4.9–5.0 eV) and ionized potential (IP = 6.2–6.4 eV) of these Bi
chalcohalides, respectively [43]. They also concluded from the defect analysis that these Bi compounds
represent intrinsic semiconductors regardless of fabrication conditions, making them best suited for
application in p-i-n device architecture [44].

Butler et al. analyzed the band structures of SbChX (SbSI, SbSeI, and SbSBr) by different calculation
methods [42,55]. The effective masses were calculated to be below 0.65, indicating that SbChX have
high charge carrier mobilities suitable for solar cells. They also found that the SbSBr have deeper IP
energy (5.8 eV) than that of I-containing SbChX (5.3 eV for SbSeI and 5.4 eV for SbSI). This different
IP energy suggests that contacting layers such as ETL and HTL should be selected depending on the
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halide ion of SbChX for optimal device performance [42]. For example, the contacting layers used in
Cu2ZnSnS4 (CZTS) can be applied to SbSBr solar cells due to their similar IP value with that of CZTS.
In addition, a heterojunction structure composed of SbSI/SbSBr with SbSBr epitaxially grown on SbSI
was proposed for efficient charge separation based on their closely matched lattice parameters and
band offsets [55].

Table 3. Summary of effective masses of hole (mh*) and electron (me*), static dielectric constant, and
absorption coefficient of MChX family, calculated by different methods.

MChX
Compounds mh* me* Static Dielectric

Constant
Absorption
Coefficient 1 References

Pb-perovskite 2 0.10 0.16 20.07 >1 × 105 cm−1 [61,62]

BiSI 0.61–4.79 0.53–2.33 14.26–71.32 >1 × 105 cm−1 [39,44,62,63]

BiSeI 0.81–5.89 0.25–1.61 14.78–62.82 >1 × 105 cm−1 [39,44,62,63]

SbSI 0.27–2.06 0.21–1.25 10.56–69.38 - [42,55,62–64]

SbSeI 0.57–4.37 0.35–1.83 14.70–57.18 - [42,55,62–64]

SbSBr 0.24–3.55 0.51, 0.52 13.81–105.15 - [42,55,63,64]
1 Absorption coefficient values at visible region are presented. 2 Data of (CH3NH3)PbI3 are shown as typical of
Pb-perovskites for comparison.

4. Sb/Bi Chalcohalide Solar Cells Fabrication

The fabrication of high-quality materials with adequate morphologies and properties is essential
for manufacturing high-performance solar cells. However, methods for producing Sb/Bi chalcohalide
solar cells are scant, with those existing lacking the optimization necessary to provide high-efficiency
solar cells. Therefore, developing methods to control and optimize the properties of chalcohalides
suitable for solar cells is imperative. Sb/Bi chalcohalides used for solar cells are prepared by many
techniques including spray pyrolysis [40], spin coating [24,45–47,51], solvothermal synthesis [49,53],
and mixed techniques [23,38,48,65]. In this section, the fabrication methods reported to date are
categorized and described, with the solar cells fabricated presented by the method in Table 4.

Table 4. Summary of Sb/Bi chalcohalides fabricated for solar cells using varied methods.

Method Chalcohalide Device Structure
PCE (%)/JSC

1

(mA·cm−2)/VOC
2

(V)/FF 3
Ref.

One-step
deposition

Bi(S,Se)I FTO/Pt/CuSCN/Bi(S,Se)I/FTO 0.01/0.07/0.39/0.4 [40]

BiSI Au/F8/BiSI/SnO2/FTO 1.32/8.44/0.45/0.35 [46]

SbSI Au/PEDOT:PSS 4/PCPDTBT/Sb2S3-SbSI/
mp-TiO2/TiO2-BL/FTO

2.91/12.0/0.47/0.52 [51]

Sn2SbS2I3 Au/PCPDTBT/Sn2SbS2I3/mp-TiO2/TiO2-BL/FTO 4.04/16.1/0.44/0.57 [24]

Two-step
deposition

SbSI Au/PCPDTBT/SbSI/mp-TiO2/TiO2-BL/FTO 3.05/9.11/0.58/0.58 [38]

Sb0.67Bi0.33SI Au/PEDOT:PSS/PCPDTBT/Sb0.67Bi0.33SI/
mp-TiO2/TiO2-BL/FTO 4.07/14.54/0.53/0.53 [23]

SbSI Au/PCPDTBT/SbSI/mp-TiO2/TiO2-BL/FTO 3.62/9.26/0.6 /0.65 [65]

SbSI Au/P3HT/SbSI/TiO2-BL/FTO 0.93/5.45/0.55/0.31 [45]

BiSI Au/P3HT/BiSI/TiO2-BL/FTO - [47]

BiSI ITO/CuSCN/BiSI/W 0.66/2.73/0.46/0.53 [49]

Pb2SbS2I3 Au/PCPDTBT/Pb2SbS2I3/mp-TiO2/TiO2-BL/FTO 3.12/8.79/0.61/0.58 [54]

Oxyhalides
conversion Bi(S,Se)(I,Br) No device - [41]

Mixed
sonication-heating SbSI Carbon/ZrO2/SbSI/mp-TiO2/TiO2-BL/FTO 0.04/0.05/0.29/0.31 [48]
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Table 4. Cont.

Method Chalcohalide Device Structure
PCE (%)/JSC

1

(mA·cm−2)/VOC
2

(V)/FF 3
Ref.

Sonochemical
method SbSI Au/P3HT/SbSI-PAN/TiO2 NP/ITO - [50]

Solvothermal
method Bi13S18I2 Pt/Electrolyte/Bi13S18I2/mp-TiO2/TiO2-BL/FTO 0.85/3.82/0.58/0.38 [53]

1 JSC, 2 VOC, 3 FF, and 4 PEDOT:PSS indicate short-circuit current density, open-circuit voltage, fill factor, and
poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), respectively; BL—blocking layer.

4.1. One-Step Deposition

In the one-step method, Sb/Bi chalcohalides are directly deposited using a precursor solution
by the spray or spin-coating techniques. Hahn et al. deposited Se-doped BiSI films by spraying a
precursor solution on a pre-heated F-doped SnO2 (FTO) substrate at 275 ◦C [40]. The Se doping levels
were controlled by adjusting the concentration of thiourea (TU) and SeO2 in the precursor solution.
They found that the morphology changed from microscale rods to cube-like structures as the Se
amount increased (Figure 2a). The optical Eg decreased linearly with increasing Se content, as shown
in Figure 2b. Then, the researchers applied these Bi(S,Se)I films for solar cell fabrication, obtaining a
PCE of 0.012% for an FTO/Pt/CuSCN/BiSI/FTO device.
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Recently, Tiwari et al. applied the spin coating technique to the one-step method in fabricating BiSI
films [46]. They used a molecular solution synthesized by dissolving Bi(NO3)2·5H2O, TU, and NH4I in
a 2-methoxyethanol and acetylacetone mixture for the spin coating. Using this method, flake-shaped
BiSI films were produced (Figure 3). To apply these films to solar cells, they used SnO2 and F8 as the
ETL and HTL, respectively, obtaining a PCE of 1.32% for an Au/F8/BiSI/SnO2/FTO device (Figure 3b).
Similarly, Nishikudo et al. used an Sb(EtX)3 single crystal for a spin coating based on the one-step
method [51]. To fabricate SbSI solar cells, the solution, synthesized by dissolving the Sb(EtI)3 single
crystal and SbI3 in dimethyl sulfoxide, was spin-coated onto a mesoporous TiO2 (mp-TiO2)/TiO2

blocking layer (TiO2-BL)/FTO substrate and annealed at 200–240 ◦C. Then, the HTL and Au were
sequentially deposited. The Sb2S3-containing SbSI structure obtained at 240 ◦C exhibited better device
performance than that with the SbSI. Furthermore, thiophene-containing HTL such as the poly[2,6-(4,4-
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bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (PCPDTBT)
and poly(3-hexylthiophene) (P3HT) was reported to significantly contribute to improving device
performance. As a result, they obtained an impressive PCE of 2.91% from the Sb2S3-containing SbSI
device involving the PCPDTBT HTL, and the device showed good stability under high humidity
(Figure 3c–f). In addition to ternary MChX, the one-step spin-coating method is usable in fabricating
quaternary chalcohalides (MII

2 MIIICh2X3). Recently, Nie et al. synthesized a precursor solution by
dissolving SbCl3, TU, and SnI2 in N,N-dimethylformamide [24]. Then, the solution was spin-coated on
mp-TiO2/TiO2-BL/FTO and annealed to fabricate quaternary Sn2SbS2I3 nanostructures. The as-prepared
Sn2SbS2I3 displayed a suitable Eg of 1.41 eV, while the Sn2SbS2I3 device showed a PCE of 4.04% and
good stability against humidity.

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 15 

 

from the Sb2S3-containing SbSI device involving the PCPDTBT HTL, and the device showed good 
stability under high humidity (Figure 3c–f). In addition to ternary MChX, the one-step spin-coating 
method is usable in fabricating quaternary chalcohalides (Mଶ୍୍M୍୍୍ChଶXଷ ). Recently, Nie et al. 
synthesized a precursor solution by dissolving SbCl3, TU, and SnI2 in N,N-dimethylformamide [24]. 
Then, the solution was spin-coated on mp-TiO2/TiO2-BL/FTO and annealed to fabricate quaternary 
Sn2SbS2I3 nanostructures. The as-prepared Sn2SbS2I3 displayed a suitable Eg of 1.41 eV, while the 
Sn2SbS2I3 device showed a PCE of 4.04% and good stability against humidity. 

 
Figure 3. Images and plots for Sb/Bi chalcohalides fabricated by the one-step method based on the 
spin-coating technique showing: (a) structure and surface morphology; (b) photovoltaic device 
performance for BiSI films fabricated by Tiwari et al. [46]. Adapted with permission from ACS Appl. 
Energy Mater. 2019, 2, 3878–3885. Copyright 2019 American Chemical Society [46]. (c) Surface 
morphology image of Sb2S3-containing SbSI; (d–f) the device performance. Adapted with permission 
from Chem. Mater. 2020, 32, 6416–6424. Copyright 2020 American Chemical Society [51]. 

4.2. Two-Step Deposition Method 

In the two-step deposition method, chalcogenides (M2Ch3) are fabricated (step 1) and then 
converted into chalcohalides (MChX) through the reaction of M2Ch3 and MX3 (step 2). This reaction 
is expressed in Equation (1). 

M2Ch3 + MX3 → 3MChX, (1) 

This deposition method was first applied by the Seok group for fabricating SbSI solar cells 
(Figure 4a) [38]. In step 1, amorphous Sb2S3 was deposited on an mp-TiO2/TiO2-BL/FTO substrate by 
chemical bath deposition (CBD), accompanied by crystallization at 300 °C. Then, the crystalline Sb2S3 
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Figure 3. Images and plots for Sb/Bi chalcohalides fabricated by the one-step method based on
the spin-coating technique showing: (a) structure and surface morphology; (b) photovoltaic device
performance for BiSI films fabricated by Tiwari et al. [46]. Adapted with permission from ACS
Appl. Energy Mater. 2019, 2, 3878–3885. Copyright 2019 American Chemical Society [46]. (c) Surface
morphology image of Sb2S3-containing SbSI; (d–f) the device performance. Adapted with permission
from Chem. Mater. 2020, 32, 6416–6424. Copyright 2020 American Chemical Society [51].

4.2. Two-Step Deposition Method

In the two-step deposition method, chalcogenides (M2Ch3) are fabricated (step 1) and then
converted into chalcohalides (MChX) through the reaction of M2Ch3 and MX3 (step 2). This reaction is
expressed in Equation (1).

M2Ch3 + MX3→ 3MChX, (1)

This deposition method was first applied by the Seok group for fabricating SbSI solar cells
(Figure 4a) [38]. In step 1, amorphous Sb2S3 was deposited on an mp-TiO2/TiO2-BL/FTO substrate by
chemical bath deposition (CBD), accompanied by crystallization at 300 ◦C. Then, the crystalline Sb2S3

was converted to SbSI by multiple cycles of spin coating with an SbI3 solution, followed by annealing
(step 2). A PCE of 3.05% was obtained from an Au/PCPDTBT/SbSI/mp-TiO2/TiO2-BL/FTO solar cell.
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Furthermore, they fabricated Bi-alloyed SbSI, i.e., Sb0.67Bi0.33SI, using a BiI3 solution instead of SbI3

in step 2 (Figure 4b) [23]. This material absorbs more light, producing a higher short-circuit current
density because of its narrower Eg (1.67 eV) than SbSI. Thus, a better PCE (4.07%) was obtained for
the Sb0.67Bi0.33SI solar cell compared to the SbSI-based cell. However, this method is time-consuming
because it requires multiple cycles in step 2 to obtain complete sulfoiodides. In addition, the resulting
films were not completely homogeneous. To overcome these limitations, they introduced an SbI3

vapor process instead of the SbI3 solution process in step 2 (Figure 4c), enabling the production
of SbSI with improved homogeneity without repeating step 2 [65] and yielding a better PCE of
3.62% for SbSI solar cells. The study by the Seok group clearly demonstrated a two-step method for
fabricating different chalcohalides. However, inherent limitations of the CBD process, such as the
formation of impurities and difficulty in controlling the ratio [28,31], may limit the controlled growth
of chalcohalides. In addition, factors such as morphology and thickness, which are critical for planar
devices, were not considered because the study was optimized for the mesoporous device architecture.
Therefore, developing a two-step method allowing the controlled growth of chalcohalides for the
planar device architecture remains a challenge.
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impurity formation [31]. Then, we used a high-concentration solution to lower the need for multiple 
cycles in step 2, and this modified method is illustrated in Figure 5a. We found that the Sb/S ratio of 
the solution used in step 1 significantly affected surface coverage (Figure 5b–d). The annealing 
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Figure 4. (a) Schematic illustration of the two-step method for SbSI fabrication. Adapted from [38],
with permission from John Wiley and Sons, 2017; (b) Structure, absorption, and X-ray photoelectron
spectroscopy properties of the Sb0.67Bi0.33SI. Adapted from [23], with permission from John Wiley and
Sons, 2019; (c) Schematic illustration of the two processes utilized in step 2 of the SbSI fabrication.
Adapted from [65], with permission from John Wiley and Sons, 2019.

To apply the two-step method to the planar device architecture, a thin film covering the entire
surface is necessary. This is because incomplete surface coverage reduces the ability to absorb light
and creates the shunt paths, thereby degrading the device performance [66]. We confirmed the
feasibility of forming a compact thin film using a two-step method. We introduced an SbCl3-TU
method instead of the CBD method in step 1 [45], enabling control of the Sb/S ratio and minimizing
impurity formation [31]. Then, we used a high-concentration solution to lower the need for multiple
cycles in step 2, and this modified method is illustrated in Figure 5a. We found that the Sb/S ratio of the
solution used in step 1 significantly affected surface coverage (Figure 5b–d). The annealing conditions
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of step 2 also contributed to controlling the crystallinity. Then, a compact SbSI thin film with high
crystallinity was obtained with an Sb/S specific molar ratio of 1:3 at 200 ◦C, and an impressive PCE
of 0.93% was achieved by the SbSI device. This method allowed us to fabricate pure-phase SbSI thin
films and to control morphology and structure. Our method can also be applied for fabricating other
chalcohalides such as BiSI [47]. To fabricate BiSI films, we introduced a Bi2O3-TU solution based on a
thiol–amine solvent and BiI3 solution in steps 1 and 2, respectively (Figure 5e). Using this method,
nanorod-based BiSI films with an Eg value of 1.61 eV were obtained (Figure 5f,g). Recently, Xiong et
al. also reported the fabrication of BiSI nanorods arrays based on a two-step method [49]. However,
their method involved the solvothermal synthesis instead of spin coating in each step, as illustrated
in Figure 6a. The BiSI nanorods were fabricated by immersing Bi2S3-deposited tungsten (W) foil in
an autoclave containing BiI3 solution and subsequent heating. Compared to the spin coating-based
two-step process [47], the as-prepared nanorods exhibited a similar Eg value of 1.57 eV but showed
preferential [010] orientation. To fabricate solar cells, a p-type CuSCN and an In-doped SnO2 (ITO)
were sequentially deposited on the BiSI surface, yielding a PCE of 0.66% (Figure 6b).
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license [45], copyright 2018, The Authors. Adapted from [45], from AIP Publishing, 2018. (e) Schematic
diagram of the two-step method for BiSI fabrication. Diagrams showing the (f) structure and (g) absorption
properties of the samples fabricated after step 1 and 2. Adapted under the terms and conditions of the
CC BY license [47], copyright 2019, The Authors. Adapted from [47], from MDPI AG, 2019.
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13488–13496. Copyright 2020 American Chemical Society [49].

The two-step method is also suitable for fabricating the quaternary Pb2SbS2I3. Nie et al. deposited
a nanostructured Pb2SbS2I3 with an Eg of 2.19 eV on an mp-TiO2/TiO2-BL/FTO substrate [54] for solar
cells by modifying the two-step method used for SbSI fabrication [38]. In the modified method, step
1 was identical to that in the SbSI fabrication, whereas a PbI2 solution was used in step 2. Through
optimization, the best PCE obtained from the Au/PCPDTBT/Pb2Sb2S2I3/mp-TiO2/TiO2-BL/FTO device
was 3.2%. These results imply that the two-step method can be simply applied for fabricating Sb/Bi
chalcohalides by selecting an appropriate source or reagent in each step.

4.3. Other Methods

In addition to the two methods described above, Sb/Bi chalcohalides are fabricated using other
approaches. Kunioku et al. reported a low-temperature method based on Bi oxyhalide (BiOX) particles
for fabricating Bi chalcohalides (BiChX) [41]. The BiChX were fabricated by substituting Ch2− for the O2−

of BiOX particles under H2(S,Se) gas. Thus, Bi chalcohalides such as BiSI, BiSeI, BiSSeI, and BiSBr1−xIx

were obtained by adjusting the starting BiOX and gas type, as shown in Figure 7a. This method
enabled BiChX fabrication with controllable Eg at low temperature (<150 ◦C). BiSI and BiSeI have
also been fabricated by a ball milling method [52]. In addition, one-dimensional SbSI nanostructures
were independently manufactured using a mixed sonication–heating method [48] and sonochemical
synthesis [50]. Recently, Li et al. fabricated a new type of ternary Bi chalcohalide, the tetragonal
Bi13S18I2, in addition to BiSI, with both controlled by adjusting the mole ratio of CH4N2S/BiI3/CH3NH3I
(CH3NH3I = MAI) in the solution used in the solvothermal process (Figure 7b) [53]. They found
that a pure Bi13S18I2 structure can be obtained from the conversion reaction of BiSI over 6 h at a
CH4N2S/BiI3/MAI ratio of 4:2:3. The Bi13S18I2 device exhibited a PCE of 0.85% (Figure 7c), demonstrating
the potential of Bi13S18I2 as a light absorber for solar cells.



Nanomaterials 2020, 10, 2284 11 of 15

Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 15 

 

 
Figure 7. (a) Structures of the BiSBr1−xIx obtained from BiOBr1−xIx under H2S gas at 150 °C. Adapted 
under the terms and conditions of the CC BY license [41], copyright 2016, the authors. Adapted from 
[41], from Springer Nature, 2016. Structure and device performance for the Bi-S-I compounds 
synthesized by the solvothermal method: (b) Plot showing the effects of the CH4N2S/BiI3/MAI molar 
ratio including (1) 1:2:3, (2) 2:2:3, (3) 3:2:3, (4) 4:2:3, and (5) 8:2:3 on structures. (c) Schematic diagram 
and J–V curves of Bi13S18I2 solar cells. Adapted from [53], with permission from Royal Society of 
Chemistry, 2020. 

5. Sb/Bi Chalcohalides as Interfacial Layer 

In addition to being used as light absorbers in solar cells, Sb/Bi chalcohalides can be also used as 
interfacial layers. Yoo et al. used BiSI as an interlayer in a BiI3 solar cell at the interface between the 
ETL and BiI3 light absorber [67]. The BiSI layer was formed in situ on the ETL surface by the reaction 
of In2S3 and BiI3 at 200 °C during BiI3 deposition. The BiSI interlayer greatly improved the hole 
transfer from BiI3 to HTL, improving the PCE to 1.21%. Other chalcohalides can also serve as 
interlayers. According to the Seok group, the SbSI interlayer formed on the Sb2S3 surface provides an 
energetically favorable driving force for photogenerated carriers [65]. Thus, the SbSI-interlayered 
Sb2S3 device showed better performance than the Sb2S3 device, with the best PCE of 6.08%. 

6. Summary and Outlook 

In this review, we summarized the recent progress on the fabrication of Sb/Bi chalcohalide solar 
cells by focusing on the fabrication methods. Two types of Sb/Bi chalcohalides have been 
manufactured as Pb-free solar absorbers for solar cells by one-step, two-step, and other methods. The 
first involves ternary chalcohalides (MChX and M13Ch18X2), while the other comprises quaternary 

Figure 7. (a) Structures of the BiSBr1−xIx obtained from BiOBr1−xIx under H2S gas at 150 ◦C. Adapted
under the terms and conditions of the CC BY license [41], copyright 2016, the authors. Adapted
from [41], from Springer Nature, 2016. Structure and device performance for the Bi-S-I compounds
synthesized by the solvothermal method: (b) Plot showing the effects of the CH4N2S/BiI3/MAI molar
ratio including (1) 1:2:3, (2) 2:2:3, (3) 3:2:3, (4) 4:2:3, and (5) 8:2:3 on structures. (c) Schematic diagram
and J–V curves of Bi13S18I2 solar cells. Adapted from [53], with permission from Royal Society of
Chemistry, 2020.

5. Sb/Bi Chalcohalides as Interfacial Layer

In addition to being used as light absorbers in solar cells, Sb/Bi chalcohalides can be also used
as interfacial layers. Yoo et al. used BiSI as an interlayer in a BiI3 solar cell at the interface between
the ETL and BiI3 light absorber [67]. The BiSI layer was formed in situ on the ETL surface by the
reaction of In2S3 and BiI3 at 200 ◦C during BiI3 deposition. The BiSI interlayer greatly improved the
hole transfer from BiI3 to HTL, improving the PCE to 1.21%. Other chalcohalides can also serve as
interlayers. According to the Seok group, the SbSI interlayer formed on the Sb2S3 surface provides
an energetically favorable driving force for photogenerated carriers [65]. Thus, the SbSI-interlayered
Sb2S3 device showed better performance than the Sb2S3 device, with the best PCE of 6.08%.

6. Summary and Outlook

In this review, we summarized the recent progress on the fabrication of Sb/Bi chalcohalide solar
cells by focusing on the fabrication methods. Two types of Sb/Bi chalcohalides have been manufactured
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as Pb-free solar absorbers for solar cells by one-step, two-step, and other methods. The first involves
ternary chalcohalides (MChX and M13Ch18X2), while the other comprises quaternary chalcohalides
(MII

2 MIIICh2X3). Maximum PCEs of 4.07% and 4.04% were obtained from the ternary Sb0.67Bi0.33SI and
quaternary Sn2SbS2I3 solar cells, respectively. In addition, ternary BiSI and SbSI acted as interfacial
layers in solar cells, contributing to enhanced charge transfer. Although Sb/Bi chalcohalides with
excellent stability have been proposed over the past few years, their PCEs still significantly lag
behind those of Pb-perovskites. Therefore, an in-depth comprehensive investigation into the intrinsic
and extrinsic factors affecting device performance is required. The impact of material composition,
morphology, device architecture, crystal orientation, and interfacial layer, as well as the factors affecting
performance degradation and device stability, also require detailed examination to further improve the
performance of devices [61,66,68].
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