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A B S T R A C T

Motivation: The analysis of circulating cell-free DNA (cfDNA) holds immense promise as a non-invasive diagnostic
tool across various human conditions. However, extracting biological insights from cfDNA fragments entails
navigating complex and diverse bioinformatics methods, encompassing not only DNA sequence variation, but
also epigenetic characteristics like nucleosome footprints, fragment length, and methylation patterns.
Results: We introduce Liquid Biopsy Feature extract (LBFextract), a comprehensive package designed to
streamline feature extraction from cfDNA sequencing data, with the aim of enhancing the reproducibility and
comparability of liquid biopsy studies. LBFextract facilitates the integration of preprocessing and postprocessing
steps through alignment fragment tags and a hook mechanism. It incorporates various methods, including
coverage-based and fragment length-based approaches, alongside two novel feature extraction methods: an
entropy-based method to infer TF activity from fragmentomics data and a technique to amplify signals from
nucleosome dyads. Additionally, it implements a method to extract condition-specific differentially active TFs
based on these features for biomarker discovery. We demonstrate the use of LBFextract for the subtype classi-
fication of advanced prostate cancer patients using coverage signals at transcription factor binding sites from
cfDNA. We show that LBFextract can generate robust and interpretable features that can discriminate between
different clinical groups. LBFextract is a versatile and user-friendly package that can facilitate the analysis and
interpretation of liquid biopsy data.
Data and Code Availability and Implementation: LBFextract is freely accessible at https://github.com/Isy89/LBF. It
is implemented in Python and compatible with Linux and Mac operating systems. Code and data to reproduce
these analyses have been uploaded to 10.5281/zenodo.10964406.

1. Introduction

Analyses of circulating cell-free DNA (cfDNA), i.e. the analysis of
naturally occurring short DNA fragments in bodily fluids like blood and
urine, are increasingly being adopted for the identification, diagnostic
assessment and surveillance of various pathological and physiological
states in humans [1–5]. This gain in traction can be attributed to many
factors that are fueling the growth of the cfDNA field, such as the

increasing prevalence of cancer [6], rising preference for non-invasive
procedures, various advantages of liquid biopsies, i.e. diagnostic ap-
proaches using samples of bodily fluids, over standard tissue biopsies,
favorable government initiatives, and growing public and private in-
terest. However, the bioinformatics approaches to harvesting the
inherent biological information from cfDNA fragments are becoming
more sophisticated and complex. The cfDNA field has begun to extend
beyond the analysis of observed DNA sequence variation, such as single
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nucleotide variants (SNVs) and somatic copy number alterations
(SCNAs). For example, several studies employing nucleosome position
mapping have now provided evidence that cfDNA reflects nucleosome
footprints and coverage profiles at regulatory regions such as tran-
scription start sites (TSS) and transcription factor binding sites (TFBS)
have been employed for the inference of gene expression, cancer
detection and tissue deconvolution [7–10]. Various works have shown
that the cellular nucleosomal architecture significantly influences DNA
fragmentation, creating distinct patterns in not only the length of the
fragments, but also the frequency and type of specific motifs, which have
also been used for cancer detection and classification [11–17]. The
extraction of epigenetic alterations, such as cfDNA fragment length,
diverse cfDNA fragment patterns, methylation markers, and signals at
open chromatin regions, will play an important role in the development
of more advanced liquid biopsy technologies [18,19]. Although this
development of cfDNA-derived features is rapidly evolving and indi-
vidual methods of feature extraction involve similar steps, a package
that offers a straightforward and extendable collection of feature
extraction methods that enables experiment reproducibility and
comparability is currently lacking. A variety of bioinformatics tools are
available to calculate diverse types of genomic coverage measures,
spanning from bin-wise genomic read coverage like BEDtools [40,41] to
region-specific fragment coverage like DeepTools [36]. In the liquid
biopsy field, new methods aimed at enhancing the signal derived from
nucleosome dyads have been proposed [9,14,20–22]. However, these
specialized methods are mostly provided as part of workflows, inter-
twined with preprocessing and GC bias correction steps, which hinders
their reusability. In Liquid Biopsy Feature extract (LBFextract), we
provide diverse feature extraction methods based on whole-genome
sequencing (WGS) coverage. Further, we provide an easy way to inte-
grate GC bias correction methods in the form of alignment fragment
tags, compatible with software like GCparagon [23], while
remainingtool-agnostic, thus making this step uncoupled from the
LBFextract feature extraction methods. To this end, in LBFextract, we
implement commonly used coverage strategies like midpoint coverage,
used in the Griffin package [21], and read coverage, proposed in [9], but
generalizing them with a user-defined number of bases to retain from
each fragment. We further implement a new method, which we call
coverage around dyads (CAD), with the aim of enhancing the signal
derived from nucleosome dyads through a better modelling of nucleo-
some position on DNA fragments. We also included several feature
extraction methods to extract different types of fragment length distri-
butions (FLD) and fragment length ratios (FLR), which provide orthog-
onal information to coverage-based features as well as new
entropy-based fragmentomics features. Through a hook mechanism,
we provide entry points to integrate extra pre- and postprocessing steps,
i.e., plugins, allowing to use third-party software to customize the way
reads are collected, how they are transformed, the process of signal
extraction as well as the way genomic ranges are normalized. Finally,
LBFextract provides a way to identify condition-specific statistically
significant transcription factor (TF) signals and their enrichment anal-
ysis, enabling condition-specific biomarker discovery from liquid biopsy
WGS data. In the first part of this article, we present the package
structure, followed by a description of the feature extraction methods. In
the final part, we provide a demonstration of a clinical use case of this
package for the extraction of coverage signals at TFBSs for subtype
classification in the context of advanced prostate cancer (PC) (Fig. 1).

2. Materials and methods

2.1. Package structure

LBFextract has been developed as a plugin system (Supp. Fig. 1) in
which several hooks define entry points that a user can use to customize
the workflow without having to reimplement code or functionality that
the package or other plugins already implement. To achieve this, it uses

Pluggy [24], a python package that allows the user to change the
behavior of the host program. In this context, the modification of the
behavior is defined as python functions called hooks, which are loaded
and registered at runtime and change or exchange certain parts of the
host program. We developed two types of hooks: Command line inter-
face (CLI) hooks and workflow-specific hooks. Using the CLI hooks, a
user can implement CLI-plugin commands that are registered at instal-
lation time and are made available through the CLI as LBFextract sub-
commands. The workflow-specific hooks allow the customization of
different steps of the default workflow. Specifically, we implemented the
following hooks: fetch_reads, save_reads, load_reads, transform_reads,
transform_single_intervals, transform_all_intervals, save_signal, plot_-
signal and save_plot. The read fetching hook handles binary sequence
alignment map (BAM) files, generally done by retrieving specific regions
of interest defined in one or multiple browser extensible data (BED) files.
As most feature extraction methods rely both on the start and end in-
formation of DNA fragments, the current version of LBFextract supports
only paired-end WGS data, provided as BAM files. LBFextract is
sequencing platform-agnostic and supports any BAM file generated by
aligners that adhere to the SAM format specification and implement the
observed template length as TLEN#1. The way reads are saved and
loaded is defined by the save_reads and the load_reads hooks. Signal
extraction methods are implemented as transform_single_intervals
hooks, which handles the extraction of the signal in each region defined
in the BED file. The transform_all_intervals hook is available for trans-
formations requiring all genomic intervals as an input. The save_signal
hook defines the way extracted signals are stored. Finally, signal-specific
plots can be defined in the plot_signal hook and saved with the save_plot
hook.

2.2. Feature extraction methods

LBFextract defines a set of feature extraction methods, which can be
divided into coverage and fragmentomics-based methods. Recent work
has described diverse types of coverage signals that can be derived from
cfDNA. Here, we implemented coverage (fragment coverage, midpoint
coverage, middle-n points coverage, coverage around the dyad, sliding
coverage, central 60 bp-coverage) as well as fragmentomics signals
(Windowed Protection Score (WPS), FLD and FLR). A central aspect of
LBFextract is the introduction of a novel feature extraction method
defined as coverage around dyads (CAD) and novel entropy-derived
features such as entropy and relative fragment entropy (RFE).

To better describe the feature extraction methods, we introduce a
mathematical notation for a BED file, DNA fragments and DNA frag-
ments relative to a genomic interval.

We define a BED file as a multiset of genomic intervals gi:

G = {g : g = [gs, ge) : gs, ge ∈ Z+ ∪ 0, gs < ge} (1)

where gs, ge represent the start and end of a genomic interval g.
and the set of all fragments present in a sample as F:

F = {f : f = [fs, fe) : fs, fe ∈ Z+ ∪ 0, fs < fe} (2)

where fs and fe represent the start and end of fragments respectively.
Further, let g be a target region, we define f g as the set of all positions of
fragment f overlapping interval g expressed relative to interval g, which
can be defined as:

f g = {i : i − gs ∀i ∈ f ∩ g} (3)

and Fg as the multiset of all f g overlapping an interval g

Fg = {f g : ∀f ∈ F} (4)

Hereafter, all intervals g will be considered to have the same length
defined as w, which is by default set to 4000, which corresponds to

± 2000 bp around the TFBS center.
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Fig. 1. Workflow showing the application of LBFextract for prostate cancer subtype biomarker discovery. A) Prostate cancer (PC) samples are diluted to 20x
coverage and 20 % tumor fraction (Supplementary Info). B) TFBSs per TF are retrieved by the GTRD database. C) Coverage- and fragmentomics-based features are
extracted from cfDNA WGS data using LBFextract. D) Example of features extracted with LBFextract. E) Pre-defined set of features per TF are used and down
projected to a lower dimensional space using PCA. This is followed by clustering to extract PC subtypes. F) Differential TF binding activity analyses are performed to
extract condition-specific TFs. Further enrichment analyses are performed to place the detected differentially active TFs into context.
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2.2.1. Coverage
In fragment coverage, information concerning paired reads is used to

infer the length of a fragment and the coverage at a specific position is
defined as the number of fragments overlapping a given position. Here,
positions covered by a fragment are those spanning from the left-most
start to the right-most end of two mates in a read pair. This is
different from read coverage, which considers positions of sequenced
nucleotides, without taking overlaps or missing segments between the
paired-end reads into account, thus possibly introducing an artifact. For
any 0 ≤ l ≤ w, define cg

l to be the coverage at position l in genomic in-
terval g relative to interval g defined as:

cg
l =

∑

fg∈Fg1l∈fg (5)

and cg ∈ Rw to be the coverage of interval g defined as:

cg =
(
cgl
)w− 1

l=0 (6)

the coverage profile for all regions in a BED file can be described as:

c =

(
1
|G|
∑

g∈G
cg

l

)w− 1

l=0

(7)

in which c ∈ Rw.

Fig. 2. Comparison of coverage signals of cfDNA samples obtained for the same individual at two time points (P148_1 and P148_3). a) Normal coverage b)
Coverage around dyads c) Midpoint coverage d) Middle-n points coverage e) Sliding window coverage. The figure shows the respective overlays of 1000 sites for the
AR TF and highlights a difference between these samples around the central location of the considered windows, suggesting regions of open chromatin in P148_1 that
are absent in P148_3.
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Midpoint coverage is calculated as the number of fragments having
their central position located at a certain genomic position. If

⌊(fe − fs)
2 ⌋ − gs ∈ [0,w) then define the midpoint to be:

mg
f = ⌊

(fe − fs)
2

⌋ − gs (8)

Then, formula 5 changes to:

cg
l =

∑

f ∈ F

l = mg
f

1 (9)

This measure might be problematic, as coverage at each position is
dramatically decreased by what could be considered an extreme in silico
trimming of reads. Instead of midpoint coverage, n positions around the
middle of each fragment might be used, which in LBFextract is called
middle-n points coverage. To define this, let n be the number of positions

around m and we can then describe f̂
g
as the subset of f representing the

positions around the midpoint of f and F̂
g

the multiset of all f̂
g
map-

ping to a genomic interval g:

f̂
g
n =

[
mg

f − n, mg
f + n

)
(10)

F̂
g
n =

{
f̂

g
n : ∀f ∈ F

}
(11)

Then, the middle-n points coverage at position l with respect to
genomic interval g can be defined as:

cg
l =

∑

f̂
g
n∈F̂g

n
1l∈f̂

g
n

(12)

Midpoint coverage and middle-n points coverage have been widely
used to extract information concerning nucleosome positioning [21].
The middle points are assumed to be the location of the nucleosome
dyads, which represent the most protected part of the DNA wrapped
around nucleosomes. While this might generally be true for fragments
shorter than 250 base pairs (bp), it is not true for longer fragments, i.e.
> 250 bp. Indeed, the fragment midpoint of poly-nucleosomal struc-
tures like di-nucleosomes falls within the unprotected region between
two nucleosomes, interfering with proper nucleosome dyad localization
(Supplementary Methods). To avoid this problem, we implemented
“coverage around dyads” (Supp. Fig. 2). This method takes into
consideration the presence of poly-nucleosomal structures and models
the probability of each read coming from a n or n + 1 poly-nucleosomal
structure (Supplementary Information, Algorithm 1 lines 7–8). This is
used to reconstruct the size of each fragment before degradation (Sup-
plementary Information, Algorithm 1 lines 13–17), which in turn is used
to better place the position of the dyad and obtain a stronger
nucleosome-derived signal (Supplementary Information, Algorithm 1
lines 18–22).

The fragment size of mono-nucleosomal-derived cfDNA is deter-
mined from the FLD in the pre-defined region
chr12:34300000–34500000. This region, located at the centromeric
portion of chromosome 12, is characterized by highly phased nucleo-
somes (Supp. Figure 8), the absence of TSS, as per the GRCh38.p13
annotation file (release 38) provided by the GENCODE project, and the
presence of only 16 TFBS (Supp. Figure 8). Consequently, the influence
of open chromatin regions on the FLD shape is expected to be minimal.
Additionally, the presence of phased nucleosomes in this region has been
previously shown [7,8,25,26].

Sliding coverage is beneficial when the average depth of coverage is
low, as it helps to smooth the signal and mitigate the impact of artifacts,
such as drops in coverage at individual positions. This calculation in-
volves applying a moving average over each genomic interval to
determine the coverage at each position. Special consideration is given
to the edges of the coverage vector, where the size of the sliding window

must be adjusted accordingly to prevent exceeding the vector bound-
aries (i.e. when l = w − 1, n needs to be adjusted to 1). Finally, the
sliding coverage for all genomic intervals in a BED file is averaged at
each position. This process can be mathematically described as follows:

cnsliding =

(
1
|G|
∑

g∈G

1
min(w − l, n) + 1

∑min(w− l, n)

i=0
cg

i+l

)w− 1

l=0

(13)

where n is the window parameter with a default of 4 bp.
Central 60 bp-coverage (Supp. Fig. 2) introduced in [9], trims 53

bases from both fragment sides and uses 60 bp from each side for
coverage calculation. We generalized this, introducing two variables
(default [53,113]) describing the range of bases that should be retained.

Profiles of each interval defined in the BED files are further
normalized to the mean coverage of the flanking regions. Let r be the
length of the flanking region, then the normalization step can be defined
as follows:

cgnorm =

⎛

⎜
⎜
⎜
⎝

cl*r*2
∑r− 1

j=0
cj +

∑w− 1

j=w− 1 − r
cj

⎞

⎟
⎟
⎟
⎠

w− 1

l=0

(14)

2.2.2. Windowed Protection Score (WPS)
Further, we implemented the WPS introduced in [7], which quan-

tifies the protective effect of nucleosomes in a genomic region by
assigning a score to each position. This score is determined by the count
of fragments that entirely cover the span of a window centered on a
genomic position, subtracted by the number of fragments that begin/-
terminate within that window.

This can be represented as follows:

wps =

(
1
|G|
∑

g∈G
wpsg

l

)w

l=0

(15)

wpsg
l = (cg

l − s
g
l ) − c̃

g
i (16)

in which wps ∈ Rw, c ∈ Rw is the coverage vector for genomic interval g
calculated using a multiset of trimmed fragments corresponding to:
{

f :
(
fs +v, fe − v

)
∀f ∈ F

}
, w is the length of the genomic interval by

default set to 4000, c̃g
i is the running median coverage vector, and sg

defined as:

sg =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

x ∈ Tg
v

l ∈ x

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

w− 1

l=0

(17)

is the vector with the coverage of the genomic intervals corresponding to
a window v surrounding the start and the end of each fragment, which
are represented by the multiset T:

Tg
v =

{
tgv : ((fs − v, fs + v) ∪ (fe − v, fe + v)) ∩ g∀ f ∈ F

}
(18)

Profiles of each interval defined in the BED files are further
normalized as done for the coverage-based signals (Formula 14).

2.2.3. Fragment length distribution
Recently, there has been a growing utilization of fragmentomics

features [26,27]. For example, the ratio between long and short frag-
ments has been used for cancer prediction [11,13] or for determining the
proportion of placental cfDNA [28]. To improve upon these methods, we
provide the possibility to extract the full distribution of fragment lengths
per position given the genomic intervals in one or multiple BED files. To

I. Lazzeri et al.
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calculate this, for all fragments F in BED file G, the fragment length
distribution at position i di can be defined as:

di =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
|F|

∑

f∈F

length(f)=p

i∈f

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

pe

p=ps

(19)

where ps is the minimum fragment length to be considered and pe the
maximum. For each BED file containing the regions of interest, a matrix
D = [d0, d1, .. . , dw− 1] in which w represents the length of the regions, is
generated. By describing fragments as a set of positions, we can define
different types of fragment length distributions. For example, in

“coverage around dyads”, we described how inferred dyad locations are
used in the set of positions rather than the fragment itself. The same
principle can be applied to FLD feature extraction methods. To this end,
we implemented the FLD around dyads, the FLD around the midpoint,
the middle-n points FLD, and the central 60 bp FLD.

2.2.4. Entropy and relative fragment entropy (RFE)
Previously, it was shown that fragmentation patterns at active TSSs

change, resulting in higher diversity of fragment lengths with respect to
DNA-protected regions. Prior work described a peak in the fragment
length distribution around 160 bp as well as a correlation with RNA
expression levels of individual genes [29]. For this approach, termed
epigenetic expression inference from cfDNA-sequencing (EPIC-seq),
coverages of about 500x to 2000x are required, which are reached
through hybrid capture-based targeted deep sequencing.

We hypothesized that higher diversity of fragment lengths may not

Fig. 3. Fragment length distributions (FLD) per position minus the FLD in the flanking regions (fFLD) at androgen receptor (AR)-specific TFBSs. a) FLD -
fFLD P148_1. b) FLD - fFLD P148_3. c) RFE per position at AR-specific TFBSs smoothed with Savitzky-Golay filter.
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only apply to TSSs, but also to TFBSs, where nucleosome displacement
and depletion occurs. Therefore, we defined a way to extract an entropy
signal from genomic shotgun data as a measure of TF activity. To
overcome the problem of low depth of coverage at each position for
typical sequencing data, we use multiple regions, such as multiple TFBSs
representing the same TF. At a coverage of 20x, this results in an average
number of twenty thousand reads per position for TFs with 1000 TFBSs
along the genome. We implemented an entropy and a normalized en-
tropy signal.

The former calculates the entropy of the fragment lengths at each
position. Given a random variable E which takes values defined in the set
O = {i : i ∈ [ps, pe)} distributed according to Pl : O→dl, entropy at po-
sition l can be defined as:

El = −
∑

x ∈O
Pl(x)⋅logPl(x) (20)

The latter, RFE, calculates the divergence in the fragment length
distribution at each position over genomic intervals and the fragment
length distribution in the flanking regions.

This can be defined as:

RFEl = DKL(Ql|F) =
∑

x ∈ O
Ql(x)⋅log

(
Ql(x)
F(x)

)

(21)

Where l represents the genomic position, Ql represents the fragment
length distribution at position l and F is the fragment length distribution
in the flanking region.

At genuine TFBSs, we expect higher fragmentation than in the
flanking regions where DNA is expected to be protected by nucleosomes.
The FLD in the central part of the TFBS should differ from the FLD in the
flanking region and therefore the RFE should show a peak in the center
for TFs possessing higher activity (Supp. Fig. 3).

To avoid effects due to differences in coverage between positions, the
same number of reads is used to calculate the entropy and the RFE
signals at each position.

2.3. Differentially active genomic intervals

In LBFextract, we implemented a way to calculate differentially
active genomic regions for which, in the case of activity, a peak or a dip
is expected in the central part of the region. The general procedure is
summarized in Algorithm 2 (Supplementary Information). In the first
part, the algorithm extracts the features f for each TF t from a sample’s
BAM file (line 7–9). Subsequently, it calculates the accessibility of each
feature and applies an appropriate statistical test (line 10–23). It uses the
accessibility values of each TF grouped according to a label vector l,
which assigns each sample to a specific group. Correction for multiple
testing is applied to adjust for the higher probability of observing sta-
tistically significant results when testing multiple groups and multiple
TFs. Finally, for all TFs that were found to be differentially active, an
enrichment analysis is retrieved through the STRING API.

3. Results

3.1. Difference in androgen receptor signaling in prostate cancer and
castration resistant prostate cancer

Our previous work utilized tissue and cancer type-specific chromatin
accessibility datasets to identify tissue-dependent TFBS accessibility
patterns and we found evidence that nucleosome footprints in cfDNA are
informative of TFBSs [9]. In addition, we demonstrated that TFs are
amenable to molecular PC subtyping, which is an important issue in the
management of PC [30]. More specifically, we focused on the phe-
nomenon of transdifferentiation of prostate adenocarcinoma (PRAD) to
a treatment-emergent small-cell neuroendocrine prostate cancer
(t-SCNC), which is a frequent mechanism in the development of treat-
ment resistance against androgen deprivation therapy (ADT), and

constitutes a subtype that is no longer dependent on androgen receptor
(AR) signaling [31]. The ability to detect this critical transition in lon-
gitudinal sampling has clinical implications, i.e. as it indicates a change
in therapy is needed [30]. The involvement of TFs in this trans-
differentiation process to neuroendocrine prostate cancer (NEPC) has
been extensively studied [31–33]. Also, we have previously leveraged
this information to confirm transdifferentiation events in our PC cohort
(Supplementary Methods) [9]. Herein, we use LBFextract to reproduce
our previous findings and expand on them by extracting not only
coverage, but also fragmentomic features at diverse TFBSs of TFs
involved in this transdifferentiation. We apply the differential activity
analysis provided by LBFextract to shed light on subtype-specific TFs. To
demonstrate the validity of these signals and their potential, we show-
case a previously described patient P148 [8]. Within 12 months, the
time interval between collection of the samples P148_1 and P148_3, the
PRAD transdifferentiated to a t-SCNC, which was accompanied by a
clinical observation of a decrease of prostate-specific antigen (PSA) and
an increase of neuron-specific enolase (NSE). We look at AR chromatin
accessibility via coverage and FLDs at TFBSs of AR for P148. To reduce
confounding effects like tumor fraction and coverage, which may bias
the analysis, we additionally performed in silico dilutions for both
samples to a 20x coverage and 20 % tumor fraction (Supplementary
Information). We retrieved TFBSs from the Gene Transcription Regula-
tion Database (GTRD v21.12), sorted them based on the number of peaks
supporting each meta-cluster, removed TFBSs belonging to sex-related
chromosomes and retained the top 1000 TFBSs. In doing so, we ob-
tained 1058 TFs with 1000 TFBSs each (Fig. 1).

By analyzing general coverage at AR-specific TFBSs with the
LBFextract extract_coverage method, we observed the expected central
increase in the normalized coverage in P148_3 relative to P148_1,
showing the reduced AR activity (Fig. 2a-e). By analyzing the coverage
signal with extract_coverage_around_dyads, we were also able to observe
the peaks flanking the central positions of the TFBSs in the case of
P148_1, which indicates the presence of nucleosome phasing, which was
not observed using normal fragment coverage. Furthermore, these peaks
were found to be absent for P148_3, suggesting reduced AR binding to
the TFBSs and therefore a decreased phasing of the neighboring nucle-
osomes (Fig. 2b).

The same could be observed from fragmentomics features. When
looking at the FLD 2000 bp around the TFBS of AR (Fig. 3), from which
we subtracted the signal of the FLD in the flanking regions (fFLD), an
increased diversity in fragmentation patterns towards the center of the
TFBS at fragment lengths above 180 bp can be observed in P148_1
(Fig. 3a), which is almost absent in P148_3 (Fig. 3b). Furthermore, a
decreased representation of the fragment lengths around 166 bp toward
the center of the TFBS is visible in the case of P148_1 (light blue region in
Fig. 3a), while less pronounced in P148_3. Similarly, this information is
captured by the RFE (Fig. 4, Fig. 3c), which exploits the difference be-
tween the distribution in the flanking regions and the one at each po-
sition. A higher RFE value at AR for sample P148_1 is evidence for a
higher diversity in fragment lengths at the center of the TFBSs. Because
peaks or valleys are not dependent on coverage here, but only on the
fragment length, the information contained in the FLD or entropy-
derived signals offers a unique perspective on TF-specific TFBS chro-
matin states.

3.2. Coverage around dyads and relative fragment entropy: analysis of
signal while varying tumor fraction

In this work, we investigate metastatic prostate cancer (mPC) sam-
ples and showcased our newly implemented measures on samples that
had been previously in-silico diluted to reach a tumor fraction of 20 %
and an average coverage of 20x, which represent an average case for our
mPC cohort. Here, we analyzed the coverage around dyads (CAD) and
relative fragment entropy (RFE) signals while varying the tumor fraction
from 1 % to 30 %. Interestingly, we observed that the efficacy of our
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Fig. 4. Relative fragment entropy for TFs involved in the transdifferentiation process (i.e., AR, FOXA1/2, FOXG1, GATA2/3, GRHL2, HOXB13, NKX2–1,
NKX3–1, SRF) as well as TFs involved in hematopoiesis (LYL1, TAL1).

Fig. 5. Heatmap of the accessibilities of differentially active TFs found in the HAR and LAR clusters. a) Dot-plot of the adjusted p-values. b) Dot-plot of the
pseudo log2 fold changes. c-e) Heat maps of the signals in the HAR (c, d) and LAR clusters (e). Bars on the left represent the clustering according to semi-supervised
clustering (SDCL) and k-means (KMCL), respectively.
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metrics—RFE and CAD—varies with different transcription factors
(TFs). We observed distinct relationships between signal strength and
tumor fraction, with the signal’s intensity or attenuation exhibiting
unique patterns. Specifically, hematopoietic TFs demonstrate an inverse
relationship, where signal strength diminishes as the tumor fraction
increases. In contrast, tumor-specific TFs exhibit a direct relationship,
with signal strength enhancing as the tumor fraction rises. Additionally,
certain TFs show a consistent signal regardless of the tumor fraction.

The accompanying figures (Supp. Figure 10, Supp. Figure 11)
elucidate these relationships by plotting our two metrics against varying
tumor fractions for sample P148_1. For instance, LYL-1, a hematopoietic
TF, exhibits a decline in coverage and entropy signals with increasing
tumor fraction. Conversely, FOXA1 and AR, both tumor-specific TFs,
display robust signals at a 0.3 tumor fraction, which attenuate as the
tumor fraction decreases, with AR’s signal vanishing at a tumor fraction
of 0.05. Interestingly, the signal for NKX3–1 remains detectable at a
tumor fraction of 0.03, while the signal for NKX2–1 remains relatively
stable across varying tumor fractions.

This suggests that binding activity plays a major role in the limit of
detection when using different metrics and, for some TFs, signal atten-
uation happens faster for the RFE metric than for CAD.

3.3. Characterization of androgen receptor high and low signal-specific
TFs in advanced prostate cancer

Despite the presence of samples with high and low AR signals, it is
essential to emphasize that the signal patterns are not uniform and
sampled from at least two distributions. Further, we postulate the ex-
istence of PC subtypes characterized by high and low AR signals within
our cohort (n = 23). To further explore this theory, we applied semi-
supervised and k-means clustering methods to detect different sub-
groups, detecting 2 and 3 clusters respectively. With this aim, in the
semi-supervised approach, we selected samples P148_1 (PRAD) and
P148_3 (NEPC), which display high and low AR coverage signals,
respectively, as prototypes for high AR (HAR) and low AR (LAR) clus-
ters. To make use of prior knowledge, we expanded the sets of TFs with
those found to be differentially active in NEPC and PRAD in [20] and
[8]. We obtained a final set of TFs for the neuroendocrine subtype
composed of: AR, FOXA1, NKX3–1, HOXB13, GRHL2, ASCL1, GATA2
and HNF4G. Each PC sample was assigned to its nearest cluster proto-
type (lowest Euclidean distance). This generated an HAR cluster
(n = 15), characterized by the presence of a valley around the TFBSs
centers of AR (Supp. Fig. 5a), FOXA1 (Supp. Fig. 5b), NKX3–1 (Supp.
Fig. 5c), HOXB13 (Supp. Fig. 5d), GRHL2 (Supp. Fig. 5f) and HNF4G
(Supp. Fig. 5i) and an LAR cluster (n = 7), characterized by flatter
profiles for the same TFs. We extracted coverage signals for all 1058 TFs
and assessed differences in TF activities between clusters using the
Mann-Whitney U test. After correction for multiple testing using the
Benjamini-Hochberg method (multipletests function in python stats-
model package [34]), we rejected all null hypotheses with an adjusted-p
value lower than 0.05. From the first analysis between HAR and LAR
groups, we found 53 TFs with significantly increased accessibility
(Table 1). Most of the TFs nominated for the initial clustering data-
set—with the exception of ASCL1—were also found to be present within
the list of differentially active TFs, which supports the validity of the
initial set of TFs. Concurrently, we observed genes which were previ-
ously shown to be linked to the AR CRPC subtype, such as AR and
FOXA1, at the top of the list of differentially active TFs. AR, which has a
statistically relevant 1.06 log2 fold downregulation in the LAR cluster,
belongs to the steroid hormone group of nuclear receptors and was
shown to have a central role in PC development and progression.
FOXA1, which was identified as downregulated in our analysis, is a
pioneer TF that plays a pivotal role in partnering with AR to promote its
attachment to chromatin. Remarkably, prior research revealed the role
of FOXA1 as a suppressor of neuroendocrine differentiation and links its
downregulation to the promotion of NEPC progression [35] and

reprogrammed activity in NEPC [36]. We further detected HNF4G as
being significantly upregulated (adjusted p-value 0.0035, 1.77 log2 fold
change) in the HAR cluster. This TF is generally involved in gastroin-
testinal NEPC (GI-NEPC) and was shown to be expressed in 5 % of pri-
mary PCs and 30 % of CRPCs. It is responsible for the activation of an
AR-independent resistance mechanism involving the activation of
gastrointestinal transcription and chromatin patterns [37]. We also
observed the presence of ARID1A and SMARCB1 among the top 5
differentially active TFs. Both of these TFs were shown to cooperate in
the SWI/SNF chromatin remodeling complex and to be involved in PC
lineage plasticity [38]. Further, HOXB13, NKx3–1, FOXA2 and GATA2
are other TFs that are linked to NEPC [20,39,40] and were found to be
differentially active. Lastly, our analysis highlighted TLE3 as a key
player among the differentially active TFs whose loss was previously
linked to the development of a glucocorticoid receptor (GR)-mediated
resistance mechanism under androgen receptor inhibitors [41].

3.4. Enrichment analysis

After the analysis of differential activity, LBFextract performs an
enrichment analysis step, which is carried out through the STRING API
using all identified differentially active TFs. For the enrichment step, one
can use either the default parameters of the STRING API, the provided
list of TFs, or a specific background. In this analysis, the default STRING
API settings were used to include all potential ontology terms and to
avoid the exclusion of potentially relevant biological pathways. Through
this step, the enrichment of the differentially active genes in different
databases, which span from gene ontology to KEGG, REACTOME and
WikiPathways, is retrieved. Here, we focused on the LAR and HAR
clusters and found a significant enrichment in the "Androgen receptor
signaling pathway", alongside various processes associated with
epithelial cell development and differentiation, prostate gland devel-
opment, and neuron differentiation in the Gene Ontology process cate-
gory. Moreover, the results of the DISEASES enrichment analysis
contained many significant terms that are closely related to PC such as
"prostate cancer", "prostate carcinoma", "prostate adenocarcinoma",
"adenocarcinoma", and "reproductive organ disease". The enrichment
analysis in the TISSUES category indicated statistically significant
enrichment in "whole blood" and "prostate epithelium cell line" as well
as "prostate epithelium cell". Furthermore, pathways including
"Androgen receptor network in prostate cancer", "Nuclear receptors" and

Table 1
Results showing the top 20 differentially active TFs from analysis per-
formed on the HAR and LAR groups (full table available in Supplementary
Information). To include the direction of change, we calculated a pseudo log2
fold change, which retains the sign information.

TF μHAR μLAR p_value adj_p-val log2_fc

1 CTBP2 0.0041 0.0016 < 0.0001 0.0031 1.3885
2 TLE3 0.0056 0.0028 < 0.0001 0.0031 1.0007
3 ARID1A 0.0064 0.0032 < 0.0001 0.0031 0.9881
4 FOXA1 0.0087 0.0054 < 0.0001 0.0031 0.6823
5 HNF4G 0.0036 0.0011 < 0.0001 0.0035 1.7712
6 AR 0.0071 0.0034 < 0.0001 0.0035 1.0557
7 HOXB13 0.0082 0.0046 < 0.0001 0.0035 0.8275
8 NKX3− 1 0.0066 0.0040 < 0.0001 0.0035 0.7305
9 ZNF217 0.0090 0.0069 < 0.0001 0.0035 0.3758
10 ETV7 0.0076 0.0063 < 0.0001 0.0035 0.2774
11 ZXDC 0.0039 0.0023 0.0001 0.0046 0.7897
12 CDX2 0.0036 0.0023 0.0001 0.0046 0.6228
13 ERF 0.0086 0.0061 0.0001 0.0046 0.5016
14 GRHL1 0.0065 0.0034 0.0001 0.0062 0.9228
15 HMG20B 0.0035 0.0024 0.0001 0.0065 0.5378
16 FOXA2 0.0090 0.0071 0.0001 0.0065 0.3426
17 FOXA3 0.0028 0.0018 0.0001 0.0080 0.6653
18 GRHL2 0.0065 0.0034 0.0001 0.0086 0.9550
19 T-Cell 0.0070 0.0044 0.0002 0.0086 0.6698
20 MED12 0.0030 0.0019 0.0002 0.0095 0.6824
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"Endoderm differentiation" were found in the WikiPathways category.
Additionally, pathways such as "Signaling by Nuclear Receptors," "Es-
trogen-dependent gene expression", "NR1H2 & NR1H3 regulate gene
expression to limit cholesterol uptake", and "NR1H2 & NR1H3 regulate
gene expression linked to triglyceride lipolysis in adipose" in the
REACTOME database were significantly enriched.

4. Discussion

We showcased the features and applications of our LBFextract
package in a biomarker discovery setting for PC, highlighting its unique
capabilities in feature extraction, differential TF activity analysis, and its
plugin structure, which was designed to keep up with the continuous
growth in feature extraction methods in liquid biopsy research.

In our package, we provide a default set of liquid biopsy feature
extraction methods based on fragment coverage, with major differences
to coverage features extraction methods offered by other packages like
SAMTools [42], Picard [43], DeepTools [44] Pysam [42,45,46], Mos-
depth [47] and BEDTools [48,49].

While most of these general tools are based on read coverage or
coverage in ranges, the coverage methods implemented in LBFextract
are based on fragment coverage, in which the positions between read
pairs are filled, and different strategies to increase the strength of the
dyads-derived signals are applied, making nucleosome phasing around
active TFBSs more visible. (Fig. 2b-d, Supp. Fig. 2). For example, we
implemented midpoint coverage and middle-n points coverage (Fig. 2c-
d), previously used in [21], to increase the strength of the phasing signal.
We also re-implemented the central 60 bp-coverage [8] with the
following modifications:removal of dependencies from other tools like
fastx_trimmer; generalized to a user-defined central region; prevented
double counting of overlapping reads; and made it compatible with
reads < 150 bp, thus reducing sequencing requirements and costs.

When investigating the FLD signals derived after diverse in silico
trimming strategies at CTCF TFBSs, an issue using midpoint coverage
with fragments > 220 bp became visible. Indeed, the center of
dinucleosome-derived fragments is positioned between nucleosome-
derived dyads. Unphased dinucleosomal and mononucleosomal frag-
ments produce a weaker signal with shifted nucleosome-derived peaks,
which can be improved by better modelling the position of the dyad on
polynucleosomal fragments. Therefore, we implemented the coverage
around dyads signal, which provides a stronger dyad-derived signal. We
modelled information about dyads coming from polynucleosomal
structures, i.e. fragments having a length between multiples of the
mono-nucleosomal length, thus increasing the amount of information
used, which resulted in a stronger dyad-derived signal for phased nu-
cleosomes (Supp Fig. 2). With this strategy, we further improved upon
the coverage analysis performed in our previous work [8]. Indeed, for
dinucleosome-derived fragments, an increasing bias concerning the
location of the dyad is introduced the more a fragment becomes digested
if only the central part of the read is considered. In the extreme case of
fragments < 150 bp, the positions are counted twice.

In our investigation, we examined the AR coverage signal within
sample P148, which transdifferentiated into cancer NEPC. Our results
reveal a flat coverage profile at AR TFBSs, along with the disappearance
of the recurrent peaks induced by nucleosome phasing in P148_3. These
observations align with and support the conclusions drawn in prior
studies [9,20], in which a similar behavior was described. This shows
the importance of cfDNA-specific features. Indeed, with general
coverage strategies, this information was not visible.

Finally, we expanded with the analysis capacity of LBFextract further
into the fragmentomics space by implementing entropy-derived fea-
tures, which efficiently summarize variation in FLD signals. We used
these features to infer the TF activity in PC and NEPC samples, showing
that RFE is powerful for recapitulating findings of our previous work [9,
20]. The validity of this signal is also supported by the fact that he-
matopoietic TFs, such as TAL1 and LYL1, show similar profiles between

samples. In contrast, condition-specific TFs, such as AR, HOXB13 and
FOXA1, provide different signals in different conditions.

To identify potentially new TFs associated with these cancer sub-
types, we extracted the coverage signal of 1058 TFs retrieved from the
GTRD database for PC samples in the cohort. We performed cluster
analysis and looked for differentially active TFs between the groups
obtained with this approach, highlighting LBFextract’s capability of
discovering both subtypes and subtype-specific differentially active TFs
from cfDNA. Indeed, through this analysis, we found a higher expression
of the NKX3–1 TF in the HAR cluster. This aligns with the finding that
NKX3–1 is generally expressed in the luminal cell of the prostate, where
it is intertwined in a regulative feed-forward loop with AR in both
normal prostate and AR-dependent PC [50], but it may be down-
regulated or lost in NEPC. We also observed a loss in the LAR group for
HOXB13, which is generally active in AR-dependent PC and CRPC, but
downregulated in NEPC [51]. This agrees with the low AR signal, low
PSA values and high NSE values found in P148_3 and P198_5, which are
part of the LAR cluster. Interestingly, two subunits of the mSWI/SNF
complex, ARID1A and SMARCB1, were found to be downregulated in
the LAR cluster, suggesting a possible impairment of the BAF complex
known to be involved in damage response. As suggested by Park Y. et al.
[52], this can be exploited to challenge the tumor with PARP inhibitors
combined with ionizing radiation.

Although herein we focused on the PC use case, the analysis of dif-
ferential TF activity enabled by LBFextract can be extrapolated to other
tumor types and may provide valuable insights into various biological
and pathological conditions by identifying changes in gene regulation.
For example, in breast cancer, which is a heterogeneous disease with
multiple subtypes, differential TF activity may help classify these sub-
types [53,54] and reveal distinct regulatory networks. Detection of other
lineage-specific TFs may offer new avenues of early detection [9] or
monitoring. Furthermore, as cfDNA can also provide information about
physiological processes and conditions such as aging or pregnancy,
LBFextract may help address unmet needs in these areas.

While the aforementioned applications of LBFextract underscore its
potential in liquid biopsy research, it is important to acknowledge its
limitations and challenges. The package is specifically designed for
feature extraction from BAM files, ensuring reproducibility solely for the
feature extraction process. Therefore, variations in results may still
occur due to the use of different aligners, modifications to aligner pa-
rameters, or alternative preprocessing steps, such as trimming. Addi-
tionally, LBFextract currently does not include feature extraction
methods for fragment end motifs or genome-wide analyses like DELFI
[11]. Nevertheless, these functionalities could potentially be incorpo-
rated through the plugin mechanism. Finally, as LBFextract relies on
template length to infer DNA fragment length, it is currently restricted to
paired-end sequencing data.

5. Conclusion

In this article, we introduced LBFextract, a Python package designed
for the extraction and analysis of features from liquid biopsy WGS data,
with a specific emphasis on transcription factor-specific coverage and
entropy features. A notable strength of LBFextract lies in its flexibility,
allowing seamless integration of new feature extraction methods in the
form of plugins, enabling adaptability to research approaches as needed.
This should streamline the generation of multiview datasets that can be
used in multiview machine learning models, which have been shown to
improve cancer classification [55]. Our study demonstrated the capa-
bilities of LBFextract in suggesting TFs for follow-up research and
showcasing its ability to recapitulate signals observed in previous work.
This validation was performed from both a coverage and fragmentomics
perspective. We outlined the ability of identifying condition-specific
TFs, demonstrating the tool’s utility in uncovering potential bio-
markers in diverse biological contexts. LBFextract’s open architecture
and compatibility with plugins seek to not only make it a standalone tool
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for reproducible feature extraction and biomarker identification, but
also to contribute to the dynamic and collaborative nature of broader
scientific and Python communities.
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